遗传图谱

遗传图谱
遗传图谱

学情分析

基础,对于知识不能灵活运用课题遗传图谱分析

学习目标与考点分析学习目标:1、对基因的分离定率和基因的自由组合定律能熟练的牢记把握考点分析:1、遗传图谱的分析与把握

学习重点重点:1、基因的分离定律和自由组合定律

学习方法讲练结合练习巩固

学习内容与过程

知识点梳理

第三章遗传和染色体

第一节基因的分离定律

一、相对性状

性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。

相对性状:同一种生物的同一种性状的不同表现类型。

二、孟德尔一对相对性状的杂交实验

1、实验过程(看书)

2、对分离现象的解释(看书)

3、对分离现象解释的验证:测交(看书)

例:现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)?

相关概念

1、显性性状与隐性性状

显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。

隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。

附:性状分离:在杂种后代中出现不同于亲本性状的现象)

2、显性基因与隐性基因

显性基因:控制显性性状的基因。

隐性基因:控制隐性性状的基因。

附:基因:控制性状的遗传因子(DNA分子上有遗传效应的片段P67)

等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。

3、纯合子与杂合子

纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):显性纯合子(如AA的个体)

隐性纯合子(如aa的个体)

杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)4、表现型与基因型

表现型:指生物个体实际表现出来的性状。

基因型:与表现型有关的基因组成。

(关系:基因型+环境→表现型)

5、杂交与自交

杂交:基因型不同的生物体间相互交配的过程。

自交:基因型相同的生物体间相互交配的过程。(指植物体中自花传粉和雌雄异花植物的同株受粉)附:测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)

三、基因分离定律的实质:在减I分裂后期,等位基因随着同源染色体的分开而分离。

四、基因分离定律的两种基本题型:

●正推类型:(亲代→子代)

亲代基因型子代基因型及比例子代表现型及比例

⑴AA×AA AA 全显

⑵AA×Aa AA : Aa=1 : 1 全显

⑶AA×aa Aa 全显

⑷Aa×Aa AA : Aa : aa=1 : 2 : 1 显:隐=3 : 1

⑸Aa×aa Aa : aa =1 : 1 显:隐=1 : 1

⑹aa×aa aa 全隐

●逆推类型:(子代→亲代)

亲代基因型子代表现型及比例

⑴至少有一方是AA 全显

⑵aa×aa 全隐

⑶Aa×aa 显:隐=1 : 1

⑷Aa×Aa 显:隐=3 : 1

五、孟德尔遗传实验的科学方法:

正确地选用试验材料;

分析方法科学;(单因子→多因子)

应用统计学方法对实验结果进行分析;

科学地设计了试验的程序。

六、基因分离定律的应用:

1、指导杂交育种:

原理:杂合子(Aa)连续自交n次后各基因型比例

杂合子(Aa ):(1/2)n

纯合子(AA+aa):1-(1/2)n (注:AA=aa)

例:小麦抗锈病是由显性基因T控制的,如果亲代(P)的基因型是TT×tt,则:

(1)子一代(F1)的基因型是____,表现型是_______。

(2)子二代(F2)的表现型是__________________,这种现象称为__________。

(3)F2代中抗锈病的小麦的基因型是_________。其中基因型为______的个体自交后代会出现性状分离,因此,为了获得稳定的抗锈病类型,应该怎么做?

_______________________________________________________________________________________

答案:(1)Tt 抗锈病(2)抗锈病和不抗锈病性状分离(3)TT或Tt Tt

从F2代开始选择抗锈病小麦连续自交,淘汰由于性状分离而出现的非抗锈病类型,直到抗锈病性状不再发生分离。

2、指导医学实践:

例1:人类的一种先天性聋哑是由隐性基因(a)控制的遗传病。如果一个患者的双亲表现型都正常,则这对夫妇的基因型是___________,他们再生小孩发病的概率是______。

答案:Aa、Aa 1/4

例2:人类的多指是由显性基因D控制的一种畸形。如果双亲的一方是多指,其基因型可能为___________,这对夫妇后代患病概率是______________。

答案:DD或Dd 100%或1/2

第二节基因的自由组合定律

一、基因自由组合定律的实质:

在减I分裂后期,非等位基因随着非同源染色体的自由组合而自由组合。

(注意:非等位基因要位于非同源染色体上才满足自由组合定律)

二、自由组合定律两种基本题型:共同思路:“先分开、再组合”

●正推类型(亲代→子代)

●逆推类型(子代→亲代)

三、基因自由组合定律的应用

1、指导杂交育种:

例:在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR,应该怎么做?_______________________________________________________________________________________

附:杂交育种

方法:杂交

原理:基因重组

优缺点:方法简便,但要较长年限选择才可获得。

2、指导医学实践:

例:在一个家庭中,父亲是多指患者(由显性致病基因D控制),母亲表现型正常。他们婚后却生了一个手指正常但患先天性聋哑的孩子(先天性聋哑是由隐性致病基因p控制),问:

①该孩子的基因型为___________,父亲的基因型为_____________,母亲的基因型为____________。

②如果他们再生一个小孩,则

只患多指的占________,

只患先天性聋哑的占_________,

既患多指又患先天性聋哑的占___________,

完全正常的占_________

答案:①ddpp DdPp ddPp②3/8, 1/8, 1/8, 3/8

四、性别决定和伴性遗传

1、XY型性别决定方式:

●染色体组成(n对):

雄性:n-1对常染色体+ XY 雌性:n-1对常染色体+ XX

●性比:一般1 : 1

●常见生物:全部哺乳动物、大多雌雄异体的植物,多数昆虫、一些鱼类和两栖类。

①女>男②连续发病③父病女必病,子病母必病(3)伴Y遗传的特点:

①男病女不病②父→子→孙

附:常见遗传病类型(要记住

...):

伴X隐:色盲、血友病

伴X显:抗维生素D佝偻病

常隐:先天性聋哑、白化病

常显:多(并)指

第三节染色体变异及其应用

一、染色体结构变异:

实例:猫叫综合征(5号染色体部分缺失)

类型:缺失、重复、倒位、易位(看书

...)

...并理解

..P43

二、染色体数目的变异

1、类型

●个别染色体增加或减少:

实例:21三体综合征(多1条21号染色体)

●以染色体组的形式成倍增加或减少:

实例:三倍体无子西瓜

2、染色体组:

(1)概念:二倍体生物配子中所具有的全部染色体组成一个染色体组。

(2)特点:①一个染色体组中无同源染色体,形态和功能各不相同;

②一个染色体组携带着控制生物生长的全部遗传信息。

(3)染色体组数的判断:

①染色体组数= 细胞中任意一种染色体条数

例1:以下各图中,各有几个染色体组?

答案:3 2 5 1 4

②染色体组数= 基因型中控制同一性状的基因个数

例2:以下基因型,所代表的生物染色体组数分别是多少?

(1)Aa ______ (2)AaBb _______

(3)AAa _______ (4)AaaBbb _______

(5)AAAaBBbb _______ (6)ABCD ______

答案:2 2 3 3 4 1

3、单倍体、二倍体和多倍体

由配子发育成的个体叫单倍体。

有受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体,如含两个染色体组就叫二倍体,含三个染色体组就叫三倍体,以此类推。体细胞中含三个或三个以上染色体组的个体叫多倍体。

三、染色体变异在育种上的应用

1、多倍体育种:

方法:用秋水仙素处理萌发的种子或幼苗。

(原理:能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)

原理:染色体变异

实例:三倍体无子西瓜的培育;

优缺点:培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。

2、单倍体育种:

方法:花粉(药)离体培养

原理:染色体变异

实例:矮杆抗病水稻的培育

例:在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR ,应该怎么做?______________________________________________________________________________________

优缺点:后代都是纯合子,明显缩短育种年限,但技术较复杂。

附:育种方法小结

诱变育种杂交育种多倍体育种单倍体育种

方法

用射线、激光、

化学药品等处理生

杂交用秋水仙素处

理萌发的种子或幼

花药(粉)离体培养

原理基因突变基因重组染色体变异染色体变异

优缺点

加速育种进程,

大幅度地改良某些

性状,但有利变异个

体少。

方法简便,但

要较长年限选择

才可获得纯合子。

器官较大,营养

物质含量高,但结实

率低,成熟迟。

后代都是纯合子,

明显缩短育种年限,但

技术较复杂。

第四章遗传的分子基础

第一节探索遗传物质的过程

一、1928年格里菲思的肺炎双球菌的转化实验:

1、肺炎双球菌有两种类型类型:

●S型细菌:菌落光滑,菌体有夹膜,有毒性

●R型细菌:菌落粗糙,菌体无夹膜,无毒性

2、实验过程(看书)

3、实验证明:无毒性的R型活细菌与被加热杀死的

有毒性的S型细菌混合后,转化为有毒性的S型活

细菌。这种性状的转化是可以遗传的。

推论(格里菲思):在第四组实验中,已经被加

热杀死S型细菌中,必然含有某种促成这一转化的

活性物质—“转化因子”。

二、1944年艾弗里的实验:

1、实验过程:

2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。

(即:DNA是遗传物质,蛋白质等不是遗传物质)

三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验

1、T2噬菌体机构和元素组成:

2、实验过程(看书)

3、实验结论:子代噬菌体的各种性状是通过亲代的DNA遗传的。(即:DNA是遗传物质)

四、1956年烟草花叶病毒感染烟草实验证明:在只有RNA的病毒中,RNA是遗传物质。

五、小结:

细胞生物(真核、原核)非细胞生物(病毒)

核酸DNA和RNA DNA RNA

遗传物质DNA DNA RNA

因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。

第二节DNA的结构和DNA的复制:

一、DNA的结构

1、DNA的组成元素:C、H、O、N、P

2、DNA的基本单位:脱氧核糖核苷酸(4种)

3、DNA的结构:

①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。

②外侧:脱氧核糖和磷酸交替连接构成基本骨架。

内侧:由氢键相连的碱基对组成。

③碱基配对有一定规律:A =T;G ≡C。(碱基互补配对原则)

4、DNA的特性:

①多样性:碱基对的排列顺序是千变万化的。(排列种数:4n(n为碱基对对数..)

