数据结构线性表基本操作(C语言)

数据结构线性表基本操作(C语言)
数据结构线性表基本操作(C语言)

#include

#include

#include

#define TRUE 1

#define FALSE 0

#define OK 1

#define ERROR 0

#define INFEASIBLE -1

#define OVERFLOW -2

typedef int Status;

typedef int ElemType;

#define LIST_INIT_SIZE 100

#define LISTINCREMENT 10

typedef struct

{

ElemType *elem;

int length;

int listsize;

}SqList;

Status InitList_Sq(SqList *L); //构造空的线性表

void DestroyList_Sq(SqList *L); //销毁一个线性表

void ClearList_Sq (SqList *L); //将L置为空表

Status ListEmpty_Sq (SqList L); //空表返回TRUE

Status ListLength_Sq (SqList L); // 返回元素个数

Status GetElem_Sq (SqList L, int i, ElemType *e); //用e返回第i个元素算法2.2中使用

Status LocateElem_Sq(SqList L, ElemType e, Status (* compare)(ElemType, ElemType)); // 在L中找到一个值与e满足compare()的元素的位序

Status PriorElem_Sq(SqList L, ElemType cur_e, ElemType *pre_e);

//用pre_e返回cur_e的前驱

Status NextElem_Sq(SqList L, ElemType cur_e, ElemType *next_e);

//用next_e返回cur_e的后继

Status ListInsert_Sq(SqList *L, int i, ElemType e); //在第i位插入新的元素e

Status ListDelete_Sq(SqList *L, int i, ElemType *e); //删除第i个元素用e返回

//算法2.3

Status InitList_Sq(SqList *L) // 构造空的线性表

{

L->elem = (ElemType *)malloc(LIST_INIT_SIZE * sizeof(ElemType));

if (! L->elem)

{

printf("构造失败!\n");

exit(OVERFLOW);

}

L->length = 0;

L->listsize = LIST_INIT_SIZE;

printf("构造成功!\n");

return OK;

}

void DestroyList_Sq(SqList *L) // 销毁一个线性表{

if (L->elem != NULL)

{

free (L->elem);

L->elem = NULL;

L->length = 0;

L->listsize = 0;

printf("已销毁线性表!\n");

}

}

void ClearList_Sq (SqList *L) //将L置为空表

{

if(L->elem != NULL)

{

L->length = 0;

printf("已将L置为空表!\n");

}

}

Status ListEmpty_Sq (SqList L) // 空表返回TRUE

{

if (L.elem != NULL)

{

if (L.length == 0)

{

printf("是空表\n");

return TRUE;

}

else

{

printf("不是空表\n");

return FALSE;

}

}

else

{

exit(ERROR);

}

}

Status ListLength_Sq (SqList L) // 返回元素个数

{

if (L.elem != NULL)

{

return L.length;

}

else

{

return ERROR;

}

}

Status GetElem_Sq (SqList L, int i, ElemType *e) //用e返回第i个元素算法2.2中使用

{

if (ListEmpty_Sq(L))

{

printf("为空表!\n");

return ERROR;

}

if (i < 1 || i > L.length)

{

printf("不存在地%d个位置!\n", i);

return ERROR;

}

*e = L.elem[i - 1];

return OK;

}

//算法2.6

Status LocateElem_Sq(SqList L, ElemType e, Status (* compare)(ElemType, ElemType)) //

在L中找到一个值与e满足compare()的元素的位序

{

int i = 1;

int *p = L.elem;

while (i <= L.length && !(* compare)(*p ++, e))

{

++i;

}

if (i <= L.length)

{

return i;

}

else

{

return 0;

}

}/*指向函数的指针*/

Status PriorElem_Sq(SqList L, ElemType cur_e, ElemType *pre_e) //用pre_e返回cur_e的前驱

{

int i = 2;

while (i <= L.length)

{

if (cur_e == L.elem[i - 1])

{

*pre_e = L.elem[i - 2];

return OK;

}

i ++;

}

return ERROR;

}

Status NextElem_Sq(SqList L, ElemType cur_e, ElemType *next_e) //用next_e 返回cur_e的后继

{

int i = 1;

while (i < L.length)

{

if (cur_e == L.elem[i - 1])

{

*next_e = L.elem[i];

return OK;

}

i ++;

}

return ERROR;

}

//算法2.4

Status ListInsert_Sq(SqList *L, int i, ElemType e) //在第i位插入新的元素e

{

ElemType *newbase, *p, *q;

if (i < 1 || i > L->length +1)

{

return ERROR;

}

if (L->length >= L->listsize)

{

newbase = (ElemType *)realloc(L->elem,

(L->listsize + LISTINCREMENT)*sizeof(ElemType));

if (! newbase)

{

exit(OVERFLOW);

}

L->elem = newbase;

L->listsize += LISTINCREMENT;

}

q = &(L->elem[i - 1]);

for (p = &(L->elem[L->length - 1]); p >= q; p--)

{

*(p + 1) = * p;

}

*q = e;

++L->length;

return OK;

}

//算法2.5

Status ListDelete_Sq(SqList *L, int i, ElemType *e) //删除第i个元素用e返回{

ElemType *p, *q;

if (i < 1 || i > L->length)

{

return ERROR;

}

p = &(L->elem[i -1]);

*e = *p;

q = L->elem + L->length - 1;

for (++ p; p <= q; p ++)

{

*(p - 1) = *p;

}

-- L->length;

return OK ;

