纯电动汽车电动机与电池匹配参数

纯电动汽车电动机与电池匹配参数
纯电动汽车电动机与电池匹配参数

电动机&电池匹配

? 整车参数: 整车自重(带电池):700KG (TBD ) 额定载荷: 300KG (4个人) 车辆滚动半径: 0.247mm ? 计算变速器速比和车速:

无变速箱,无差速器,根据产品定义设计最高车速:80KM/H ,计算电动机最高转速需求:

0.377

0.3770.24780/859/a rn

u n km h

i

n r m

==?== 取满载时最高车速为40KM/H

0.2470.377

40/1

a r

u km h == 则430/n r m = ? 计算满载在正常道路上行驶时所需要的扭矩:

初步确定传动效率为0.92,空气阻力系数为0.35、轮胎滚动阻力系数为0.015、迎风面

积2

1.66m

2

21.15M CdA Gf u r η=+ 20.920.35 2.2

8409.80.015800.24721.15M ??=??+?

95.7M Nm =

? 计算在正常道路上行驶时所需要的功率:

3max max 1

(

)360076140e a a Gf CdA

P u u η=+

3

17009.80.020.35 2.2(8080) 5.70.92360076140

e P Kw ???=

?+= ? 选择电动机

根据车辆的安装空间以及市场上的电动机的情况,选择电动机额定电压为72V ;根据车辆用

设车辆最大行驶里程为80KM ,电池放电深度为0.8:

0.8e S

P UI V

?=? 82.3I A =

800.88082.3

W

S Vt km ==??=

102.875W Ah =

所以选择110Ah 电池

5.9车轮总成

5.9.1 车轮总成的结构:车轮:145/70R12轮胎

5.9.2车轮总成的性能要求

5.9.2.1车轮总成应有合理的负荷能力和速度能力

5.9.2.2轮胎应有良好的附着性能和缓冲性能

5.9.2.3同时考虑铝合金和钢车轮

5.9.2.4具有良好的均匀性和质量平衡性。车轮总成在轮毂边缘上总的动不平衡量不大于80g,每一轮毂边缘单侧只用一块平衡块。

5.9.2.5车轮总成应有较小的滚动阻力和行驶噪声。

5.9.2.6车轮装饰盖与车轮搭配合理。

5.9.2.7无备胎

5.10 电气

5.10.1蓄电池

5.10.1.1免维护式,容量:210A·h

5.10.1.2要求安装位置接近性好、固定可靠

5.10.3.1 组合仪表包括指针式车速表、里程表、指针式电动机转速表、电压表、水温表等。

5.10.3.2组合仪表设有:点亮报警灯、充电指示灯、制动报警灯、转向指示灯、远光指示灯、前雾灯指示灯、防盗报警灯等。

5.10.3.3仪表台灯光应柔和、明亮、可调。

5.10.4喇叭

5.10.4.1单无触点电喇叭。

5.10.5车灯

5.10.5.1整车车外设定前照灯、前/后位置灯、前后转向灯、制动灯、倒车灯、前雾灯、后雾灯(选装)、牌照灯、回复反射器。

5.10.5.3 前照灯远、近光采用普通卤素射灯。

5.10.5.4侧转向灯位于车身。

5.10.6开关

5.10.

6.1包含:前窗除霜开关、警告灯开关、前雾灯开关、点烟器等集成在仪表台上,满足人机工程学要求。

5.10.

6.2喇叭开关和音响控制键设置在方向盘上。

5.10.

6.3电动门窗开关位于驾驶员侧门上,具有控制全车门锁及全车门窗升降功能。要求其他车门都有独立相应的门窗及门锁开关。

5.10.

6.4组合开关位于转向管柱上,组合开关包括前照灯控制、转向灯控制、超车灯控制、前风挡雨刮清洗控制。

5.10.7线束系统

5.10.7.1整车线束及连接器布局应当安全、可靠、合理。

5.10.7.2主配电盒优先放置在发动机舱里。

5.10.8收音机或多碟媒体播放器采用标准双DIN尺寸。

6.关键计算

6.1 车辆的结果和性能应当适应中国相关的标准和规定。

6.2 内部结果和运动学关系保持不变,车身外部改型,进行全新设计。

6.3 动力总成完全优于原平台,满足整车设计要求。

6.4 优化沿用平台,提升整车操纵稳定性、平顺性。

6.5 提升乘坐舒适性,满足NVH要求。

6.6 优化结构,合理用材,达到降低目标成本的要求。

Cd )。

6.7 车身设计满足安全性法规要求,满足空气动力学要求(0.32

7 CAE分析

对第6条的关键技术,都应采用CAE等分析手段进行预分析研究,以达到缩短开发周期,减少开发费用和提高质量的要求,并提供相应的可行性分析报告(计算报告包括边界条件、零部件几何尺寸,材料

电动汽车驱动电机匹配设计.