②特异性:每个特定DNA分子的碱基排列顺序是特定的。

5、DNA的功能:携带遗传信息(DNA分子中碱基对的排列顺序代表遗传信息)。

6、与DNA有关的计算:

在双链DNA分子中:

①A=T、G=C

②任意两个非互补的碱基之和相等;且等于全部碱基和的一半

例:A+G = A+C = T+G = T+C = 1/2全部碱基

二、DNA的复制

1、概念:以亲代DNA分子两条链为模板,合成子代DNA的过程

2、时间:有丝分裂间期和减Ⅰ前的间期

3、场所:主要在细胞核

4、过程:(看书)①解旋②合成子链③子、母链盘绕形成子代DNA分子

5、特点:半保留复制

6、原则:碱基互补配对原则

7、条件:

①模板:亲代DNA分子的两条链

②原料:4种游离的脱氧核糖核苷酸

③能量:ATP

④酶:解旋酶、DNA聚合酶等

8、DNA能精确复制的原因:

①独特的双螺旋结构为复制提供了精确的模板;

②碱基互补配对原则保证复制能够准确进行。

9、意义:

DNA分子复制,使遗传信息从亲代传递给子代,从而确保了遗传信息的连续性。

10、与DNA复制有关的计算:

复制出DNA数=2n(n为复制次数)

含亲代链的DNA数=2

第三节基因控制蛋白质的合成

一、RNA的结构:

1、组成元素:C、H、O、N、P

2、基本单位:核糖核苷酸(4种)

3、结构:一般为单链

二、基因:是具有遗传效应的DNA片段。主要在染色体上

三、基因控制蛋白质合成:

1、转录:

(1)概念:在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。(注:叶绿体、线粒体也有转录)

(2)过程(看书)

(3)条件:模板:DNA的一条链(模板链)

原料:4种核糖核苷酸

能量:ATP

酶:解旋酶、RNA聚合酶等

(4)原则:碱基互补配对原则(A—U、T—A、G—C、C—G)

(5)产物:信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)

2、翻译:

(1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。(注:叶绿体、线粒体也有翻译)

(2)过程:(看书)

(3)条件:模板:mRNA

原料:氨基酸(20种)

能量:ATP

酶:多种酶

搬运工具:tRNA

装配机器:核糖体

(4)原则:碱基互补配对原则

(5)产物:多肽链

3、与基因表达有关的计算

基因中碱基数:mRNA分子中碱基数:氨基酸数= 6:3:1

四、基因对性状的控制

1、中心法则

2、基因控制性状的方式:

(1)通过控制酶的合成来控制代谢过程,进而控制生物的性状;

(2)通过控制蛋白质结构直接控制生物的性状。

五、人类基因组计划及其意义

计划:完成人体24条染色体上的全部基因的遗传作图、物理作图、和全部碱基的序列测定。

意义:可以清楚的认识人类基因的组成、结构、功能极其相互关系,对于人类疾病的诊治和预防具有重要的意义

第四节基因突变和基因重组

一、生物变异的类型

●不可遗传的变异(仅由环境变化引起)

●可遗传的变异(由遗传物质的变化引起)

基因突变

基因重组

染色体变异

二、可遗传的变异

(一)基因突变

1、概念:是指DNA分子中碱基对的增添、缺失或改变等变化。

2、原因:物理因素:X射线、激光等;

化学因素:亚硝酸盐,碱基类似物等;

生物因素:病毒、细菌等。

3、特点:

①发生频率低:

②方向不确定(一般有害)

③随机发生

基因突变可以发生在生物个体发育的任何时期;

基因突变可以发生在细胞内的不同的DNA分子上或同一DNA分子的不同部位上。

④普遍存在

4、结果:使一个基因变成它的等位基因。

5、时间:细胞分裂间期(DNA复制时期)

6、应用——诱变育种

①方法:用射线、激光、化学药品等处理生物。

②原理:基因突变

③实例:高产青霉菌株的获得

④优缺点:加速育种进程,大幅度地改良某些性状,但有利变异个体少。

7、意义:

①是生物变异的根本来源;

②为生物的进化提供了原始材料;

③是形成生物多样性的重要原因之一。

(二)基因重组

1、概念:是指生物体在进行有性生殖的过程中,控制不同性状的基因重新组合的过程。

2、种类:

①减数分裂(减Ⅰ后期)形成配子时,随着非同源染色体的自由组合,位于这些染色体上的非等位基因也自由组合。组合的结果可能产生与亲代基因型不同的个体。

②减Ⅰ四分体时期,同源染色体上(非姐妹染色单体)之间等位基因的交换。结果是导致染色单体上基因的重组,组合的结果可能产生与亲代基因型不同的个体。

③重组DNA技术

(注:转基因生物和转基因食品的安全性:用一分为二的观点看问题,用其利,避其害。我国规定对于转基因产品必须标明。)

3、结果:产生新的基因型

4、应用(育种):杂交育种(见前面笔记)

5、意义:①为生物的变异提供了丰富的来源;

②为生物的进化提供材料;

③是形成生物体多样性的重要原因之一

(三)染色体变异(见第三章第三节)

第五节关注人类遗传病

一、人类遗传病与先天性疾病区别:

●遗传病:由遗传物质改变引起的疾病。(可以生来就有,也可以后天发生)

●先天性疾病:生来就有的疾病。(不一定是遗传病)

二、人类遗传病产生的原因:人类遗传病是由于遗传物质的改变而引起的人类疾病

三、人类遗传病类型

(一)单基因遗传病

1、概念:由一对等位基因控制的遗传病。

2、原因:人类遗传病是由于遗传物质的改变而引起的人类疾病

3、特点:呈家族遗传、发病率高(我国约有20%--25%)

4、类型:

显性遗传病伴X显:抗维生素D佝偻病

常显:多指、并指、软骨发育不全

隐性遗传病伴X隐:色盲、血友病

常隐:先天性聋哑、白化病、镰刀型细胞贫血症、黑尿症、苯丙酮尿症

(二)多基因遗传病

1、概念:由多对等位基因控制的人类遗传病。

2、常见类型:腭裂、无脑儿、原发性高血压、青少年型糖尿病等。

(三)染色体异常遗传病(简称染色体病)

1、概念:染色体异常引起的遗传病。(包括数目异常和结构异常)

2、类型:

常染色体遗传病结构异常:猫叫综合征

数目异常:21三体综合征(先天智力障碍)

性染色体遗传病:性腺发育不全综合征(XO型,患者缺少一条X染色体)

四、遗传病的监测和预防

1、产前诊断:胎儿出生前,医生用专门的检测手段确定胎儿是否患某种遗传病或先天性疾病,

产前诊断可以大大降低病儿的出生率

2、遗传咨询:在一定的程度上能够有效的预防遗传病的产生和发展

3、

五、实验:调查人群中的遗传病

注意事项:

1、可以以小组为单位进行研究。

2、调查时,最好选取群体中发病率较高的单基因遗传病,如红绿色盲、白化病等。

3、调查时要详细询问,如实记录。

4、对某个家庭进行调查时,被调查成员之间的血缘关系必须写清楚,并注明性别。

5、必须统计被调查的某种遗传病在人群中的发病率。

结果分析:

被调查人数为2 747人,其中色盲患者为38人(男性37人,女性1人),红绿色盲的发病率为

1.38%。男性红绿色盲的发病率为1.35%,女性红绿色盲的发病率为0.03%。二者均低于我国社

会人群男女红绿色盲的发病率。

实验结论:我国社会人群中,红绿色盲患者男性明显多于女性。

典例精讲

10.(2008江苏)27.(8分)下图为甲种遗传病(基因为A、a)和乙种遗传病(基因为B、b)的家系图。其中一种遗传病基因位于常染色体上,另一种位于X染色体上。请回答以下问题(概率用分数表示)。

(1)甲种遗传病的遗传方式为___________。

(2)乙种遗传病的遗传方式为___________。

(3)Ⅲ-2的基因型及其概率为

(4)由于Ⅲ-3个体表现两种遗传病,其兄弟Ⅲ-2在结婚前找

专家进行遗传咨询。专家的答复是:正常女性人群中甲、乙两

种遗传病基因携带者的概率分别为1/10 000和1/100;H如果是男孩则表现甲、乙两种遗传病的概率分别是____________,如果是女孩则表现甲、乙两种遗传病的概率分别是___________;因此建议____________。