}

Status main(void)

{

SqList L;

ElemType i, n = 0, e = 0, cur_e = 0, pre_e = 0, next_e = 0;

char ch;

printf("初始化线性表···");

InitList_Sq(&L);

printf("是否销毁线性表L? 'Y'OR'N' ");

ch = getchar();

if (ch == 'Y')

{

DestroyList_Sq(&L);

return 0;

}

else

{

ClearList_Sq(&L);

}

for (i = 1; i <= LISTINCREMENT; i ++)

{

L.elem[i - 1] = i;

L.length ++;

}

printf("线性表内初始数值为:\n");

for (i = 1; i <= LISTINCREMENT; i ++)

{

printf("%4d", L.elem[i - 1]);

}

printf("\n");

n = ListLength_Sq (L);

printf("线性表内元素个数为%3d\n", n);

printf("欲知道第i位数字i = ");

scanf("%d", &i);

GetElem_Sq(L, i, &e);

printf("第%d位数字为%d\n", i, e);

cur_e = e;

PriorElem_Sq(L, cur_e, &pre_e);

printf("%d的前驱是%d\n", cur_e, pre_e);

NextElem_Sq(L, cur_e, &next_e);

printf("%d的后继是%d\n", cur_e, next_e);

printf("请输入要插入的位数和要插入的数字:");

scanf("%d %d", &n, &e);

ListInsert_Sq(&L, n, e);

printf("插入后线性表内%d个数据为:\n", L.length);

for (i = 1; i <= L.length; i ++)

{

printf("%4d", L.elem[i - 1]);

}

printf("\n");

ListDelete_Sq(&L, n, &e);

printf("删除线性表中第%d个数据%d后,线性内%d个数据为:\n", n, e, L.length);

for (i = 1; i <= L.length; i ++)

{

printf("%4d", L.elem[i - 1]);

}

printf("\n");

return 0;

}

数据结构C语言版期末考试试题(有答案)

“数据结构”期末考试试题 一、单选题(每小题2分,共12分) 1.在一个单链表HL中,若要向表头插入一个由指针p指向的结点,则执行( )。 A. HL=ps p一>next=HL B. p一>next=HL;HL=p3 C. p一>next=Hl;p=HL; D. p一>next=HL一>next;HL一>next=p; 2.n个顶点的强连通图中至少含有( )。 A.n—l条有向边 B.n条有向边 C.n(n—1)/2条有向边 D.n(n一1)条有向边 3.从一棵二叉搜索树中查找一个元素时,其时间复杂度大致为( )。 A.O(1) B.O(n) C.O(1Ogzn) D.O(n2) 4.由权值分别为3,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为( )。 A.24 B.48 C. 72 D. 53 5.当一个作为实际传递的对象占用的存储空间较大并可能需要修改时,应最好把它说明为( )参数,以节省参数值的传输时间和存储参数的空间。 A.整形 B.引用型 C.指针型 D.常值引用型· 6.向一个长度为n的顺序表中插人一个新元素的平均时间复杂度为( )。 A.O(n) B.O(1) C.O(n2) D.O(10g2n) 二、填空题(每空1分,共28分) 1.数据的存储结构被分为——、——、——和——四种。 2.在广义表的存储结构中,单元素结点与表元素结点有一个域对应不同,各自分别为——域和——域。 3.——中缀表达式 3十x*(2.4/5—6)所对应的后缀表达式为————。 4.在一棵高度为h的3叉树中,最多含有——结点。 5.假定一棵二叉树的结点数为18,则它的最小深度为——,最大深度为——· 6.在一棵二叉搜索树中,每个分支结点的左子树上所有结点的值一定——该结点的值,右子树上所有结点的值一定——该结点的值。 7.当向一个小根堆插入一个具有最小值的元素时,该元素需要逐层——调整,直到被调整到——位置为止。 8.表示图的三种存储结构为——、——和———。 9.对用邻接矩阵表示的具有n个顶点和e条边的图进行任一种遍历时,其时间复杂度为——,对用邻接表表示的图进行任一种遍历时,其时间复杂度为——。 10.从有序表(12,18,30,43,56,78,82,95)中依次二分查找43和56元素时,其查找长度分别为——和——· 11.假定对长度n=144的线性表进行索引顺序查找,并假定每个子表的长度均

数据结构_实验1_线性表的基本操作

实验1 线性表的基本操作 一、需求分析 目的: 掌握线性表运算与存储概念,并对线性表进行基本操作。 1.初始化线性表; 2.向链表中特定位置插入数据; 3.删除链表中特定的数据; 4.查找链表中的容; 5.销毁单链表释放空间; 二、概要设计 ●基础题 主要函数: 初始化线性表InitList(List* L,int ms) 向顺序表指定位置插入元素InsertList(List* L,int item,int rc)删除指定元素值的顺序表记录DeleteList1(List* L,int item) 删除指定位置的顺序表记录 DeleteList2(List* L,int rc) 查找顺序表中的元素 FindList(List L,int item) 输出顺序表元素OutputList(List L) 实验步骤: 1,初始化顺序表 2,调用插入函数 3,在顺序表中查找指定的元素 4,在顺序表中删除指定的元素 5,在顺序表中删除指定位置的元素 6,遍历并输出顺序表 ●提高题