电动汽车驱动电机匹配设计 目录 1 概述 (1) 2 世界电动汽车发展史 (2) 3 电驱动系统的基本要求 (5) 3.1电驱动系统结构 (5) 3.2电机的基本性能要求 (6) 4 电动汽车基本参数参数确定 (7) 4.1电动汽车基本参数要求 (7) 4.2 动力性指标 (7) 5 电机参数设计 (7) 5.1 以最高车速确定电机额定功率 (7) 5.2 根据要求车速的爬坡度计算 (8) 5.3 根据最大爬坡度确定电机的额定功率 (9) 5.4 根据额定功率来确定电机的最大功率 (9) 5.5 电机额定转速和转速的选择 (9) 6 传动系最大传动比的设计 (10) 7 电机的种类与性能分析 (11) 7.1 直流电动机 (11) 7.2交流三相感应电动机 (11)

7.3 永磁无刷直流电动机 (11) 7.4 开关磁阻电动机 (12) 8 电机的选择 (13) 9 电机其他选择与设计 (15) 9.1 电机形状位置设计 (15) 9.2 电机冷却设计 (15) 10 总结与展望 (17) 10.1 总结 (17) 10.2 问题与展望 (17) 致谢 (18) 参考文献 (19) 1.概述 汽车工业在促进世界经济飞速发展和给人们生活提供便利的同时,又展现出了其双刃剑的另一面,它将能源与环境问题推到了日益尴尬的处境。“能源、环境和安全”成为了21世纪世界汽车工业发展的3大主题。其中,能源与环境问题作为全球面临的重大挑战和制约汽车工业可持续发展的症结所在,更成为重中之重。电动汽车使用电能作为动力能源,而电能具有来源广、清洁无污染等特点。电动汽车被公认为21世纪重要的交通工具。 电动汽车是指汽车行驶的动力全部或部分来自电机驱动系统的汽车,它主要以动力电池组为车载能量源,是涉及机械、电子、电力、微机控制等多学科的高科技技术产品。按照汽车行驶动力来源的不同,一般将电动汽车划分为纯电动汽车(Pure Electric Vehicle,PEV)、混合动力电动汽车(Hybrid Electric Vehicle,HEV)、插电式混合动力电动汽车(Plug-in Hybrid Electric Vehicle,PHEV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)4种基本类型。 自1881年法国电气工程师Gustave Trouve制造出首辆电动汽车开始,电动汽车经历了曲折起伏的几个发展阶段,其中的决定因素就是动力电池技术和人们

电动汽车驱动电机的设计与选型

电动汽车驱动电机的设计与选型 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置。早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。 相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。底盘结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底盘承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。(说起来很轻松,但是如果真正实现起

来,上面那段话恐怕十年之内都没办法产业化,比如机电复合制动,比如制动能量回馈,原理不难,难的是在技术、成本、产业、供应商等等条件都成熟起来之后......)1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:1.2 动力性指标如下: 最大车速X;在车速=60km/h时爬坡度5%(3度);在车速=40km/h时爬坡度12% (6.8度);原地起步至100km/h的加速时间;最大爬坡度(16度);0到75km/h加速时间;具备2~3倍过载能力。2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。2.1 以最高车速确定电机额定功率根据虽高车速计算电机功率时,不考虑加速阻力和坡道阻力,电机功率应满足:式中:电机输出功率,kw;传动系效率,取0.9;最大车重,取1400kg;滚动摩擦系数,取0.014;风阻系数,取0.33;迎风面积,取2.50㎡;最高车速,取100km/h。根据(1)(2)式,可以计算出满足最高车速时,电机输出额定功率为21.023kw[3]。2.2 根据要求车速的爬坡度计算 根据公式(4),其中在车速=60km/h时爬坡度5%可得:根据公式(4),其中在车速=40km/h时爬坡度12%可得: 根据(4)式,可以计算出满足车速为60km/h时,爬坡度为