11.(2008上海)请回答下列有关遗传的问题。

(1)人体X染色体上存在血友病基因,以Xh表示,显性基因以XH表示。下图是一个家族系谱图,请据图回答:

1)若1号的母亲是血友病患者,则1号父亲的基因型是。

2)若1号的双亲都不是血友病患者,则1号母亲的基因型是。

3)若4号与正常男性结婚,所生第一个孩子患血友病的概率是。若这对夫妇的第一个孩子是血友病患者,再生一个孩子患血友病的概率是。

(2)红眼(A)、正常刚毛(B)和灰体色(D)的正常果蝇经过人工诱变产生基因突变的个体。下图表示该突变个体的X染色体和常染色体及其上的相关基因。

1)人工诱变的物理方法有。

2)若只研究眼色,不考虑其他性状,白眼雌果蝇与红眼雄果蝇杂交,F1雌雄果蝇的表现型及其比例

是。

3)基因型为ddX a X a和DDX A Y的果蝇杂交,F1雌雄果蝇的基因型及其比例是。

4)若基因a和b的交换值为5%,现有白眼异常刚毛的雌果蝇与正常雄果蝇杂交得到F1,F1雌果蝇

所产生卵细胞的基因型的比例是X AB:X Ab:X aB:X ab= :::。

12.(2008广东)下图为甲病(N-a)和乙病(B-b)的遗传系谱图,其中乙病为伴性遗传病,请回答

(1)甲病属于,乙病属于。

A.常染色体显性遗传病 B.常染色体隐性遗传病

C.伴Y染色体遗传病 D.伴X染色体隐性遗传病

E.伴Y染色体遗传病

(2)Ⅱ-5为纯合体的概率是,Ⅱ-6的基因型为,Ⅲ-13的致病基因来自于。(3)假如Ⅲ-10和Ⅲ-13结婚,生育的孩子患甲病的概率是,患乙病的概率是,不病的概率是。

13.(06上海)图甲、乙是两个家族系谱图,乙家族患色盲(B-b)。请据图回答。

(1)图甲中的遗传病,其致病基因位于________染色体上,是________性遗传。

(2)图甲中Ⅲ-8与Ⅲ-7为异卵双生(由不同的受精卵发育而来),则Ⅲ-8表现型是否一定正

常?________,原因是______ __。

(3)图乙中Ⅰ-1的基因型是________,Ⅰ-2的基因型是________。

(4)若图甲中的Ⅲ-8与图乙中的Ⅲ-5结婚,则他们生下两病兼患男孩的概率是________。

(5)若图甲中Ⅲ-9是先天愚型,则其可能是由染色体组成为________的卵细胞和________的精于受精

发育而来,这种可遗传的变异称为________。

14.(06四川)小黄狗的皮毛颜色由位于不同常染色体上的两对基因(A、a和B、b)控制,共有四种表

现型,黑色(A_B_)、褐色(aaB_)、红色(A_bb)和黄色(aabb)。下图是小黄狗的一个系谱,请回答下列问题:

(1)Ⅰ2的基因型是 。

(2)欲使Ⅲ1 产下褐色的小狗,应让其与表现型为 的雄狗杂交。 (3)如果Ⅲ2 与Ⅲ6 杂交,产下的小狗是红色雄性的概率是 。

(4)Ⅲ3 怀孕后走失,主人不久找回一只小狗,分析得知小狗与Ⅱ2 的线粒体 DNA 序列特征不同,

能否说明这只小狗不是..Ⅲ3生产的? (能/不能);请说明判断的依据: 。

(5)有一只雄狗表现出与双亲及群体中其他个体都不同的新性状,该性状由核内显性基因D 控制,那

么该变异来源于 。

(6)让(5)中这只雄狗与正常雌狗杂交,得到了足够多的 F 1 个体。

①如果 F 1代中出现了该新性状,且显性基因D 位于 X 染色体上,则 F 1代个体的性状表现为: ;

②如果 F 1代中出现了该新性状,且显性基因D 位于常染色体上,则 F 1代个体的性状表现为: ;

③如果 F1 代中没有出现该新性状,请分析原因: 。

(2009年江苏)33.(8分)在自然人群中,有一种单基因(用A 、a 表示)遗传病的致病基因频率为1/10 000,该遗传病在中老年阶段显现。1个调查小组对某一家族的这种遗传病所作的调查结果如图所示。请回答下列问题。

(I)该遗传病不可能的遗传方式是 。 (2)该种遗传病最可能是 遗传

病。如果这种推理成立,推测Ⅳ一5的女儿的基因型及其概率(用分数表示)为 。 (3)若Ⅳ一3表现正常,那么该遗传病最可能是 ,则Ⅳ-5的女儿的基因型为 。

33.(8分)(1)Y 染色体遗传和x 染色体隐性遗传(2)X 染色体显性

1/40 000 A

A

X X 、 10 002/40 000 A

a

X X 、 29 997/40 000 a

a

X X (3)常染色体显性遗传病AA 、Aa 、aa

(2008江苏)27.(8分)下图为甲种遗传病(基因为A 、a )和乙种遗传病(基因为B 、b )的家系图。其中一种遗传病基因位于常染色体上,另一种位于X 染色体上。请回答以下问题(概率用分数表示)。

(1)甲种遗传病的遗传方式为___________。

(2)乙种遗传病的遗传方式为___________。

(3)Ⅲ-2的基因型及其概率为。

(4)由于Ⅲ-3个体表现两种遗传病,其兄弟Ⅲ-2在结婚前找专家进行遗传咨询。专家的答复是:正常女性人群中甲、乙两种遗传病基因携带者的概率分别为1/10000和1/100;H如果是男孩则表现甲、乙两种遗传病的概率分别是____________,如果是女孩则表现甲、乙两种遗传病的概率分别是___________;因此建议____________。

答案:(1)常染色体隐性遗传(2)伴X染色体隐性遗传(3)AAX B Y,1/3或AaX B Y,2/3(4)1/60000和1/200 1/60000和0 优先选择生育女孩

(全国卷1)31、回答下列Ⅰ、Ⅱ小题

Ⅰ、雄果蝇的X染色体来自亲本中的_______蝇,并将其传给下一代中的_______蝇。雄果蝇的白眼基因位于_______染色体上,__________染色体上没有该基因的等位基因,所以白眼这个性状表现伴性遗传。

Ⅱ、已知果蝇刚毛和截毛这对相对性状由X和Y染色体上一对等位基因控制,刚毛基因(B)对截毛基因(b)为显性。现有基因型分别为X B X B、X B Y B、X b X b和X b Y b的四种果蝇。

(1)根据需要从上述四种果蝇中选择亲本,通过两代杂交,使最终获得的后代果蝇中,雄性全部表现为截毛,雌性全部表现为刚毛,则第一代杂交亲本中,雄性的基因型是_____,雌性的基因型是_____;第二代杂交亲本中,雄性的基因型是_____,雌性的基因型是_____,最终获得的后代中,截毛雄果蝇的基因型是_____,刚毛雌果蝇的基因型是_________

(2)根据需要从上述四种果蝇中选择亲本,通过两代杂交,使最终获得的后代果蝇中雌性全部表现为截毛,雄性全部表现为刚毛,应如何进行实验?(用杂交实验的遗传图解表示即可)【答案】Ⅰ、(4分)雌雌 X Y(每空1分)

Ⅱ、(12分)(1)X b Y b X B X B X B Y b X b X b X b Y b X B X b(每空1分)

(2)X b X b×X B Y B

截毛雌蝇刚毛雄蝇

X b Y B×X b X b

F1 刚毛雄蝇截毛雌蝇

X b X b X b Y B

雌蝇均为截毛雄蝇均为刚毛

(评分说明:每个基因型和表现型各1分,总共6分)

(2012江苏)30.(9分)人类遗传病调查中发现两个家系都有甲遗传病(基因为H、h)和乙遗传病(基因为T、t)患者,系谱图如下。以往研究表明在正常人群中Hh基因型频率为10-4。请回答下列问题(所有概率用分数表示):

(1)甲病的遗传方式为,乙病最可能的遗传方式为。

(2)若I-3无乙病致病基因,请继续以下分析。

①I-2的基因型为;II-5的基因型为。

②如果II-5与II-6结婚,则所生男孩同时患两种遗传病的概率为。

③如果II-7与II-8再生育一个女儿,则女儿患甲病的概率为。

④如果II-5与h基因携带者结婚并生育一个表现型正常的儿子,则儿子携带h基因的概率

为。

【答案】(1)常染色体隐性遗传伴X隐性遗传

(2)①HhX T X t HHX T Y或HhX T Y ② 1/36 ③1/60000 ④3/5

课内练习与训练

讲解学生自带练习卷针对练习

学生收获

你这次课一定有不少收获吧,请写下来:

教学反思

本次课后作业

学生对于本次课的评价:

○特别满意○满意○一般○差

学生签字:

教师评定:

1、学生上次作业评价:○非常好○好○一般○需要优化

2、学生本次上课情况评价:○非常好○好○一般○需要优化

教师签字:

学科组长签字:

物理图谱与遗传图谱知识总结(doc8)

遗传图谱 通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。 物理图谱 物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离[碱基对(bp)或千碱基(kb)或兆碱基(Mb)]的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS 制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个