要求以较高的效率实现删除线性表中元素值在x到y(x和y自定义)之间的所有元素 方法: 按顺序取出元素并与x、y比较,若小于x且大于y,则存进新表中。 编程实现将两个有序的线性表进行合并,要求同样的数据元素只出现一次。 方法: 分别按顺序取出L1,L2的元素并进行比较,若相等则将L1元素放进L中,否则将L 1,L2元素按顺序放进L。 本程序主要包含7个函数 主函数main() 初始化线性表InitList(List* L,int ms) 向顺序表指定位置插入元素InsertList(List* L,int item,int rc)删除指定元素值的顺序表记录DeleteList1(List* L,int item) 删除指定位置的顺序表记录 DeleteList2(List* L,int rc) 查找顺序表中的元素 FindList(List L,int item) 输出顺序表元素OutputList(List L) 提高题的程序 void Combine(List* L1,List* L2,List* L) void DeleteList3(List* L,int x,int y) 二、详细设计 初始化线性表InitList(List* L,int ms) void InitList(List* L,int ms) { L->list=(int*)malloc(LIST_INIT_SIZE*sizeof(int)); L->size=0; L->MAXSIZE=LIST_INIT_SIZE;

201560140140--袁若飞--实验1:线性表的基本操作及其应用

数据结构 实验1:线性表的基本操作及其应用 班级:RB软工移151 学号:201560140140 姓名:袁若飞

实验一线性表 一、实验目的 1、帮助读者复习C++语言程序设计中的知识。 2、熟悉线性表的逻辑结构。 3、熟悉线性表的基本运算在两种存储结构上的实现,其中以熟悉链表的操作为侧重点。 二、实验内容 本次实验提供4个题目,每个题目都标有难度系数,*越多难度越大,题目一、二是必做题。题目三、题目四选作。 三、实验准备知识 1、请简述线性表的基本特性和线性表的几种基本操作的机制 ①答:线性表的基本特性是:对线性表中某个元素ai来说,称其前面的元素ai-1为ai的直接前驱,称其后前面的元素ai+1为ai的直接后继。显然,线性表中每个元素最多有一个直接前驱和一个直接后继。 ②答:线性表的几种基本操作的机制有六个: (1)初始化线性表initial_List(L)——建立线性表的初始结构,即建空表。这也是各种结构都可能要用的运算。 (2)求表长度List_length(L)——即求表中的元素个数。 (3)按序号取元素get_element(L,i)——取出表中序号为i的元素。(4)按值查询List_locate(L,x)——取出指定值为x的元素,若存在该元素,则返回其地址;否则,返回一个能指示其不存在的地址值或标记。 (5)插入元素List_insert(L,i,x)——在表L的第i个位置上插入值为x的元素。显然,若表中的元素个数为n,则插入序号i应满足1<=i<=n+1。(6)删除元素List_delete(L,i)——删除表L中序号为i的元素,显然,待删除元素的序号应满足1<=i<=n。 2、掌握线性表的逻辑结构。 3、掌握线性表的链式存储结构。 4、熟练掌握线性表的插入、删除等操作。

数据结构c语言版期末考试复习试题

《数据结构与算法》复习题 一、选择题。 1在数据结构中,从逻辑上可以把数据结构分为 C 。 A ?动态结构和静态结构B.紧凑结构和非紧凑结构 C.线性结构和非线性结构 D.内部结构和外部结构 2?数据结构在计算机内存中的表示是指_A_。 A .数据的存储结构B.数据结构 C .数据的逻辑结构 D .数据元素之间的关系 3.在数据结构中,与所使用的计算机无关的是数据的A结构。 A .逻辑 B .存储C.逻辑和存储 D .物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储_C A .数据的处理方法 B .数据元素的类型 C.数据元素之间的关系 D .数据的存储方法 5.在决定选取何种存储结构时,一般不考虑A A .各结点的值如何C.对数据有哪些运算 B .结点个数的多少 D .所用的编程语言实现这种结构是否方 6.以下说法正确的是D A .数据项是数据的基本单位 B .数据元素是数据的最小单位 C.数据结构是带结构的数据项的集合 D .一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。 (1) A .找出数据结构的合理性B.研究算法中的输入和输出的关系 C .分析算法的效率以求改进C.分析算法的易读性和文档性 (2) A .空间复杂度和时间复杂度B.正确性和简明性 &下面程序段的时间复杂度是0( n2) s =0; for( I =0; i

数据结构(c语言版)期末考试复习试题

《数据结构与算法》(c语言版)期末考复习题 一、选择题。 1.在数据结构中,从逻辑上可以把数据结构分为 C 。 A.动态结构和静态结构B.紧凑结构和非紧凑结构 C.线性结构和非线性结构D.内部结构和外部结构 2.数据结构在计算机内存中的表示是指 A 。 A.数据的存储结构B.数据结构C.数据的逻辑结构D.数据元素之间的关系 3.在数据结构中,与所使用的计算机无关的是数据的 A 结构。 A.逻辑B.存储C.逻辑和存储D.物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储 C 。A.数据的处理方法B.数据元素的类型 C.数据元素之间的关系D.数据的存储方法 5.在决定选取何种存储结构时,一般不考虑 A 。 A.各结点的值如何B.结点个数的多少 C.对数据有哪些运算D.所用的编程语言实现这种结构是否方便。 6.以下说法正确的是 D 。 A.数据项是数据的基本单位