电动车电机及电池选型计算

CV11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 2、关于CV11整车参数 3、轮边电机选型计算 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,

风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。根据爬坡性能确定的最大功率 其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;t m为起步加速过程的时间(s);Vm为起步加速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩 电机的基数、额定转矩

电机符合基速以下恒转矩,基速以上恒功率,因此在基速时,电机有最大功率和最大转矩。根据以下公式: 经过计算,取额定转速为250rpm,额定转矩为124Nm。 综合以上理论计算,根据设计目标确定的需求电机参数(经减速器后)如下表所示: 4、动力电池选型计算 纯电动汽车在行驶过程中的能量完全来自于动力电池组,动力电池组的容量越大,汽车的续驶里程就越长,但是相应的电池组的体积和重量也越大。 首先电池组总电压需要达到电机控制器的电压等级,一般为电机控制器的额定工作电压,因此动力电池组总电压暂取48V。 其次根据设计目标中以30Km/h行驶的续驶里程为120Km来计算匀速行驶所需的能量。匀速行驶时纯电动汽车的需求功率为: 式中,速度为30Km/h,计算得到功率为,那么四个电机所需总功率为。因为以30Km/h 行驶120Km需要用时4h,考虑到电池组放电效率为,而放电深度为80%,因此电池总能量为。 根据电池总能量可以求出电池容量,由公式: 得到,C=302Ah,汽车在实际行驶中,有加速以及爬坡情况,而在这两种工况下转矩增大,需要很大的放电电流,因此耗能比匀速行驶时要多,由上述理论计算结合实际的电池供应商的情况,最终选择。

电动汽车电机全参数确定

电动汽车技术

一、驱动电机参数确定 (1)最高车速时计算驱动电机功率 电机的功率必须能满足电动轿车最高车速的要求,以保证在良好的路面或空载情况下,能以较高的车速行驶. 最大车速时所需功率: 2D a 1cos 21.153600a MaxV V C A P Gf V ??=++ ???η=24.7(KW ) m=2600kg ;Va=90 km/h ;f=0.016; C D =0.5;η=0.95;B=1.46m ;H=1.87m; (2)加速性能计算驱动电机功率。 保证在良好的路面或空载情况下,整车加速过程的末时刻为电动

汽车输出最大功率,加速过程所需最大功率: = 25.6(kw ) (3)最大爬坡度时计算驱动电机功率 在计算最大爬坡度时的电机功率时,应忽略加速阻力功率 爬坡过程所需最大功率: =32.84(kw) 根据以上各式计算得出发动机在不同工况下的扭矩和驱动力: P=Tn/9549 (1) n=(Va ×i 0)/(0.337×r) (2) 联立上面两个方程可得 MaxV T =70Nm, Ft=890N MaxJ T =408Nm, Ft=5.9kN MaxGra T =650Nm, Ft=8.1kN 由此可得根据(1)计算可知选定电机的额定功率为30kw , 由(2)(3)可知选定电机的峰值功率为60kw,最大扭矩为650Nm 二、电池组电压、容量的确定 在选择了电机类型以后,就要确定电池的参数。在一定的电机功率136003600a a MaxGra t mgfu mgiu P ??=+ ???η

下,电压越高,电流就越低,线路功率损失就越小,在电池以小电流放电时,可发挥出较大的容盈。 根据0.15kWh/km×150km=22.5kWh即所需电池的容量为22.5kWh,考虑到其它电气设备,选择电池容量为25kwh。 锂电单体的容量为270Wh,铅酸电池单体的容量为1.44kWh;若选锂电池则需要92个单体,若选铅酸电池则需要18个单体三、采用Matlab计算绘制驱动力和行驶阻力图 clear;clf; axis([0, 250, 0, 12000]); ig=1; i0=4.1; r=0.325; G=26000; f=0.016; Cd=0.5; A=2.73; Pmax=60; Torque=650; v=0:26.35; Fw =(f*G+Cd*A*(v.^2))./21.15; F=v*0+(Torque*ig*i0)./r; hold on

电动汽车电机选择与及设计

电动汽车 电动汽车电机选择与设计 学院:机械与车辆学院指导教师: : : : 摘要: 介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。 关键词:电动汽车;驱动系统;轮毂电机