标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图. 因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法──标记片段的部分酶解法,来说明图谱制作原理。 用部分酶解法测定DNA物理图谱包括两个基本步骤:

遗传系谱图练习题

“生物图表题”——遗传系谱图 1.(06·天津)某种遗传病受一对等位基因控制,下图为该遗传病的系谱图。下列叙述正确的 是 A.该病为伴X染色体隐性遗传病,Ⅱ1为纯合子 B.该病为伴X染色体显性遗传病,Ⅱ4为纯合子 C.该病为常染色体隐性遗传病,Ⅲ2为杂合子 D.该病为常染色体显性遗传病,Ⅱ3为纯合子 2.以下为遗传系谱图,2号个体无甲病致病基因。对有关说法,正确的是 A.甲病不可能是X隐性遗传病 B.乙病是X显性遗传病 C.患乙病的男性多于女性 D.1号和2号所生的孩子可能患甲病 3.右图所示遗传系谱中有甲(基因为D、d)、乙(基 因为E、e)两种遗传病,其中一种为红绿色盲症。下 列有关叙述中正确的是 A.甲病为色盲症,乙病基因位于Y染色体上 B.Ⅱ7和Ⅱ8生一两病兼发的男孩的概率为1/9 C.Ⅱ6的基因型为DdX E X e D.若Ⅲ11和Ⅲ12婚配,则生出病孩的概率高达100% 4、有两种罕见的家族遗传病,它们的致病基因分别位于常染色体和性染色体上。一种先天代谢病称为黑尿病(A,a),病人的尿在空气中一段时间后,就会变黑。另一种因缺少珐琅质而牙齿为棕色(B,b)。如图为一家族遗传图谱。 (1)棕色牙齿是______染 色体、____性遗传病。 (2)写出3号个体可能的 基因型:________。7号个 体基因型可能有____种。 (3)若10号个体和14号

个体结婚,生育一个棕色牙齿的女儿概率是___。 (4)假设某地区人群中每10000人当中有1个黑尿病患者,每1000个男性中有3个棕色牙齿。若10号个体与该地一个表现正常的男子结婚,则他们生育一个棕色牙齿有黑尿病的孩子的概率是_________。 5.下图是一色盲的遗传系谱: (1) 14号成员是色盲患者,致病基因是由第一 代中的某个体传递来的。用成员的编号和“→”写出色 盲基因的传递途径:_________。 (2)若成员7与8再生一个孩子,是色盲男孩的概率 为________,是色盲女孩的概率为________。 6.下图是一个家庭的遗传谱系(色觉正常为B ,肤色正 常为A ),请回答: (1)1号的基因型是______________。 (2)若11号和12号婚配,后代中患色盲的概率为_________。同时患两种病的概率为___________。 (3)若11号和12号婚配,生育子女中有病孩子的概率为_______;只患白化病(不含既色盲又白化的患者)的概率为___________。 7.下图是A 、B 两种不同遗传病的家系图。调查发现,患B 病的女性远远多于男性,据图回答。 (1)A 病是由 染色体上的 性基因控制的遗传病,判断的理由是 。 (2)假如⑥与⑨号结婚。生下患病孩子的几率是 。 (3)如果③号与一正常男性结婚,从优生角度分析,你认为最好生男孩还是女孩,为什么? 8.图是某家族遗传系谱图。请据图回答下列问题: (1)该病的致病基因在 染色体上,是 性遗 传病。 I II A B AB A A A B B B A A ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ III 图注: ——仅患A 病的男性; A B ——仅患B 病的女 A B ——同时患A 、B 两种病的女性。

遗传图谱分析和概率计算

个性化教案 授课时间:备课时间:2016/1/5 年级:高三课时:2 课题:遗传图谱分析及概率计算学生姓名: 教师姓名:郑远怀 教学目标了解遗传病的类型及特点 掌握判别遗传病遗传方式的方法掌握遗传病概率计算的方法 掌握基因频率与遗传病的关系 教学重点重点1、判别遗传病遗传方式的方法 2、遗传病概率计算的方法 难点:1、基因频率与遗传病的关系 教学过程遗传图谱分析及概率计算 知识点:一、了解遗传方式:据其特点,可将遗传方式分为以下几种 遗传病的遗传方式遗传特点实例 常染色体隐性遗传病隔代遗传,患者为隐性纯合体白化病 常染色体显性遗传病代代相传,正常人为隐性纯合体软骨发育不全症 伴X染色体隐性遗传病隔代遗传,交叉遗传,患者男性多于女性色盲、血友病 伴X染色体显性遗传病代代相传,交叉遗传,患者女性多于男性抗维生素D佝偻病伴Y染色体遗传病传男不传女,只有男性患者没有女性患者人类中的毛耳 知识点二:判别遗传病遗传方式的方法 要快速确定遗传病的遗传方式, (1)、学生首先要有意识地熟记常见的遗传病的遗传方式,如“白化病”“先天性聋哑” 为常染色体隐性遗传病,“多指”“并指”为常染色体显性遗传病,“红绿色盲”“血友病” 为伴X隐性遗传病,“抗维生素D佝偻病”为伴X隐性遗传病。 (2)其次要熟记有关口诀, 1、“无中生有是隐性,有中生无是显性” 即如果患病率高,代代连续,且只要有一组符合双亲都是患者,子代中有正常个体,则必为显 性遗传。即“有中生无为显性”。下图是显性遗传标志图。 如果患病率低,隔代遗传,且只要有一组符合双亲都不患病,子代中有患病个体,则必为隐性遗传。即“无中生有为隐性”。下图是隐性遗传标志图。

(完整版)生物高考遗传学试题汇编

1.(09天津卷,7)人的血型是由红细胞表面抗原决定的。左表为A型和O型血的红细胞表面抗原及其决定基因,右图为某家庭的血型遗传图谱。 血型A 红细胞裂面A抗原 有 抗原决定基因 (显性) O 无(隐性) 据图表回答问题: (1)控制人血型的基因位于(常/性)染色体上,判断依据是 。 (2)母婴血型不合易引起新生儿溶血症。原因是在母亲妊娠期间,胎儿红细胞 可通过胎盘进入母体;剌激母体产生新的血型抗体。该抗体又通过胎盘进入胎儿体内,与红细胞发生抗原抗体反应,可引起红细胞破裂。因个体差异,母体产生的血型抗体量及进入胎儿体内的量不同,当胎儿体内的抗体达到一定量时,导致较多红细胞破裂,表现为新生儿溶血症。 ①II-1出现新生儿溶血症,引起该病的抗原是。母婴血型不合 (一定/不一定)发生新生儿溶血症。 ②II-2的溶血症状较II-1严重。原因是第一胎后,母体已产生,当相同抗原再次剌激时,母体快速产生大量血型抗体,引起II-2 溶血加重。 ③新生儿胃肠功能不健全,可直接吸收母乳蛋白。当溶血症新生儿哺母乳后,病情加重,其可能的原因 是。 (3)若II-4出现新生儿溶血症,其基因型最有可能是。 答案(1)常若I A在X染色体上,女孩应全部为A型血,若I A在Y染色体上,女孩应全部为O型血。 (2)①胎儿红细胞表面A抗原不一定 ②记忆细胞 ③母乳中含有(引起溶血症的)血型抗体 (3)I A i 2.(09四川卷,31)大豆是两性花植物。下面是大豆某些性状的遗传实验: (1)大豆子叶颜色(BB表现深绿;Bb表现浅绿;bb呈黄色,幼苗阶段死亡)和花叶病的抗性(由R、r基因控制)遗传的实验结果如下表:组合母本父本F1的表现型及植株数 一子叶深绿不抗病子叶浅绿抗病子叶深绿抗病220株;子叶浅绿抗病217株 二子叶深绿不抗病子叶浅绿抗病子叶深绿抗病110株;子叶深绿不抗病109株; 子叶浅绿抗病108株;子叶浅绿不抗病113株 ①组合一中父本的基因型是_____________,组合二中父本的基因型是_______________。 ②用表中F1的子叶浅绿抗病植株自交,在F2的成熟植株中,表现型的种类有_____________ __________________________________________________,其比例为_____________。 ③用子叶深绿与子叶浅绿植株杂交得F1,F1随机交配得到的F2成熟群体中,B基因的基因频率为________________。 ④将表中F1的子叶浅绿抗病植株的花粉培养成单倍体植株,再将这些植株的叶肉细胞制成不同的原生质体。如要得到子叶深绿抗病植株,需要用 _________________基因型的原生质体进行融合。 ⑤请选用表中植物材料设计一个杂交育种方案,要求在最短的时间内选育出纯合的子叶深绿抗病大豆材料。 (2)有人试图利用细菌的抗病毒基因对不抗病大豆进行遗传改良,以获得抗病大豆品种。 ①构建含外源抗病毒基因的重组DNA分子时,使用的酶有______________________。 ②判断转基因大豆遗传改良成功的标准是__________________________________,具体的检测方法 _______________________________________________________________。 (3)有人发现了一种受细胞质基因控制的大豆芽黄突变体(其幼苗叶片明显黄化,长大后与正常绿色植株无差异)。请你以该芽黄突变体和正常 绿色植株为材料,用杂交实验的方法,验证芽黄性状属于细胞质遗传。(要求:用遗传图解表示) 答案(1)①BbRR BbRr ②子叶深绿抗病∶子叶深绿不抗病∶子叶浅绿抗病∶子叶浅绿不抗病 3∶1∶6∶2 ③80%