B.数据元素是数据的最小单位 C.数据结构是带结构的数据项的集合 D.一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。(1)A.找出数据结构的合理性B.研究算法中的输入和输出的关系C.分析算法的效率以求改进C.分析算法的易读性和文档性(2)A.空间复杂度和时间复杂度B.正确性和简明性 C.可读性和文档性D.数据复杂性和程序复杂性 8.下面程序段的时间复杂度是O(n2) 。 s =0; for( I =0; i

实验一 线性表的基本操作

实验一线性表的基本操作 一、实验目的 1. 熟悉C/C++语言上机环境; 2. 掌握线性表的基本操作:查找、插入、删除等运算在顺序存储、链式存储结构上的运算。 二、实验环境 1. 装有Visual C++6.0的计算机。 2. 本次实验共计2学时。 三、实验内容 1. 建立顺序表,基本操作包括:初始化、建立顺序表、输出顺序表、判断是否为空、取表中第i个元素、查找、插入和删除。并在主函数中完成对各种函数的测试。 2. 设有两个非递增有序的线性表A和B,均已顺序表作为存储结构。编写算法实现将A表和B表合并成一个非递增有序排列的线性表(可将线性表B插入线性表A中,或重新创建线性表C)。 3. 建立单链表,基本操作包括:初始化、判断是否为空、取表中第i个元素、查找、插入和删除。并在主函数中完成对各种函数的测试。 四、源程序 #include #include #include #define MaxSize 50 typedef char ElemType; //-------存储结构---------- typedef struct { ElemType elem[MaxSize]; //存放顺序表中的元素 int length; //存放顺序表的长度 } SqList; //-------初始化线性表---------- void InitList(SqList *&L) //初始化线性表,构造一个空的线性表,并将长度设置为0 { L=(SqList *)malloc(sizeof(SqList)); L->length=0;

数据结构(C语言版)期末复习

数据结构(C语言版)期末复习汇总 第一章绪论 数据结构:是一门研究非数值计算程序设计中的操作对象,以及这些对象之间的关系和操作的学科。 数据结构分为:逻辑结构、物理结构、操作三部分 逻辑结构:集合、线性结构、树形结构、图(网)状结构 物理结构(存储结构):顺序存储结构、链式存储结构 算法:是为了解决某类问题而规定的一个有限长的操作序列。 算法五个特性:有穷性、确定性、可行性、输入、输出 评价算法优劣的基本标准(4个):正确性、可读性、健壮性、高效性及低存储量 语句频度的计算。 算法的时间复杂度: 常见有:O(1),O(n),O(n2),O(log2n),O(nlog2n),O(2n) 第二章线性表 线性表的定义和特点: 线性表:由n(n≥0)个数据特性相同的元素构成的有限序列。线性表中元素个数n(n≥0)定义为线性表的长度,n=0时称为空表。 非空线性表或线性结构,其特点: (1)存在唯一的一个被称作“第一个”的数据元素; (2)存在唯一的一个被称作“最有一个”的数据元素; (3)除第一个之外,结构中的每个数据元素均只有一个前驱; (4)除最后一个之外,结构中的每个数据元素均只有一个后继。 顺序表的插入:共计n个元素,在第i位插入,应移动(n-i+1)位元素。 顺序表的删除:共计n个元素,删除第i位,应移动(n-i)位元素。 线性表的两种存储方式:顺序存储、链式存储。 顺序存储 概念:以一组连续的存储空间存放线性表; 优点:逻辑相邻,物理相邻;可随机存取任一元素;存储空间使用紧凑; 缺点:插入、删除操作需要移动大量的元素;预先分配空间需按最大空间分配,利用不充分;表容量难以扩充; 操作:查找、插入、删除等 查找: ListSearch(SqlList L,ElemType x,int n) { int i; for (i=0;i

线性表的基本操作实验报告

实验一:线性表的基本操作 【实验目的】 学习掌握线性表的顺序存储结构、链式存储结构的设计与操作。对顺序表建立、插入、删除的基本操作,对单链表建立、插入、删除的基本操作算法。 【实验内容】 1.顺序表的实践 1) 建立4个元素的顺序表s=sqlist[]={1,2,3,4,5},实现顺序表建立 的基本操作。 2) 在sqlist []={1,2,3,4,5}的元素4和5之间插入一个元素9,实现 顺序表插入的基本操作。 3) 在sqlist []={1,2,3,4,9,5}中删除指定位置(i=5)上的元素9, 实现顺序表的删除的基本操作。 2.单链表的实践 3.1) 建立一个包括头结点和4个结点的(5,4,2,1)的单链表,实现单链 表建立的基本操作。 2) 将该单链表的所有元素显示出来。 3) 在已建好的单链表中的指定位置(i=3)插入一个结点3,实现单链表插 入的基本操作。 4) 在一个包括头结点和5个结点的(5,4,3,2,1)的单链表的指定位置 (如i=2)删除一个结点,实现单链表删除的基本操作。 5) 实现单链表的求表长操作。 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了刚创

建的工程之中。 4.写好代码 5.编译->链接->调试 1、#include "stdio.h" #include "malloc.h" #define OK 1 #define OVERFLOW -2 #define ERROR 0 #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef int ElemType; typedef int Status; typedef struct { ElemType *elem; int length; int listsize; } SqList; Status InitList( SqList &L ) { int i,n; L.elem = (ElemType*) malloc (LIST_INIT_SIZE*sizeof (ElemType)); if (!L.elem) return(OVERFLOW); printf("输入元素的个数:"); scanf("%d",&n); printf("输入各元素的值:"); for(i=0;i