概述 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。在对于电动汽车普及方面上,这是一个很大的障碍。但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点: (1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。 (2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。 (3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。 (4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮

电动车电机及电池选型计算

电动车电机及电池选型 计算 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

C V11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 2、关于CV11整车参数 3、轮边电机选型计算 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。 根据爬坡性能确定的最大功率

其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;tm为起步加速过程的时间(s);Vm为起步加速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩 电机的基数、额定转矩 电机符合基速以下恒转矩,基速以上恒功率,因此在基速时,电机有最大功率和最大转矩。根据以下公式: 经过计算,取额定转速为250rpm,额定转矩为124Nm。

纯电动汽车电动机&电池匹配参数

电动机&电池匹配 ? 整车参数: 整车自重(带电池):700KG (TBD ) 额定载荷: 300KG (4个人) 车辆滚动半径: 0.247mm ? 计算变速器速比和车速: 无变速箱,无差速器,根据产品定义设计最高车速:80KM/H ,计算电动机最高转速需求: 0.377 0.3770.24780/859/a rn u n km h i n r m ==?== 取满载时最高车速为40KM/H 0.2470.377 40/1 a r u km h == 则430/n r m = ? 计算满载在正常道路上行驶时所需要的扭矩: 初步确定传动效率为0.92,空气阻力系数为0.35、轮胎滚动阻力系数为0.015、迎风面 积2 1.66m 2 21.15M CdA Gf u r η=+ 20.920.35 2.2 8409.80.015800.24721.15M ??=??+? 95.7M Nm = ? 计算在正常道路上行驶时所需要的功率: 3max max 1 ( )360076140e a a Gf CdA P u u η=+ 3 17009.80.020.35 2.2(8080) 5.70.92360076140 e P Kw ???= ?+= ? 选择电动机 根据车辆的安装空间以及市场上的电动机的情况,选择电动机额定电压为72V ;根据车辆用 设车辆最大行驶里程为80KM ,电池放电深度为0.8: 0.8e S P UI V ?=? 82.3I A = 800.88082.3 W S Vt km ==??= 102.875W Ah = 所以选择110Ah 电池

5.9车轮总成 5.9.1 车轮总成的结构:车轮:145/70R12轮胎 5.9.2车轮总成的性能要求 5.9.2.1车轮总成应有合理的负荷能力和速度能力 5.9.2.2轮胎应有良好的附着性能和缓冲性能 5.9.2.3同时考虑铝合金和钢车轮 5.9.2.4具有良好的均匀性和质量平衡性。车轮总成在轮毂边缘上总的动不平衡量不大于80g,每一轮毂边缘单侧只用一块平衡块。 5.9.2.5车轮总成应有较小的滚动阻力和行驶噪声。 5.9.2.6车轮装饰盖与车轮搭配合理。 5.9.2.7无备胎 5.10 电气 5.10.1蓄电池 5.10.1.1免维护式,容量:210A·h 5.10.1.2要求安装位置接近性好、固定可靠 5.10.3.1 组合仪表包括指针式车速表、里程表、指针式电动机转速表、电压表、水温表等。 5.10.3.2组合仪表设有:点亮报警灯、充电指示灯、制动报警灯、转向指示灯、远光指示灯、前雾灯指示灯、防盗报警灯等。 5.10.3.3仪表台灯光应柔和、明亮、可调。 5.10.4喇叭 5.10.4.1单无触点电喇叭。 5.10.5车灯 5.10.5.1整车车外设定前照灯、前/后位置灯、前后转向灯、制动灯、倒车灯、前雾灯、后雾灯(选装)、牌照灯、回复反射器。

纯电动汽车异步电机毕业设计

本科毕业设计 (2015届) 题目纯电动汽车驱动控制系统的 仿真模型开发 学院信息工程学院 专业电气工程及其自动化班级11093113 学号11931322 学生姓名章炳杨 指导教师赵晓丹 完成日期2015年6月

诚信承诺 我谨在此承诺:本人所写的毕业论文《浮法玻璃熔窑系统数据分析与模型辨识》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