遗传题练习(系图谱和概率题)

遗传系谱图的解题方法及练习 高中生物学会考要求学生对遗传系谱图应达到综合分析水平。遗传系谱题多涉及一系列问题的解答,如①判别遗传类型、②写出指定个体的基因型、③计算患病机率。而教材中有关内容又较少,因而准确分析遗传系谱即成为一个难点。对学生来说经常出现听得懂,看得明白,就是不会做题。学生普遍认为解题过程中思路不清晰,书写紊乱。因此我认为突破这一难点的有效方法首先是:帮学生理顺解题思路,排除干扰解题的非智力因素;其次,加强变式训练。 一、几种常见遗传病类型及其特点 遗传病特点病例 常染色体显性①代代相传②发病率高 ③男女发病率相等多指(趾)、并指、软骨发育不良 常染色体隐性①可隔代遗传②发病率在近亲结婚 时较高③男女发病率相等白化、苯丙酮尿症 双眼皮 X染色体显性①连续遗传②发病率高③女性患 者多于男性患者④男性患者的母女都 是患者抗维生素D性佝偻病 X染色体隐性①隔代遗传或交叉遗传②男性患者多 于女性患者③女性患者的父亲、儿子 都是患者色盲、血友、进行性肌营养不良 Y染色体遗传①患者都为男性②父传子、子传孙(患 者的儿子都是患者) 外耳廓多毛症 细胞质遗传母系遗传紫茉莉质体的遗传 二、解题思路 (一)遗传系谱图的判定 第一步:根据题干。如果题干中已告之是“色盲”,则马上可判定此病为伴X隐性遗传病;如告之是“白化病”,则可判定此病为常染色体隐性遗传病。如果题干没告之具体的病例,则往下看第二步。 第二步: 1、先确定是否为细胞质遗传 (1)若系谱图中,女患者的子女全部患病,正常女性的子女全正常(即母系遗传)则为细胞质遗传 (2)若系谱图中,出现母亲患病,孩子有正常情况,或者,孩子患病母亲正常,则不是细胞质遗传 2、确定是否为伴Y遗传 (1)若系谱图中患者全为男性,而且男性全为患者,女性都正常,正常的全为女性,则为伴Y遗传。 (2)若系谱图中,患者有男有女,则不是伴Y遗传 3、确定是显性遗传病还是隐性遗传病 (1)无病的双亲,所生的孩子中有患者,即“无中生有”,或患者隔代才有,即“隔代遗传,则为隐性遗传。 (2)有病的双亲,所生的孩子中出现无病的,即“有中生无”,或连续几代有患者,即“连续遗传”,则为显性遗传。 4、确定是常染色体遗传还是伴X遗传 (1)若已确定是显性遗传 ①男患者的母亲和女儿均为患者,即“子病母不病,父病女不病”,正常女性的父子均正常,患者中女性多于男性为X染色体显性遗传; ②男患者的母亲和女儿中有正常者,或正常女性的父子有患者为常染色体显性遗传。 (2)若已确定是隐性遗传 ①女患者的父亲和儿子均为患者,即“母病子不病,女病父不病”,正常男子的母女均正常,患者中男性多于女性,甚无女患者为X染色体隐性遗传; ②女患者的父亲或儿子中有正常者,或正常男性的母女有患者为常染色体隐性遗传。 例题1:

遗传图谱

学情分析 基础,对于知识不能灵活运用课题遗传图谱分析 学习目标与考点分析学习目标:1、对基因的分离定率和基因的自由组合定律能熟练的牢记把握考点分析:1、遗传图谱的分析与把握 学习重点重点:1、基因的分离定律和自由组合定律 学习方法讲练结合练习巩固 学习内容与过程 知识点梳理 第三章遗传和染色体 第一节基因的分离定律 一、相对性状 性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。 相对性状:同一种生物的同一种性状的不同表现类型。 二、孟德尔一对相对性状的杂交实验 1、实验过程(看书) 2、对分离现象的解释(看书) 3、对分离现象解释的验证:测交(看书) 例:现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)? 相关概念 1、显性性状与隐性性状 显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。 隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。 附:性状分离:在杂种后代中出现不同于亲本性状的现象) 2、显性基因与隐性基因 显性基因:控制显性性状的基因。 隐性基因:控制隐性性状的基因。 附:基因:控制性状的遗传因子(DNA分子上有遗传效应的片段P67) 等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。 3、纯合子与杂合子 纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):显性纯合子(如AA的个体) 隐性纯合子(如aa的个体) 杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)4、表现型与基因型 表现型:指生物个体实际表现出来的性状。 基因型:与表现型有关的基因组成。 (关系:基因型+环境→表现型) 5、杂交与自交

高中生物必修二遗传系谱图专题

高中生物必修二遗传系谱图专题. 遗传系谱图专题训练 1.某种遗传病受一对等位基因控制,下图为该遗传病的系谱图。下列叙述正确的是

染色体隐X.该病为伴A 为纯合子性遗传病,Ⅱ1染色体显XB.该病为伴为纯合子性遗传病,Ⅱ4 为杂合子C.该病为常染色体隐性遗传病,Ⅲ2 为纯合子D.该病为常染色体显性遗传病,Ⅱ3 分析下面家族中某种遗传病的系.2 谱图,下列相关叙述中正确的是染色体隐性遗.该遗传病为伴XA 传病3 /.Ⅲ和Ⅱ基因型相同的概率为2B38传来的.Ⅲ肯定有一个致病基因是由IC1104 婚配,后代子女发病率为1/D.Ⅲ和Ⅲ98 右图为人类某种遗传病的系谱图, 3. 号为男性患者。下列相关5号和11 叙述合理的是.该病属于隐性遗传病,致病基因A 一定在常染色体上号的致病基因11若B.7

号不带有致病基因,则可能来自于2号号产生的配子带有若C.7号带有致病基因,10- 2 - 致病基因的概率是2/3 D.若3号不带致病基因,7号带致病基因,9号和10号婚配,后代男性患病的概率是l /18 4.下图为四个遗传系谱图,叙述正确的是 .家系丁中这对夫妇若再生一个正常女儿的几A1/4 率是.家系乙中患病男孩的父亲一定是该病

基因携B 带者.四图都可能表示白化病遗传的家系C .肯定不是红绿色盲遗传的家系是甲、丙、丁D 右图为遗传系谱图,5.号个体无甲病致病基2 因。对有关说法,正确的是 A.甲病不可能是X隐性遗传病显性遗传病B.乙病是X .患乙病的男性多于女性C 21D.号和号所生的孩子可能患甲病 - 3 - 6.右图所示遗传系谱中有甲(基 两e)E、、d)、乙(基因为因为D其中一种为

高中生物遗传图谱题做法及习题

遗传图谱题做法 1.伴性遗传的概念 2. 人类红绿色盲症(伴X染色体隐性遗传病) 特点:⑴男性患者多于女性患者。 ⑵交叉遗传。即男性→女性→男性。 ⑶一般为隔代遗传。 1.抗维生素D佝偻病(伴X染色体显性遗传病) 特点:⑴女性患者多于男性患者。 ⑵代代相传。 4、伴性遗传在生产实践中的应用 遗传图谱题解法 1.看是否为伴y遗传:只有男性患病,而且代代相传(如:胡须) 2.判断显性和隐形: 无中生有为隐性:父母没病,子女有病 有种生无为显形:父母有病,子女没病 二者都没有,说明既可能为显性,也可能为隐形。 3.(1)若为显性: 看“男患者的母亲和女儿是否一定患病。” 若是,则既可能为伴X显性遗传病,也可能为常染色体显性遗传病。 若有一个不患病,都说明一定是常染色体显性遗传病。 若找不到男患者,说明既可能为伴X显性遗传病,也可能为常染色体显性遗传病。 (2)若为隐形: 看“女患者的父亲和儿子是否一定患病。” 若是,则既可能为伴X隐性遗传病,也可能为常染色体隐性 遗传病。 若有一个不患病,都说明一定是常染色体隐性遗传病。 若找不到女患者,说明既可能为伴X隐性遗传病,也可能为常染色体隐性遗传病。 4.如果考虑细胞质遗传:只要有女性患病,而且女性子女全部患病。 则极有可能为细胞质遗传(母系遗传特点)