实验一 线性表基本操作的编程实现

实验一线性表基本操作的编程实现 【实验目的】 线性表基本操作的编程实现 要求: 线性表基本操作的编程实现(2学时,验证型),掌握线性表的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找、逆序、排序等操作,存储结构可以在顺序结构或链表结构中任选,可以完成部分主要功能,也可以用菜单进行管理完成大部分功能。还鼓励学生利用基本操作进行一些更实际的应用型程序设计。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 把线性表的顺序存储和链表存储的数据插入、删除运算其中某项进行程序实现。建议实现键盘输入数据以实现程序的通用性。为了体现功能的正常性,至少要编制遍历数据的函数。 【注意事项】 1.开发语言:使用C。 2.可以自己增加其他功能。 【思考问题】 1.线性表的顺序存储和链表存储的差异?优缺点分析? 2.那些操作引发了数据的移动? 3.算法的时间效率是如何体现的? 4.链表的指针是如何后移的?如何加强程序的健壮性? 【参考代码】(以下内容,学生任意选择一个完成即可) (一)利用顺序表完成一个班级学生课程成绩的简单管理 1、预定义以及顺序表结构类型的定义 (1) #include #include #define ListSize 100 //根据需要自己设定一个班级能够容纳的最大学生数 (2) typedef struct stu { int num; //学生的学号 char name[10]; //学生的姓名 float physics; //物理成绩 float math; //数学成绩 float english; //英语成绩 }STUDENT; //存放单个学生信息的结构体类型 typedef struct List { STUDENT stu[ListSize]; //存放学生的数组定义,静态分配空间

实验一 线性表基本操作

实验一线性表基本操作 (4课时) 一、实验目的 掌握线性表的顺序表和链表的基本操作:建立、插入、删除、查找、合并、打印等运算。 二、实验要求 1.格式正确,语句采用缩进格式; 2.设计子函数实现题目要求的功能; 3.编译、连接通过,熟练使用命令键; 4.运行结果正确,输入输出有提示,格式美观。 5.输入数据至少三组,分别代表不同的情况,以测试程序的正确性。 6.将运行结果截图,并粘在文档的相应位置。 三、实验环境 1.turboc2,win-tc,VC++ 四、实验内容和步骤 1.编程实现在顺序存储的有序表中插入一个元素。 2.编程实现把顺序表中从i个元素开始的k个元素删除。 3.编程序实现将单链表的数据逆置,即将原表的数据(a1,a2….an)变成(an,…..a2,a1)。4.约瑟夫环问题。 约瑟夫问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个整数作为报数上限值m,从第一个人开始顺时针自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有的人全部出列为止。试设计一个程序,求出出列顺序。 利用单向循环链表作为存储结构模拟此过程,按照出列顺序打印出各人的编号。 例如m的初值为20;n=7,7个人的密码依次是:3,1,7,2,4,8,4,出列的顺序为6,1,4,7,2,3,5。 五、根据实验过程填写下面内容 1.写出第1题的程序并写出运行结果和分析。 #include "stdio.h" #include "malloc.h" #define OK 1 #define ERROR 0 #define ElemType int #define MAXSIZE 100 typedef struct//顺序表申明 { ElemType elem[MAXSIZE]; int last; }SeqList;

线性表的基本操作

实验一:线性表的基本操作 1.实验目的: 1)掌握用VC++上机调试线性表的基本方法; 2)掌握线性表的基本操作,插入、删除、查找,以及线性表合并等运算在顺序存储结构和链接存储结构上的运算。 2.实验内容: 1)线性表建立、插入、删除操作实现; 2)已知有序表SA,SB,其元素均为递增有序,将此两表归并成一个新有序表SC,且SC中的元素仍然递增有序。 #include #include #define OK 1 #define ERROR 0 typedefstruct Node { int data; struct Node *next; }Node,*LinkList; void InitList(LinkList *L) { *L=(LinkList)malloc(sizeof(Node)); (*L)->next=NULL; } void CreateFromTail(LinkList L) { Node *r,*s; int flag=1; int c; r=L;

printf("尾插法建立单链表,输入-1结束\n"); while(flag) { scanf("%d",&c); if(c!=-1) { s=(Node*)malloc(sizeof(Node)); s->data=c; r->next=s; r=s; } else { flag=0; r->next=NULL; } } } void printL(LinkList L) { Node *p; p=L; while(p->next!=NULL) { printf("%d ",p->next->data); p=p->next; } printf("\n"); } int InsertList(LinkList L,int i,int e) { Node *pre,*s; int k; if(i<1) { return ERROR; } pre=L; k=0; while(pre!=NULL&& k