摘要 当前,各国政府大力推进纯电动汽车的研究与开发。随着纯电动汽车的大力发展,如何对高性能纯电动汽车快速高效的开发成为了新的课题。高性能纯电动汽车的研发,关键在于蓄电池技术、电机及其控制技术、电动汽车整车技术以及能量管理技术等多项电动汽车关键技术的发展。电机是电气驱动系统的核心, 电机的性能、效率及其控制技术直接影响电动汽车的性能。 因此,本论文以纯电动汽车为对象,利用仿真分析方法,对控制纯电动汽车驱动电机系统的增量式PID控制算法相关理论与方法进行研究。本文通过对驱动电机进行比较研究,为在满足设计目标的条件下驱动电机的合理选型和参数的合理选择与匹配提供了依据;对驱动电机的数学模型进行分析,给出其转矩和运动方程、电压方程、磁链方程,以及不同坐标系下三相异步电动机数学模型。在此基础上,基于仿真软件MATLAB/Simulink,建立纯电动汽车异步电机控制系统的仿真模型,探讨该算法对三相异步电机控制的影响。 关键词:纯电动汽车;三相异步电机;PID控制算法;建模仿真

ABSTRACT At present, the governments vigorously promote the research and development of pure electric vehicles. With the development of pure electric vehicles, how to develop the high performance of pure electric vehicles quickly and efficiently has became a new subject. Research and development of high performance of pure electric vehicle, the key lies in the development of battery technology, motor and its control technology, electric car vehicle technology and energy management technology. The motor is the core of electric drive system, performance, efficiency of the motor and its control technology directly affect the electric vehicle. Therefore, the pure electric vehicle as the object, by using the method of simulation analysis and the control of pure electric vehicles drive motor system of the incremental PID control algorithm theory and method to study. Through a comparative study of the drive motor for reasonable selection of drive motor to meet the design goals of the reasonable selection and parameter and matching provides a basis; the driving motor mathematical model analysis, gives the torque and motion equations, voltage equation, flux equation, and different coordinate system three-phase asynchronous motor mathematical model. On this basis, based on MATLAB/Simulink simulation software, the establishment of pure electric vehicle induction motor control system simulation model and discuss the algorithm of three-phase asynchronous motor control effect. Keyword: Pure electric vehicle; three-phase asynchronous motor; PID control algorithm; Modeling and simulation

高速电动车电机参数的确定

高速电动车电机参数的确定 一、功率计算 2max max 1()360021.15 d N T C Au P mgf u =?+η N P —电机额定功(kW ) ; T η—传动系效率0.90 ~ 0.92; m — 最大总质量(kg ); f —滚动摩擦系数,良好沥青路面0.010~0.018,一般沥青与水泥路面0.018~0.020; Cd — 风阻系数,电动车Cd = 1~1.5; A —迎风面积(m 2),电动车A =1~1.3; u max — 最高车速(km / h ) 经计算得需要0.85千瓦的电机 二、 以最大爬坡度电动车电机转矩 2max cos sin 21.15 d t r C Au F F mgf mgf ==++αα t F — 电动车驱动力(N ) ; r F —电动车行驶阻力(N ) ; u —上坡时速度(km / h ) tan 15%,8.53,cos 0.99,sin 0.15α=α=α=α= 360.23N 车轮半径0.25m 半轴扭矩=360.23×0.25=90Nm 电机最高速4000转/分,基速1000转/分,调速比=4 半轴转速=318.3转/分 电机减速箱减速比 4000/318.3=12.6 取12 需要电机输出扭矩=7.5nm 电机额定功率=0.785kw 0.9kW 电机可以满足正常行驶和15% 、20km/h 的爬坡要求。

三、续驶里程 续驶里程=M I T 3600V C F ??????∑ηηηλ V 为电池电压(V ) C 为电池容量(Ah ) M I T 、、、ηηη分别为电机、逆变器、传动系统效率 λ为放电深度 续驶里程= 3206036000.920.950.950.9165kM 3301000 ??????=?(按60km/h 匀速) 60km/h 等速行驶的功率=6.1kw 匀速行驶放电电流= 6.11000=19A 320 ? 放电时间=C 600.9==2.84I 19? 续驶里程=60×2.84=170kM

关于电动车电机及电池选型计算

关于电动车电机及电池 选型计算 标准化管理部编码-[99968T-6889628-J68568-1689N]

CV11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。 根据爬坡性能确定的最大功率 其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;t m为起步加速过程的时间(s);Vm为起步加 速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩

电动汽车电机选择与设计.