1 2 3 4 7 8 5 6 9 11 I II III 10 12 1. 右图为甲种遗传病(设显性基因为A ,隐性基因为a )和乙种遗传病(设 显性基因为H ,隐性基因为h )的遗传系谱图(其中一种遗传病的基因位于x 染色体上)下列叙述正确的是 ( ) A .就乙病来看,I 2、II 2的基因型一定相同 B .II 1、II 2产生的基因型为aX H 的生殖细胞含有完全相同的遗传物质 C .II 1、II 2所生的子女中,两病兼发的几率为1/8 D .两种病的相同特点都是来自于基因重组 2. 如果科学家通过转基因技术,成功改造了某女性血友病患者的造血干细胞,使其凝血功能全部恢复正常,那么 预测该女性与正常男性结婚后,所生子女的表现型为 ( ) A .儿子女儿全部正常 B .儿子、女儿中各一半正常 C .儿子全部患病女儿全部正常 D .儿子全部正常女儿全部患病 3.右边遗传系谱图中,可能属于X 染色体上隐性基因控制的遗传病是 4. 人的血友病属于伴性遗传,苯丙酮尿症属于常染色体遗传。一对表现型正常的夫妇生下一个既患血友病又患苯 丙酮尿症的男孩。如果他们再生一个女孩,表现型正常的概率是 A .9/16 B . 3/4 C .3/16 D .1/4 5.雌雄异株的高等植物剪秋罗有宽叶、窄叶两种类型,宽叶(B )对窄叶(b )为显性,等位基因位于X 染色体上,其中窄叶基因(b)会使花粉致死,如果杂合体宽叶雌株同窄叶雄株杂交,其子代的性别及表现型分别是 A .子代全是雄株,其中1/2是宽叶,1/2是窄叶 B .子代全是雌株,其中1/2是宽叶,1/2是窄叶 C .子代雌雄各半,全为宽叶 D .子代中宽叶雌株:宽叶雄株:窄叶雌株:窄叶雄株=1:1:1:1 6. 右图是一个某遗传病的家谱。3号与4号为异卵双生。他们的基因型相同的概率是 A. 5/9 B. 1/9 C. 4/9 D. 5/16 7.右图是人类某跗病的系谱图(该病受一对基因控制)则其最可能的遗传方式 是 A .X 染色体显性遗传 B .常染色体显性遗传 C .X 染色体隐性遗传 D .常染色体隐性遗传 8.三倍体西瓜之所以无籽,是因为三倍体植株不能形成正常的卵细胞。不能形成正常卵细胞的原因是减数分裂时 A .第一次分裂染色体联会紊乱 B .第一次分裂同源染色体不能分离 C .第二次分裂着丝点不分裂 D .第二次分裂染色体不能平均分配 9.下列各项中,产生定向变异的是 A .DNA 碱基对的增添、缺失或改变 B .染色体结构或数目发生变异 C .良好的水肥条件或基因工程 D .不同物种间的杂交 1 2 3 4 5 A B C D

遗传系谱图中的概率计算

遗传系谱图中的概率计算 二、遗传系谱图中的遗传病遗传方式判定方法: 1遗传方式判定顺序:确定是否为细胞质遗传(是否为母系遗传)→确定是否为伴Y遗传(是否患者全为男性)→确定是显、隐性→确定是常染色体遗传还是伴X遗传 2确定显隐性性状: (1)无中生有为隐性(父母都没有疾病,生了一个有病的孩子) (2)有中生无为显性(父母都有疾病,生了一个正常的孩子) 3确定基因的位置(优先考虑是否伴X遗传) (1)在已确定是隐性遗传的系谱中 ①若女患者的父亲和所有儿子都患病,则为伴X隐性遗传。 ②若女患者的父亲和儿子中有正常的,则为常染色体隐性遗传。 (2)在已确定是显性遗传的系谱中 ①若男患者的母亲和所有女儿都患病,则为伴X显性遗传。 ②若男患者的母亲和女儿中有正常的,则为常染色体显性遗传。 4如果系谱中无上述特征,可用排除法,如果排除不了,就只能从可能性大小上判断:(1)若该病在代与代之间呈连续性,则该病很可能是显性遗传病。 (2)若患者无性别差异,男女患病率相当,则该病可能是常染色体上基因控制的遗传病。(3)若患者有明显的性别差异,男女患者几率相关很大,则该病极有可能是伴性遗传。 三、遗传系谱图中概率计算的思路 1、确定遗传病的遗传方式 2、确定个体的基因型:用分离定律分析每一种遗传病,计算相应个体婚配后代基因型的概率(常染色体上的遗传病有时注意2/3比例),再组合出个体的基因型(相应的基因型组合即为该个体的基因型,相应基因型概率的乘积为该个体基因型的概率) 3、计算概率:所求概率=每对性状相应的概率相乘再相加(最常用分解相乘法)

例1 (10江苏卷)29.(7分)遗传工作者在进行遗传病调查时发现了一个甲、乙两种单基因遗传病的家系,系谱如下图所示,请回答下列回答(所有概率用分数表示) (1)甲病的遗传方式是________。 (2)乙病的遗传方式不可能是________。 (3)如果II-4、II-6不携带致病基因.按照甲、乙两种遗传病最可能的遗传方式.请计算: ①双胞胎(IV-1与IV-2)同时患有甲种遗传病的概率是________。 ②双胞胎中男孩(IV-I)同时患有甲、乙两种遗传病的概率是________.女孩(IV-2)同时患有甲、乙两种遗传病的慨率是________ 。 例2: (2009山东)人类遗传病发病率逐年增高,相关遗传学研究备受关注。根据以下信息回答问题: (1)上图为两种遗传病系谱图,甲病基因用A、a表示,乙病基因用B、b表示,Ⅱ-4无致病基因。甲病的遗传方式为____________,乙病的遗传方式为____________。Ⅱ-2的基因型为____________,Ⅲ-1的基因型为____________,如果Ⅲ-2与Ⅲ-3婚配,生出正常孩子的概率为____________。 答案: 例1、(1)常染色体隐性遗传(2)伴X显性遗传(3)1/1296 1/36 0 例2、2009山东答案:常染色体显性遗传病伴X隐性遗传病AaX b Y aaX B X b 7/32

遗传图谱分析是高中生物的一个重难点

遗传图谱分析是高中生物的一个重难点,如何让学生理清思路,准确高效的完成此类问题,我谈谈我自己的看法。 遗传图谱的分析无非就是三部曲: 1:基因的定性与定位。(定性:确定基因的显隐性。定位:确定基因的位置,在常染色体上还是性染色体上) 2:推导个体的基因型。 3:计算遗传概率问题。 这里我将就这三个方面的解题方法和思路展开讨论。 一:基因的定性与定位 基因的定性与定位,首先要明确一般顺序,先确定显隐性,在确定基因的位置。这个顺序是不能反过来的。 1:致病基因的定性 致病基因无非就是显性和隐性两种。我们确定显隐性有句口诀:无中生有为隐性,有中生无为显性。第一句话学生可以理解,第二句常常用错,有中生无为显性,这里的“有”为“全有”而不是一方有。 例1:如下图所示的三种情况,试判断显隐性:

图一:为无中生有,为隐性遗传。 图二:为有中生无,为显性遗传。 图三:这个有的学生有疑惑,亲代有患病的,也有正常的,道理是算“有”还是算“无”,其实这种情况无论后代表现性如何,都无法判断其显隐性关系的。 因此这里必须把这个口诀理解了:无中生有为隐性,有中生无为显性。双亲中的“无”和“有”指的是全部“无”和全部“有” 而后代的“有”和“无”则不要求全部,只有出现“有”或“无”即可。如果双亲中一个无,一个有,则无法判断显隐性,因此当我们面对一个复杂的遗传图片中,就要找那些双亲表现型一样的来判断显隐性,而不要看那些双亲表现型不一样的,从而避免盲目性。 例2:如图所示,判断甲乙两种病的显隐性。 先判断甲的遗传方式:

第一步就是“找”。找什么呢?找双亲表现型相同的情况。这道题我们可以看到有三对夫妻:Ⅰ-1和Ⅰ-2、Ⅱ-3和Ⅱ-4以及Ⅱ-7和Ⅱ-8。我们可以看到只有Ⅱ-7和Ⅱ-8全部是患病的,那么这一对夫妻就是我们的突破点。如果我们纠结于Ⅰ-1和Ⅰ-2、Ⅱ-3和Ⅱ-4就会费时费力。 第二步就是“看”看什么?看后代的表现型有没有出现和亲本不一样的。这里Ⅱ-7和Ⅱ-8后代出现了正常的,那么就符合“有中生无” 第三部就是“确定”,既然符合就可以确定为有中生无为显性。 同理,对于乙病。可以找Ⅱ-3和Ⅱ-4,为无中生有为隐性。 小结: 定性的方法:七字方针:一找二看三确定。 一“找”找表现性相同的夫妻双方。 二“看”看后代是否出现了表现型和夫妻双方不一样的情况,如果出现了就可以按照口诀确定显隐性,如果后代的表现型和夫妻 双方完全一样,则无法判断。此时可以寻找其他的表现型相同的夫妻来判断 三“确定”根据口诀确定显隐性 2:致病基因的定位 所谓致病基因的定位,就是判断致病基因在常染色体上还是在性染色体上。(这里不考虑Y 染色体上的遗传)。学生要明确一点, 定位是以定性为基础的。一般方法是:假设致病基因位于X染色体上,然后看是否能推出矛盾。 此时我们也要理清思路:显性看男病,隐性看女病 (1):显性看男病。(辅助记忆:男的要是帅得不明显,那就是和患病一样)如果所有的男病个体的母亲和他的全部女儿都是患病的,那 么这个致病基因很可能在X染色体上.(也有可能在常染色体上)。如果只要有一个男病个体的母亲和女儿出现了是正常,,那么这个致病基 因一定在常染色体上。