《数据结构(C语言描述)》期末试卷要点

专业 《数据结构(C 语言描述)》期末试卷 ( — 学年 第 学期) 一、填空(10分) 1、一个m 阶B-树中,每个结点最少有( ceil(m/2) )个儿子结点,m 阶B+树中每个结点(除根外)最多有( m )个儿子结点. 2、n(n>0)个结点构成的二叉树,叶结点最多有( floor((n+1)/2) )个,最少有( 1 )个。若二叉树有m 个叶结点,则度为2的结点有( m-1 )个。 3、顺序查找方法适用于存储结构为( 顺序表和线性链表 )的线性表,使用折半查找方法的条件是(查找表为顺序存贮的有序表 ) 4、广义表A=(( ),(a ,(b ,c)),d)的表尾Gettail(A)为( ((a,(b,c)),d) ) 5、直接插入排序,起泡排序和快速排序三种方法中,( 快速排序 )所需的平均执行时间最小;( 快速排序 )所需附加空间最大。 二、选择(10分) 1、倒排文件的主要优点是:( C ) A 、便于进行插入和删除 B 、便于进行文件的合并 C 、能大大提高基于非主关键字数据项的查找速度 D 、易于针对主关键字的逆向检索 2 下面程序段的时间复杂性为( C ) y=0; while(n>=(y+1)*(y+1)) { y++; } A 、O(n) B 、O(n 2) C 、 O(sqrt(n)) D 、 O(1) 3、若从二叉树的任一结点出发到根的路径上所经过的结点序列按其关键字有序,则该二叉树是( C ) A 、二叉排序树 B 、哈夫曼树 C 、堆 D 、AVL 树 4、栈和队列都是( B ) A 、顺序存储的线性结构 B 、限制存取点的线性结构 C 、链式存储的线性结构 D 、限制存取点的非线性结构 5、用顺序查找方法查找长度为n 的线性表时,在等概率情况下的平均查找长度为( D ) A 、n B 、n/2 C 、(n-1)/2 D 、(n+1)/2 三、简答(30分) 1、已知一棵二叉树的前序扫描序列和中序扫描序列分别为ABCDEFGHIJ 和BCDAFEHJIG ,试给出该二叉树的后序序列并绘出该二叉树对应的森林。 院(系) 班级 姓名 学号 ……………………………………………装…………………………订………………………线……………………………………………

数据结构(c语言版)复习资料

数据结构复习资料 一、填空题 1. 数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和运算等的学科。 2. 数据结构被形式地定义为(D, R),其中D是数据元素的有限集合,R是D上的关系有限集合。 3. 数据结构包括数据的逻辑结构、数据的存储结构和数据的运算这三个方面的内容。 4. 数据结构按逻辑结构可分为两大类,它们分别是线性结构和非线性结构。 5. 线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。 6.在线性结构中,第一个结点没有前驱结点,其余每个结点有且只有 1个前驱结点;最后一个结点没有后续结点,其余每个结点有且只有1个后续结点。 7. 在树形结构中,树根结点没有前驱结点,其余每个结点有且只有 1个前驱结点;叶子结点没有后续结点,其余每个结点的后续结点数可以任意多个。 8. 在图形结构中,每个结点的前驱结点数和后续结点数可以任意多个。 9.数据的存储结构可用四种基本的存储方法表示,它们分别是顺序、链式、索引和散列。 10. 数据的运算最常用的有5种,它们分别是插入、删除、修改、查找、排序。 11. 一个算法的效率可分为时间效率和空间效率。

12. 在顺序表中插入或删除一个元素,需要平均移动表中一半元素,具体移动的元素个数与表长和该元素在表中的位置有关。 13. 线性表中结点的集合是有限的,结点间的关系是一对一的。 14. 向一个长度为n的向量的第i个元素(1≤i≤n+1)之前插入一个元素时,需向后移动n-i+1 个元素。 15. 向一个长度为n的向量中删除第i个元素(1≤i≤n)时,需向前移动n-i 个元素。 16. 在顺序表中访问任意一结点的时间复杂度均为 O(1),因此,顺序表也称为随机存取的数据结构。 17. 顺序表中逻辑上相邻的元素的物理位置必定相邻。单链表中逻辑上相邻的元素的物理位置不一定相邻。 18.在单链表中,除了首元结点外,任一结点的存储位置由其直接前驱结点的链域的值指示。 19.在n个结点的单链表中要删除已知结点*p,需找到它的前驱结点的地址,其时间复杂度为O(n)。 20. 向量、栈和队列都是线性结构,可以在向量的任何位置插入和删除元素;对于栈只能在栈顶插入和删除元素;对于队列只能在队尾插入和队首删除元素。 21. 栈是一种特殊的线性表,允许插入和删除运算的一端称为栈顶。不允许插入和删除运算的一端称为栈底。 22. 队列是被限定为只能在表的一端进行插入运算,在表的另一端进行删除运算的线性表。 23. 不包含任何字符(长度为0)的串称为空串;由一个或多个空格(仅由空格符)组成的串称为空白串。 24. 子串的定位运算称为串的模式匹配;被匹配的主串称为目标串,子串称为模式。

《数据结构》实验报告模板附实例实验一线性表的基本操作实现.doc

实验一线性表的基本操作实现及其应用 一、实验目的 1、熟练掌握线性表的基本操作在两种存储结构上的实现,其中以熟悉各种链表的操作为重点。 2、巩固高级语言程序设计方法与技术,会用线性链表解决简单的实际问题。 二、实验内容 √1、单链表的表示与操作实现( * ) 2、约瑟夫环问题 3、Dr.Kong的艺术品 三、实验要求 1、按照数据结构实验任务书,提前做好实验预习与准备工作。 2、加“*”题目必做,其他题目任选;多选者并且保质保量完成适当加分。 3、严格按照数据结构实验报告模板和规范,及时完成实验报告。 四、实验步骤 (说明:依据实验内容分别说明实验程序中用到的数据类型的定义、主程序的流程以及每个操作(成员函数)的伪码算法、函数实现、程序编码、调试与分析、总结、附流程图与主要代码) ㈠、数据结构与核心算法的设计描述 (程序中每个模块或函数应加注释,说明函数功能、入口及出口参数) 1、单链表的结点类型定义 /* 定义DataType为int类型*/ typedef int DataType; /* 单链表的结点类型*/ typedef struct LNode { DataType data; struct LNode *next; }LNode,*LinkedList; 2、初始化单链表 LinkedList LinkedListInit( )