电动汽车 电动汽车 电动汽车电机选择与设计 学院:机械与车辆学院指导教师: 宋长森 专业: 08车辆工程时间:2011.5.23-27 姓名:何蔚明学号:080403021023 中国·珠海

电动汽车电机选择与设计 何蔚明 080403021023 (北京理工大学珠海学院机械与车辆工程学院,广东珠海) 摘要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。 关键词:电动汽车;驱动系统;轮毂电机 概述 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。在对于电动汽车普及方面上,这是一个很大的障碍。但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点: (1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的

结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。 (2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。 (3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。 (4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。 1.电动汽车基本参数参数确定 1.1 该电动汽车基本参数要求,如下表: 参数 数值 参数 数值 整车正装质量(kg ) 1200 滚动阻力系数f 0.014 最大总质量(kg ) 1400 轮胎半径(m ) 0.33 迎风面积(㎡) 2.50 传动效率 0.90 风阻系数 0.33 最高车速(km/h ) 100 最大爬坡度(%) 28 1.2 动力性指标如下: (1)最大车速m a x 100a u k m ≥; (2)在车速a u =60km/h 时爬坡度i ≥5%(3度); (3)在车速a u =40km/h 时爬坡度i ≥12% (6.8度); (4)原地起步至100km/h 的加速时间35t s ≤; (5)最大爬坡度m a x 28% i ≥(16度);

关于电动车电机及电池选型计算

关于电动车电机及电池选 型计算 This manuscript was revised on November 28, 2020

CV11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。 根据爬坡性能确定的最大功率 其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;t m为起步加速过程的时间(s);Vm为起步加 速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩

纯电动汽车的电机研究

摘要:在各类路线中,无疑最具有商业化前景,并能彻底解决环境污染问题。但是在发展道 路上还有很多的问题,其中电动车的驱动电机是一个长期面临的问题,本文将就驱动电机分 类及其优缺点进行综合阐述。 1 研究愿景 据统计,城市及近郊的用车数量占到总汽车保有量的80%,其中60%以上每日的行使里程不到60 km。从运行线路上来看,每日固定线路行驶的汽车也占到总量的55%。基于目前的 电池技术,在大多数车上都可以做到150 km以上的续航里程,加之运行线路的相对固定,只要做好规划,在特定线路上安置充电桩,就可以缓解充电不便的问题。因此在城市交通运输上,特别是在公共交通上率先推广,从技术路线上是可行的。 2 驱动电机技术 驱动电机在上承担了类似于发动机在传统汽车上的功能,车辆行驶时,依靠驱动电机提供 的转矩来提供行进的动力。目前,的驱动电机主要有直流电动机、开关磁阻电动机、异步电 动机、无刷直流电动机和永磁同步电动机。 驱动电机在恒转矩区运行时转矩保持恒定,功率随着转速的上升而线性增加,驱动电机在 恒功率区运行时功率保持恒定,转矩随转速的上升呈双曲线减小。当汽车起步和加速时,需 要较高转矩,因此主要运行于恒转矩区,以获得较大的加速度。当驱动电机由于转速的增加,使得功率达到最大值时,主要用来克服行驶阻力,转矩消耗比较小,因此主要运行于恒功率 区以获得较高的车速。 驱动用电机及其控制系统的要求为:在整个运行范围内具有较高的效率;有较强的过载能力、快速的动态响应及良好的启动加速性能;调速范围宽,且低速运行时能够提供大转矩; 高可靠性、高功率密度及低成本。 2.1有刷直流电动机 有刷直流电动机就是把直流电能转化为机械能的电动机,其电枢绕组的磁场与励磁绕组的 磁场是相互垂直分布的,故而控制原理与手段比较简单,可以较为方便地实现电机调速。现 在的直流电机通过用永磁材料替代原来励磁绕组,可以有效地节省电机径向空间,从而使电 动机的定子直径大大减小。并且直流电动机具有成本低、易于平滑调速和技术成熟等优点, 串励、并励、他励和永磁等各种直流电动机在上都有应用。一般直流电动机的主要问题是, 由于有换向器和电刷,使得其可靠性降低,且需要定期维护。 2.2交流异步感应电动机 感应电动机具有效率高、结构简单、体积小、重量轻、可靠性高及免维护等特性,因而在 领域里具有广泛应用前景。但传统的变频变压控制技术,不能使感应电动机满足所要求的驱 动性能,主要原因在于其动态模型的非线性。采用矢量控制法控制感应电动机可以克服由于 其非线性带来的控制难度。不过,采用矢量控制的感应电动机在轻载及有限的恒功率工作区 内运行时效率较低。 2.3永磁同步电动机 在的驱动电机发展中,永磁同步无刷电动机是当下最有前景和应用最为广泛的驱动电机之一,它具有以下几个优点:由于采用高磁能积的稀土材料.,因此可以大大提高气隙磁通密 度和能量转换效率,电动机体积和质量也大大缩小,有效提高了功率密度;采用高性能永磁 材料,有较低的转动惯量及更快的响应速度;由于取消了传统的电刷和换向器,因此无需更