关于遗传图谱的识别和有关基因型及概率推断和计算

关于遗传图谱的识别和有关基因型及概率推断和计算

一、关于遗传系谱图的识别和有关遗传病遗传方式的推断 北京葛国顺(1)先判断是显性遗传还是隐性遗传: 父母正常,儿子患病→图甲 常隐、X隐不确定“无中生有”为隐性遗传病 父母正常,女儿患病(女病父未病)→→图乙 确定患病为常隐 父母患病,儿子正常→→图丙 常显、X显不确定“有中生无”为显性遗传病 父母患病,女儿正常(父病女未病)→→图丁 确定是常染色体显性 (2)再判断是常染色体遗传 还是伴性遗传: 常显:患者较多 →→图戊 “父病女未病;子病母未病” “男女平等”:无伴性

常隐:患者很少;→→图己 “女病父未病;母病子未病” 伴Y:父传子,子传孙,子子孙孙无穷尽“传男不传女”“直线遗传” “男女有别”显女患者明显多于男患者、交叉遗传(见图庚) 伴X “子病母必病、父病女必病” 隐男患多于女患、隔代遗传、交叉遗传(见图辰) “母病子必病、女病父必病” 图庚 图辰 最可能为X显最可能为x隐 例1.(2006江苏卷)下图为甲、乙、丙、丁4

种遗传性疾病的调查结果.根据系谱图分析、推测这4种疾病最可能的遗传方式以及一些个体最可能的基因型是 A.系谱甲为常染色体显性遗传,系谱乙为x 染色体显性遗传,系谱丙为x染色体隐性 遗传,系谱丁为常染色体隐性遗传 B.系谱甲为常染色体显性遗传,系谱乙为x 染色体显性遗传,系谱丙为常染色体隐性 遗传,系谱丁为x染色体隐性遗传C.系谱甲-2基因型Aa,系谱乙-2基因型X B X b 系谱丙-8基因型Cc,系谱丁-9基因型X D X d D.系谱甲-5基因型Aa,系谱乙-9基因型X B X b

高中生物遗传系谱图分析总结+例题

遗传系谱图高考试题的解析思路 复习摩尔根实验,通过系谱分析伴X、Y遗传与显、隐遗传的后代特点,对于系谱分析的解题方法做出总结。 第一步;确认是否为伴Y染色体遗传或细胞质遗传 第二步:判断致病基因是显、隐性 第三步;确定致病基因是位于常染色体上还是位于X染色体上。 二、典型例题分析 1、一对表现正常的夫妇,他们的双亲中都有一个白化病患者,预计他们生一个白化病男孩的概率是 A.12.5% B.25% C.75% D. 50% 2、血友病属于隐性伴性遗传病。某人患血友病,他的岳父表现正常,岳母患血友病,对他的子女表现型的预测应当是()

A.儿子、女儿全部正常 B.儿子患病,女儿正常 C.儿子正常,女儿患病 D.儿子和女儿中都有可能出现患者 3、已知黑尿症由常染色体隐性基因控制,两个都带有黑尿症基因的正常男女结婚,预测他们的孩子患黑尿症的几率是() A.12.5% B.25% C.50% D.75% 4、下图为某遗传病的系谱图,正常色觉(B)对色盲(b)为显性,为伴性遗传;正常肤色(A)对白色(a)为显性,为常染色体遗传。请识图完成下列问题: (1)Ⅰ1的基因型是______________。 (2)Ⅱ5为纯合子的几率是______________。 (3)若Ⅲ10和Ⅲ11婚配,所生的子女中发病率为______________;只得一种病的可能性是______________;同时得两种病的可能性是______________。 5、如下图所示是人类的遗传病系谱图,该病的致病基因不可能是() A.Y染色体上的基因 B.X染色体上的显性基因 C.常染色体上的隐性基因 D.常染色体上的显性基因 6、下图所示为四个遗传系谱图,则下列有关的叙述中正确的是() A.四图都可能表示白化病遗传的家系 B.家系乙中患病男孩的父亲一定是该病基因携带者

遗传图谱题目

34.下图是某家族成员的关系图谱,据图回答下列问题。(7分) (1)人的有酒窝与无酒窝,在遗传学中称为________________。 (2)若3、4都有酒窝,他们所生儿子7无酒窝,则可判断出 ________________是显性性状。 (3)若用E、e表示控制这对性状的显、隐性基因,则孩子7(无酒窝) 的基因组成为________________;若3和4这对夫妇再生一个孩子8, 有酒窝的概率为________________。 (4)若5的酒窝是经整容而获得的,这种性状________________(选 填“能”或“不能”)遗传给9。原因是________________ 。 (5)7和9是近亲关系(表兄妹),他们携带同一致病基因的可能性较大,请你从优生的角度,说出他们不能结为夫妻的原因是 ________________ 。

2.两只毛色为黄色的狗相配,生下四只小狗,其中3只小黄狗,1只小花狗,请分析后回答下列问题(显性基因A,隐性基因a):(6分) (1)狗的毛色在遗传学上叫做;黄色与花色称 为。 (2)在本题中显性性状为。 (3)本题中的狗妈妈基因型是,小花狗的基因型是,如果小花狗与一只毛色为黄色的狗相配,生下的狗的毛色为。 3.人类皮肤正常由显性基因(A)控制,白化病由隐性基因(a)控制,根据右图回答问题:(16分) (1)由A控制的性状叫_____________,由a控制的性状叫 _____________,他们是一对____________。

(2)父亲的基因型是_____________,母亲的基因型是_____________,孩子丁的基因型是_____________。 (3)父亲能产生_____________种精子,分别是 含或的。母亲能产生 ________种卵细胞,是含染色体的,生男生女机会。 (4)父亲的体细胞染色体数为,母亲的体细胞染色体数为。 (5)这对夫妇所生的孩子患白化病的可能性为_____________%。如果再生一个孩子是男孩的可能性为_____________%。 4.如图一对基因的遗传图解,基因显性用B表示,隐性用b表示,请据图回答:(6分) ⑴控制性状的基因B和b在细胞内位于_______________上。

遗传图解

豌豆一对相对性状的杂交、自交实验遗传图解: 2.1.2 豌豆两对相对性状的杂交、自交实验遗传图解(从亲代到F2): (说明:上述图解中F1自交至F2过程在高中教材中是以棋盘式展示的,在此以竖写式呈现2.1.3 豌豆一对和两对相对性状测交实验的遗传图解:

2.2 规范书写遗传图解的基本要点 仔细观察以上5个遗传图解,然后归纳、总结其相同点,读者不难发现,规范的遗传 图解应该包括以下几个基本要点: ①左侧标注。一般在遗传图解的左侧做出鲜明的标识,代表这一行表示的内容,起到引领作用。如:P,配子,F1,F2等,其中P、F1、F2也可以用汉字表述。 ②亲代的基因型、表现型要明确写出。有时还需要在亲代基因型旁侧标上父本、母本(或♀、♂符号),尤其是题上明确要求谁做父本,谁做母本时,还有需要区分正交和反交时必须标明(上面的4个图解都没标明父本、母本,那是因为孟德尔做上述实验时,无论谁做父本,谁做母本结果都是一样的)。至于具有明确性别决定的伴性遗传(如XY型,ZW型)的图解,亲代可以不用标出父本、母本。 ③杂交(×)、自交(×)符号,以及连接亲代和子代之间的箭头(注意不是线段)要具备。 ④子代的基因型、表现型以及相关的比例要呈现。这个比例可以就具体解释的遗传问题确定是否写出。 ⑤适当的旁注以说明遗传图解不能很好表达的或需要强调的内容。如杂交育种和单倍体育种(见图6)选育优良品种的遗传图解。 ⑥关于伴性遗传(包括X、Y和Z、W染色体同源区段的遗传)的图解的书写,以上几点依然适用,只不过写亲、子代及配子基因型的时候,写出基因的同时还要写出该基因所在的染

色体(基因标注在染色体右上角)。如果是常染色体和性染色体复合基因型书写,一般习惯上把常染色体上的基因型写在左边。 关于遗传图解中是否需要书写配子的问题,一些老师有不同的看法,认为配子的书写可以省略,学生在此也存在一定的困惑。对此笔者认为应视具体的情况而定。对于雌雄配子组合方式超过4种的图解,如2.1.2中F1自交的图解,如果按照2.1.1中的自交模式书写,即YyRr×YyRr,雌雄配子各4种,组合方式16种,这时写出配子再用箭头连接显然十分麻烦和混乱,倒不如一个竖箭头旁带一个自交符号直接指向F2简明扼要。但是有时必须写出配子才能更好反应遗传本质。如孟德尔一对、两对相对性状的测交实验(见2.1.3图),则必须写出F1产生的配子的种类。因为测交实验是对孟德尔假说的验证,其假说的关键之处在于对F1产生配子时的解释。假说对分离现象的核心解释是F1产生配子时成对的遗传因子彼此分离分别进入不同的配子;对自由组合现象的核心解释是F1产生配子时每对遗传因子分离,不同对的遗传因子自由组合,这样F1产生的雌雄配子各有4种,其数量之比为1:1:1:1。如果测交图解省略了配子,那就不能很好地反应测交实验的实质,也无法对假说提供有力的支撑。除此之外,在单倍体育种的遗传图解中,写出配子这一步就更显得重要了,下图是用高杆抗病(AABB)和矮杆不抗病(aabb)小麦培育矮杆抗病(aaBB)新品种的单倍体育种遗传图解:

遗传图谱概率分析

例.CMT1腓骨肌萎缩症(由基因A、a控制)是一种最常见的外周神经退行性遗传病。有一种鱼鳞病(由基因B、b控制)是由某基因缺失或突变造成微粒体类固醇、硫酸胆固醇和硫酸类固醇合成障碍引起的。为探究两种病的遗传方式,某兴趣小组进行了广泛的社会调查,绘制了甲、乙两个典型家庭的遗传系谱图。请回答下列问题: (1)请你判断,CMT1腓骨肌萎缩症的遗传方式为__________,鱼鳞病最可能的遗传方式为__________。 (2)为了进一步探究鱼鳞病的遗传方式,某兴趣小组请医学院的老师对乙家庭中的Ⅰ-3、Ⅰ-4和Ⅱ-7的鱼鳞病基因进行切割、电泳,得到的基因电泳图如下。 ①Ⅰ-2的基因型为____________;Ⅱ-5的基因型为______________。 ②二孩政策全面放开,Ⅱ-2和Ⅱ-3想再生一个孩子,他们生一个正常孩子的概率为________。 (3)咨询医学院的老师得知,腓骨肌萎缩症群体发病率约为1/2 500,则Ⅱ-5与Ⅱ-6生一个正常子女的概率为________。受传统观念影响,Ⅱ-5和Ⅱ-6婚后想生一个男孩,则他们生出正常男孩的概率为________。 【解析】:(1) 根据上图可确定,腓骨肌萎缩症为常染色体隐性遗传病;根据双亲Ⅰ-1、Ⅰ-2,Ⅰ-3、Ⅰ-4,Ⅱ-2、Ⅱ-3均正常,却生下患鱼鳞病的孩子,可推断鱼鳞病为隐形遗传病,并且他们的后代都是男孩,与性别相关联,进一步推断最可能为伴X染色体隐性遗传病。 (2) 根据腓骨肌萎缩症为常染色体隐性遗传病;鱼鳞病为伴X染色体隐性遗传病。①由Ⅰ-1

和Ⅰ-2的表现型及子女的患病情况可推知:Ⅰ-1的基因型为AaX B Y,Ⅰ-2的基因型为AaX B X b。Ⅰ-3与Ⅰ-4生出一个患两病的Ⅱ-7,因此,Ⅰ-3的基因型为AaX B Y,Ⅰ-4的基因型为AaX B X b,因此,对于腓骨肌萎缩症来说,Ⅱ-5的基因型为1/3AA或2/3Aa,对于鱼鳞病来说,其基因型为1/2X B X B或1/2X B X b,即Ⅱ-5的基因型为AAX B X B或AaX B X B或AAX B X b 或AaX B X b。②Ⅲ-1是两病都患男性,因此Ⅱ-2、Ⅱ-3的基因型应为AaX B X b和AaX B Y, (3)腓骨肌萎缩症群体发病率约为1/2 500,即aa基因型频率为1/2 500,根据遗传平衡定律:a的基因频率为1/50,A的基因频率为49/50,因此, 如果想生男孩,则患鱼鳞病概率为(1/2)×(1/2)=1/4,则他们生出正常男孩的概率为(1-1/153)×(1-1/4)=38/51。 【答案】:(1)常染色体隐性遗传伴X染色体隐性遗传 (2)①AaX B X b AAX B X B或AaX B X B或AAX B X b或AaX B X b②9/16(3)133/15338/51

重测序-产品类-GBS遗传图谱

方案设计诺禾致源最新发表GBS遗传图谱文章 123 微生物基因组测序16S/18S/ITS等扩增子测序细菌基因组 de novo 测序真菌基因组 de novo 测序微生物重测序宏基因组测序动植物基因组测序全基因组survey 全基因组 de novo 测序泛基因组测序变异检测BSA性状定位遗传图谱全基因组关联分析群体进化Hi-C测序人类基因组测序全基因组测序外显子测序目标区域测序单细胞基因组测序建库测序建库测序诺禾致源微信文章精彩阅读 >> 版权所有:北京诺禾致源科技股份有限公司 转录调控测序 真核有参转录组测序 医学转录组测序 真核无参转录组测序 比较转录组与泛转录组测序 原核转录组测序 宏转录组测序 单细胞转录组测序 LncRNA测序 circRNA测序 small RNA测序 ChiP-seq RIP-seq 全基因组甲基化测序图1 亲本间多态性SNP在全基因组及外显子区域的分布 图4 遗传图谱与物理图谱共线性分析 图2 玉米 bin map (横轴表示染色体编号,纵轴表示样本数; 红色表示与亲本Qi319基因型相同,蓝色表示与亲本Ye478相同; 黄色:杂合基因型) 图3 三个环境下的PH性状相关QTL在染色体上的分布GBS遗传图谱代表文献 中国农业科学院作物研究所研究人员携手诺禾致源重测序团队, 采用GBS技术,利用Illumina HiSeq 2500测序平台,对314株高 世代群体(RILs)进行双末端PE125低深度测序(平均测序深度 0.07×),检测群体SNP,并进行遗传标记开发,亲本间多态性 SNP标记分布如右图所示(图1)。 基于该图谱,对玉米3个株型相关的性状进行了定位,并且在3个 环境中定位出了主效QTL。通过这些定位出的QTL,预测到2个候 选基因,为后续进行基因的准确鉴定奠定了基础(图3)。案例1 基于GBS技术的玉米高密度遗传图谱构建和株型相关性状定位 案例西北农林科技大学研究人员与诺禾致源重测序团队合作,采用GBS技术,对枣树F 1群体的145个个体利用Illumina HiSeq PE150平台测序,检测群体SNP,并进行遗传标记开发,构建遗传图谱。本研究共得到12个连锁群,上图标记数为2540个,遗传距离总长为1456.53cM,标记间平均距离为0.88cM。 2 基于GBS技术构建枣树F 1代高密度遗传图谱 本研究通过亲本及子代SNP基因分型,开发bin 标记,基于4183个 bin 标记构建玉米高密度遗传图谱,遗传距离总长为1545.65cM, 标记间平均距离为0.37cM, 平均物理距离为0.51Mb(图2)。 类 别作物类林木类作物类作物类林木类作物类作物类发表时间2016201620152015201420132013发表刊物BMC Genomics Tree Genetics & Genomes Molecular Breeding BMC Genomics G3:Gene Genomes Genetics BMC Genomics Plos Genetics IF 3.8672.1322.1083.8672.913.8676.661策 略GBS GBS GBS GBS GBS GBS GBS link link link link link link link 物 种 玉米[1] 枣树[2] 狼尾草[3] 木薯[4] 苹果[5] 覆盆子[6] 柳枝稷[7]

分子标记遗传图谱的构建方法---完整

分子标记遗传图谱的构建 检测出的每个分子标记反映的都是相应染色体座位上的遗传多态性状态。为了有效地分析利用分子标记所提供的遗传信息,人们希望知道不同分子标记在染色体上的相对位置或排列情况,也就是要构建分子标记的遗传连锁图谱。利用DNA标记构建遗传连锁图谱在原理上与传统遗传图谱的构建是一样的。其基本步骤包括:选择适合作图的DNA标记;根据遗传材料之间的DNA多态性,选择用于建立作图群体的亲本组合;建立具有大量DNA标记处于分离状态的分离群体或衍生系;测定作图群体中不同个体或株系的标记基因型;对标记基因型数据进行连锁分析,构建标记连锁图。至今为止,已构建了许多植物的高密度分子标记连锁图。本章侧重介绍利用DNA标记构建分子遗传连锁图谱的原理与方法。 第一节作图群体的建立 要构建DNA标记连锁图谱,必须建立作图群体。建立作图群体需要考虑的重要因素包括亲本的选配、分离群体类型的选择及群体大小的确定等。 一、亲本的选配 / 亲本的选择直接影响到构建连锁图谱的难易程度及所建图谱的适用范围。一般应从四个方面对亲本进行选择,首先要考虑亲本间的DNA多态性。亲本之间的DNA多态性与其亲缘关系有着密切关系,这种亲缘关系可用地理的、形态的或同工酶多态性作为选择标准。一般而言,异交作物的多态性高,自交作物的多态性低。例如,玉米的多态性极好,一般自交系间配制的群体就可成为理想的RFLP作图群体;番茄的多态性较差,因而只能选用不同种间的后代构建作图群体;水稻的多态性居中,美国康乃尔大学实验室1988年发表的RFLP连锁图谱是以籼稻和爪哇稻之间的杂交组合为基础构建的(McCouch et al. 1988)。在作物育种实践中,育种家常将野生种的优良性状转育到栽培种中,这种亲源关系较远的杂交转育,DNA 多态性非常丰富。第二,选择亲本时应尽量选用纯度高的材料,并进一步通过自交进行纯化。第三,要考虑杂交后代的可育性。亲本间的差异过大,杂种染色体之间的配对和重组会受到抑制,导致连锁座位间的重组率偏低,并导致严重的偏分离现象,降低所建图谱的可信度和适用范围;严重的还会降低杂种后代的结实率,甚至导致不育,影响分离群体的构建。由于各种原因,仅用一对亲本的分离群体建立的遗传图谱往往不能完全满足基因组研究和各种育

相关文档
最新文档