{ // 每个模块或函数应加注释,说明函数功能、入口及出口参数} 3、清空单链表 void LinkedListClear(LinkedList L) {// 每个模块或函数应加注释,说明函数功能、入口及出口参数} 4、检查单链表是否为空 int LinkedListEmpty(LinkedList L) { …. } 5、遍历单链表 void LinkedListTraverse(LinkedList L) { …. } 6、求单链表的长度 int LinkedListLength(LinkedList L) { ….} 7、从单链表表中查找元素 LinkedList LinkedListGet(LinkedList L,int i) { //L是带头结点的链表的头指针,返回第i 个元素} 8、从单链表表中查找与给定元素值相同的元素在链表中的位置 LinkedList LinkedListLocate(LinkedList L, DataType x) { ……} 9、向单链表中插入元素 void LinkedListInsert(LinkedList L,int i,DataType x) { // L 为带头结点的单链表的头指针,本算法 // 在链表中第i 个结点之前插入新的元素x } 10、从单链表中删除元素 void LinkedListDel(LinkedList L,DataType x) { // 删除以L 为头指针的单链表中第i 个结点} 11、用尾插法建立单链表 LinkedList LinkedListCreat( ) { ……}

数据结构c语言版期末考试复习试题

《数据结构与算法》复习题一、选择题。 1.在数据结构中,从逻辑上可以把数据结构分为 C 。 A.动态结构和静态结构B.紧凑结构和非紧凑结构 C.线性结构和非线性结构D.内部结构和外部结构 2.数据结构在计算机内存中的表示是指 A 。 A.数据的存储结构B.数据结构C.数据的逻辑结构D.数据元素之间的关系3.在数据结构中,与所使用的计算机无关的是数据的 A 结构。 A.逻辑B.存储C.逻辑和存储D.物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储 C 。 A.数据的处理方法B.数据元素的类型 C.数据元素之间的关系D.数据的存储方法 5.在决定选取何种存储结构时,一般不考虑 A 。 A.各结点的值如何B.结点个数的多少 C.对数据有哪些运算D.所用的编程语言实现这种结构是否方便。 6.以下说法正确的是 D 。 A.数据项是数据的基本单位 B.数据元素是数据的最小单位 C.数据结构是带结构的数据项的集合 D.一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。 (1)A.找出数据结构的合理性B.研究算法中的输入和输出的关系C.分析算法的效率以求改进C.分析算法的易读性和文档性 (2)A.空间复杂度和时间复杂度B.正确性和简明性 C.可读性和文档性D.数据复杂性和程序复杂性 8.下面程序段的时间复杂度是O(n2) 。 s =0; for( I =0; i

实验二 线性表的基本操作

实验二线性表的基本操作 一、实验目的 1. 掌握使用VC++6.0上机调试线性表的基本方法; 2. 掌握线性表的基本操作:插入、删除、查找以及线性表合并等运算在顺序存储结构上的运算。 3. 掌握线性表的基本操作:插入、删除、查找以及线性表合并等运算在链式存储结构上的运算。 二、实验要求 1. 认真阅读和掌握本实验的程序。 2. 补全程序上机调试。 3. 保存程序的运行结果和程序清单,并结合程序进行分析 三、实验内容 1. 顺序表基本操作的实现:包括顺序表的创建、插入、删除和查找,请补全程序并调试。第1步:任务分析 完成顺序表的建立,插入,删除和查找等函数功能,有助于更好的理解顺序表的概念和使用规律。上述函数都是线性表的基本操作,根据这些基本操作,可以构成其他更复杂的操作。 第2步:程序构思 (1) 顺序表的创建:因为顺序表的结构中包括了存放数据元素的起始地址,表的容量,以及表的当前长度等部分,所以表的创建工作一方面要为这些成员赋值,而存放数据元素的空间也需要在此处进行分配,因此整个创建工作包括了空间的创建和各个成员的赋值操作。 (2) 顺序表的插入:因为顺序表中的元素是连续存放的,元素之间的关系是通过位置的相邻性来体现的。因此在顺序表中的第i个位置上插入元素的操作可以表示为: ●从表尾到插入位置的所有元素依次向后移动一个位置 ●将待插入元素插入到i的位置 (3) 顺序表的删除:与插入相同,删除第i个数据元素后,需要将插入位置之后一直到表尾的数据元素依次作前移操作。 (4) 顺序表的查找:在顺序表中进行查找时,只能从第一个元素开始,逐个判断是否满足查找条件,如果找到返回元素在表中的下标,否则继续向后查找,直到表结束。 第3步:部分源代码: //结构的定义: #define ListSize 50 typedef struct { int * elem; /* elem表示存放数据元素的基地址*/

数据结构教案C语言版

数据结构教案C语言版 Last updated on the afternoon of January 3, 2021

课程教案 课程名称:数据结构 授课教师: 学习对象: 任课时间: 一、学生情况分析 数据结构是计算机专业的一门核心专业课程。学生在前期的学习中已经学习了C语言程序设计课程。通过本课程学习使学生对提高编写程序的能力以及解决实际问题的能力。 二、课程教学目标 《数据结构》是计算机学科中一门核心专业基础课。主要介绍如何合理地组织数据、有效地存储和处理数据,正确地设计算法以及对算法的分析和评价。通过本课程的学习,使学生深透地理解数据结构的逻辑结构和物理结构的基本概念以及有关算法,培养基本的、良好的程序设计技能,编制高效可靠的程序,为学习操作系统、编译原理和数据库等课程奠定基础。 三、课程教学内容 第一章绪论 教学内容: 1)什么是数据结构