电动汽车电机选择与设计

电动汽车电机选择与设计

————————————————————————————————作者:————————————————————————————————日期:

电动汽车 电动汽车 电动汽车电机选择与设计 学院:机械与车辆学院指导教师: 宋长森专业: 08车辆工程时间:2011.5.23-27 姓名:何蔚明学号: 3 中国·珠海

电动汽车电机选择与设计 何蔚明 3 (北京理工大学珠海学院机械与车辆工程学院,广东珠海) 摘要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。 关键词:电动汽车;驱动系统;轮毂电机 概述 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。在对于电动汽车普及方面上,这是一个很大的障碍。但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点: (1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的

汽车电动助力转向系统电机选择及控制系统设计

汽车电动助力转向系统电机选择及控制系统设计 摘要:电动助力转向系统是对传统机械转向系统的创新,操控性能好,操作轻便,转配迅速,消耗动能少,燃油经济。分析比较了几种常见的电动助力系统结构的优缺点,给出了相应的电机选择原则,并进一步做出了相应的电机控制方案。 关键词:电机;助力;转向系统;功率 Abstract: electric power steering system is on the traditional mechanical steering system innovation, control good performance, convenient operation, ZhuanPei rapidly, less kinetic energy consumption, fuel economy. Analysis and comparison of several common electric power system and the advantages and disadvantages of the structure, the corresponding motor selection principle, and further make the corresponding motor control scheme. Keywords: motor; Power; Steering system; power 1.引言 电动助力转向系统EPS(Electric Power Steering)是在传统的机械式转向系统的基础上,利用直流电机作为动力源,电子控制单元根据转向参数和车速等信号控制电机转矩的大小和转动方向。与传统的液压转向系统相比,电动助力转向系统直接通过电动机的输出给驾驶员提供助力,电动机只有在转向时才工作,在不进行转向时几乎没有动力消耗,使汽车具有更好的燃油经济性;同时具有轻型小巧,转配迅速,易于调整,噪声及废油、废气污染小等优点。本文参考已有的研究成果,在分析比较几种常见电动助力系统结构的优缺点基础上,给出了助力系统的电机选择原则,并设计了一种基于单片机的电机控制方案,这对于开展电动助力转向系统的研究具有一定的参考价值。 2 电机选择 2.1 电动机布置位置选择 根据电动机布置位置不同,EPS 可分为转向轴助力式、齿轮助力式、齿条助力式3 种。这3 种方案各有特点,具体车型采用何种型式依据前轴的空间大

电动汽车驱动电机选型探讨

电动汽车驱动电机选型探讨 随着能源、环境问题越来越突出,纯电动汽车的研究越来越被人们重视。驱动电机对于纯电动汽车而言,是不可缺少的一部分,在纯电动汽车中扮演着重要的角色。驱动电机的动力输出对汽车的动力性能有着直接的影响。因此在纯电动汽车中,驱动电机动力参数选型至关重要。文章讨论了纯电动汽车驱动电机参数选型的基本要求、纯电动汽车用电动机性能参数初步确定的原则。 标签:纯电动汽车;驱动电机;动力;选型 汽车作为当今世界上的主要交通工具,其数量一直在持续增加。众所周知,汽车尾气的排放是造成大气污染的主要原因之一,同时随着汽车数量的不断增加,对石油等能源的需求越来越大。纯电动汽车作为低消耗零污染的新能源汽车得到国家和政府的大力支持。纯电动汽车与传统汽车在动力输出上有很大的差别,本人在多年的研究过程中,通过实践和分析总结了一些关于纯电动汽车在动力系统匹配中驱动电机选型的基本原则。 1 纯电动汽车驱动电机参数选型的基本要求 对于纯电动汽车而言,其经济、动力性能指标主要包括:最高时速(km/h)、百米加速时间(s)、连续爬坡速度(km/h)、最大的爬坡度(%)以及续航公里数(km)等。所以,在对纯电动汽车的动力系统进行匹配时主要针对上面提到的几个指标进行匹配。 纯电动汽车的驱动电机与燃油发动机有很大的不同,其中最主要的不同之处在于纯电动汽车的驱动电机在额定转速附近效率是最高的,并且能够承受短时间内的过载输出。以下是纯电动汽车驱动电机的主要特性: (1)功率恒定区与扭矩恒定区:与传统汽车的燃油发动机相比,纯电动汽车的驱动电机在达到额定的转速之前,驱动电机的扭矩是一个恒定的数值,其转速与功率成正比例关系;当驱动电机达到额定转速之后,其功率变成额定值,转速与扭矩成反比例关系。 (2)高效率区:在纯电动汽车的中,最高的运行效率是在额定转速附近的。 (3)零转速扭矩的输出:传统汽车的燃油发动机其扭矩的输出是在一定转速下才能实现的,没有转速扭矩就无法输出,并且输出的扭矩也不能立刻达到最大值。而驱动电机能够在零转速时就能输出扭矩并且达到最大值。 (4)过载输出:在短时间内(一般情况下为3min左右,与电机的设计以及散热性能的好坏有关)驱动电机可以过载输出,其λ(过载系数)在2附近波动。 由于纯电动汽车受到技术(电池的续航能力等)、配套设施(充电桩等)的

驱动电机参数确定

电动汽车技术一、驱动电机参数确定

(1)最高车速时计算驱动电机功率 电机的功率必须能满足电动轿车最高车速的要求,以保证在良好的路面或空载情况下,能以较高的车速行驶. 最大车速时所需功率: 2D a 1cos 21.153600a M axV V C A P Gf V ??=++ ???η=24.7(KW ) m=2600kg ;V a=90 km/h ;f=0.016; C D =0.5;η=0.95;B=1.46m ;H=1.87m; (2)加速性能计算驱动电机功率。 保证在良好的路面或空载情况下,整车加速过程的末时刻为电动汽车输出最大功率,加速过程所需最大功率: = 25.6(kw ) (3)最大爬坡度时计算驱动电机功率 在计算最大爬坡度时的电机功率时,应忽略加速阻力功率 爬坡过程所需最大功率: =32.84(kw) 根据以上各式计算得出发动机在不同工况下的扭矩和驱动力: P=Tn/ n=(Va ×i 0)/(0.337×r) (2) 联立上面两个方程可得 M axV T =70Nm, Ft=890N 23D 13600 1.521.152.5a a MaxJ a a a t u u C Au P mgf t t t ??=+ ? ????δη136003600a a MaxGra t mgfu mgiu P ??=+ ??? η

T=408Nm, Ft=5.9kN M axJ T=650Nm, Ft=8.1kN M axG ra 由此可得根据(1)计算可知选定电机的额定功率为30kw,由(2)(3)可知选定电机的峰值功率为60kw,最大扭矩为650Nm 二、电池组电压、容量的确定 在选择了电机类型以后,就要确定电池的参数。在一定的电机功率下,电压越高,电流就越低,线路功率损失就越小,在电池以小电流放电时,可发挥出较大的容盈。 根据0.15kWh/km×150km=22.5kWh即所需电池的容量为22.5kWh,考虑到其它电气设备,选择电池容量为25kwh。 锂电单体的容量为270Wh,铅酸电池单体的容量为1.44kWh;若选锂电池则需要92个单体,若选铅酸电池则需要18个单体 三、采用Matlab计算绘制驱动力和行驶阻力图 clear;clf; axis([0, 250, 0, 12000]); ig=1; i0=4.1; r=0.325; G=26000; f=0.016; Cd=0.5; A=2.73; Pmax=60; Torque=650; v=0:26.35; Fw =(f*G+Cd*A*(v.^2))./21.15; F=v*0+(Torque*ig*i0)./r; hold on plot(v,Fw,v,F); v=26.35:250 F=(9549*Pmax*0.377)./v;

相关文档
最新文档