2)抽象数据类型概念;数据类型;数据抽象与抽象数据类型;用于描述数据结构的语言 3)数据结构的抽象层次 4)算法定义 5)性能分析与度量;算法的性能标准;算法的后期测试;算法的事前估计;空间复杂度度量;时间复杂度度量;时间复杂度的渐进表示法; 教学要求: 了解:数据结构基本概念及数据结构的抽象层次 了解:抽象数据类型概念 了解:算法的定义及算法特性 掌握:算法的性能分析与度量方法 第二章线性表 教学内容: 1)线性表的定义和特点 2)线性表的顺序存储及查找、插入和删除操作 3)线性表的链式存储及查找、插入和删除操作 4)使用线性表的实例 教学要求: 了解:线性表的定义和特点 熟练掌握:线性表的顺序存储结构的查找、插入和删除等基本操作 熟练掌握:单链表、循环链表及双向链表的定义及实现 掌握:熟练掌握单链表的应用方法

实验一--线性表基本操作的编程实现

实验一--线性表基本操作的编程实现

实验一线性表基本操作的编程实现 【实验目的】 线性表基本操作的编程实现 要求: 线性表基本操作的编程实现(2学时,验证型),掌握线性表的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找、逆序、排序等操作,存储结构可以在顺序结构或链表结构中任选,可以完成部分主要功能,也可以用菜单进行管理完成大部分功能。还鼓励学生利用基本操作进行一些更实际的应用型程序设计。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 把线性表的顺序存储和链表存储的数据插入、删除运算其中某项进行程序实现。建议实现键盘输入数据以实现程序的通用性。为了体现功能的正常性,至少要编制遍历数据的函数。 【注意事项】 1.开发语言:使用C。 2.可以自己增加其他功能。 【思考问题】

1.线性表的顺序存储和链表存储的差异?优缺点分 析? 2.那些操作引发了数据的移动? 3.算法的时间效率是如何体现的? 4.链表的指针是如何后移的?如何加强程序的健壮 性? 【参考代码】(以下内容,学生任意选择一个完成即可)(一)利用顺序表完成一个班级学生课程成绩的简单管理 1、预定义以及顺序表结构类型的定义 (1) #include #include #define ListSize 100 //根据需要自己设定一个班级能够容纳的最大学生数 (2) typedef struct stu { int num; //学生的学号 char name[10]; //学生的姓名 float physics; //物理成绩 float math; //数学成绩 float english; //英语成绩 }STUDENT; //存放单个学生信息的结

c++学生信息的线性表的基本操作

#include #include #include #include using namespace std; #define MaxSize 150 typedef struct { int len; char xuehao[MaxSize][30]; char name[MaxSize][30]; char banji[MaxSize][30]; float math[MaxSize]; float english[MaxSize]; float cplus[MaxSize]; float total[MaxSize]; }SqList; void save(SqList *L) { fstream f1("Sq.txt",ios::out); f1<len<len;i++) f1<xuehao[i]<<' '<name[i]<<' '<banji[i]<<' '<math[i]<<' '<english[i]<<' '<cplus[i]<<' '<total[i]<len=0; else { f1>>L->len; for(i=0;ilen;i++) f1>>L->xuehao[i]>>L->name[i]>>L->banji[i]>>L->math[i]>>L->english[i]>>L->cplus[i]>> L->total[i]; } f1.close(); }

线性表的基本操作

数据结构实验报告 2011 年 4 月13 日 项目组成 一. 二.程序结构图 题目一: main InitList_Sq ListEmpty_S ListLength_S PriorElem_Sq LocateElem_S GetElem_Sq ListInsert_Sq CreateList_S DestroyList_S ClearList_Sq NextElem_Sq ListDelete_Sq ListTraverse_S

题目二: 三.算法及其功能函数 题目一: InitList_Sq(SqList *L) /*创建线性表*/ CreateList_Sq(SqList *L) /*输入线性表中元素 */ DestroyList_Sq(SqList *L) /*销毁线性表*/ ClearList_Sq(SqList *L) /*清空线性表*/ ListEmpty_Sq(SqList L) /*判断是否为空*/ ListLength_Sq(SqList L) /*求线性表长度 */ GetElem_Sq(SqList L, int i, ElemType *e) /*取第i 个元素并用e 返回*/ LocateElem_Sq (SqList L, int e) /*判断e 在表中位置*/ PriorElem_Sq(SqList L,int i, ElemType cur_e, ElemType *pre_e) /*取前驱*/ NextElem_Sq(SqList L,int i, ElemType cur_e, ElemType *next_e ) /*取后继*/ ListInsert_Sq(SqList *L, int i, ElemType e) /*在第i 个元素前插入e*/ ListDelete_Sq(SqList *L, int i, ElemType *e) /*删除第i 个元素 */ ListTraverse_Sq(SqList L,int i) /*遍历线性表*/ main InitList_L ListInsert_L CreateList_L NextElem_L DestroyList_ LocateElem_ PriorElem_L ListEmpty_L ListDelete_L ClearList_L ListTraverse_ ListLength_L GetElem_L

相关文档
最新文档