圆中的9个定理

圆中的9个定理
圆中的9个定理

1.圆弧、圆心角、弦、弦心距关系定理。(四者有一个量相等,其余三个量也相等)

2.垂径定理

(垂直于弦的直径平分弦,并且平分弦所对的两条弧)

3.垂径定理逆定理

(平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧)

4.圆周角定理

(同弧所对的圆周角是圆心角的一半)

5.圆周角推论1

(同弧所对的圆周角相等)

6.圆周角推论2

(直径对的圆周角是90度,90度的圆周角对的弦是直径)

7.切线性质定理

(切线垂直于过切点的半径)

8.切线判定定理

(过半径的外端点且垂直于半径的直线是圆的切线)

9.切线长定理

(从圆外一点向圆可以引两条切线,切线长

相等;这个点和圆心的连线平分两条切线的夹角)

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

山西省太原市高中数学竞赛解题策略-几何分册第25章九点圆定理汇总

第25章 九点圆定理 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆. 如图25-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D 、E 、F ,三边BC 、CA 、AB 的中点分别为L 、M 、N ,又AH 、BH 、CH 的中点分别为P 、Q 、R ,则D 、E 、F 、L 、M 、N 、P 、O 、R 九点共圆. H O Q L R N M P F E D C B A 图25-1 证法1联结PQ ,QL ,LM ,MP ,则1 2 L M B A Q P ∥∥,即知L M P Q 为平行四边形,又LQ CH AB LM ⊥∥∥,知LMPQ 为矩形.从而L 、M 、P 、Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L 、M 、N 、P 、Q 、R 六点共圆,且PL ,QM ,NR 均为这个圆的直径. 由90PDL QEM RFN ∠∠=∠=?=,知D ,E ,F 三点也在这个圆上,故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法2如图25-1,由1 1801802NQD BQD BHD ∠=?-∠=?-∠,以及注意到DE 是N 与R 的公共弦, 知 NR DE ⊥,有1 2 N R D D R E C ∠= ∠=∠,亦即180NRD EHD ∠=?-∠,从而知 ()360180NQD NRD BHD EHD ∠+∠=?-∠+∠=?. 因此,N 、Q 、D 、R 四点共圆. 同理,Q 、L 、D 、R 四点共圆.即知N 、Q 、L 、D 、R 五点共圆. 同理,L 、D 、R 、M 、E 以及R 、M 、E 、P 、F ;E 、P 、F 、N 、Q ;F 、N 、Q 、L 、D 分别五点共圆. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法3如图25-1.联结PL 、PN 、PQ 、PF 、LQ 、LF 、QN 、FL ,则90PDL ∠=?.注意到PN BH ∥,NL AC ∥,BE AC ⊥,则PN NL ⊥,即90PNL ∠=?. 又PQ AB ∥,QL CH ∥,而CH AB ⊥,则QL PQ ⊥,即90PQL ∠=?. 注意到PF PH =,则PFH PHF CHD ∠∠∠==. 由LF LC =,有CFL HCD ∠∠=. 因90CHD HCD ∠+∠?=,则90PFL PFH CFL ∠∠+∠?==. 同理,PM L ∠、PEL ∠、PRL ∠皆等于90?.即D 、N 、Q 、F 、M 、E 、R 各点皆在以PL 为直径的圆周上. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法4如图25-1,注意到LQHR 为平行四边形,QP BA ∥,RP CA ∥,则么180180QLR QHR A QPR ∠=∠?-∠?∠==-,即知L 、Q 、P 、R 四点共圆. 又180180QDR QDH RDH QHD RHD QHR A QPR ∠∠+∠∠+∠∠?∠?-∠====-=(注意QP BA ∥,

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理、梅涅劳斯定理、圆幂定理和四点共圆)

托勒密定理 定理图 定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组 对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式, 托勒密定理实质上是关于共圆性的基本性质. 定理的提出 一般几何教科书中的托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的 书中摘出。 证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意四边形ABCD 中,作△ ABE使/ BAE= / CAD / ABE= / ACD 因为△ ABE ACD 所以BE/CD=AB/AC, 即BE-AC=AB CD (1) 而/ BAC= / DAE ,,/ ACB= / ADE 所以△ ABC AED 相似. BC/ED=AC/AD 即ED- AC=BC AD (2) ⑴+⑵,得 AC(BE+ED)=AB CD+AD BC 又因为BE+EI> BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即托勒密定理”) 所以命题得证 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、 BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a -b)(c - d) + (a - d)(b - c) = (a - c)(b - d),两边取模,运用三角不等式得。等 号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。 二、设ABCD是圆内接四边形。在弦BC上,圆周角/ BAC = / BDC,而在AB上, / ADB = / ACB。在AC 上取一点K,使得/ ABK = / CBD ; 因为/ ABK + / CBK = / ABC = / CBD + / ABD,

初中数学奥林匹克中的几何问题:第7章九点圆定理及应用附答案

第七章九点圆定理及应用 【基础知识】 九点圆定理三角形三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,这九点共圆. 如图7-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D ,E ,F ;三边BC ,CA ,AB 的中点分别为L ,M ,N ;又AH ,BH ,CH 的中点分别为P ,Q ,R .求证:D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆. B V O R F P E N M H Q L 图7-1 A 证法1连PQ ,QL ,LM ,MP ,则知1 2 LM BA QP ∥∥,即知L M P Q 为平行四边形.又 LQ CH BP LM ⊥∥∥,知LMPQ 为矩形.从而L ,M ,P ,Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L ,M ,N ,P ,Q ,R 六点共圆,且PL ,QM ,NR 均为这个 圆的直径. 由90PDL QEM RFN ∠=∠=∠=?,知D ,E ,F 三点也在这个圆上.故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆. 证法2设ABC △的外心为O ,取OH 的中点并记为V ,连AO ,以V 为圆心,1 2 AO 为半径作V ,如 图71-. 由1 2 VP OA ∥,知P 在V 上.同理,Q ,R 也在V 上. 由1 2OL AH ∥(可由延长AO 交ABC △的外接圆于K ,得HBKC 为平行四边形,此时L 为KH 的中点, 则OL 为AKH △的中位线即得),知OL PH ∥.又OV VH =,知O L V H P V △△ ≌,从而1 =2 VL VP OA =, 且L ,V ,P 共线,故L 在V 上. 同理,M ,N 在V 上. 由L ,V ,P 共线知LP 为V 的一条直径. 又90LDP ∠=?, 90MEQ ∠=?,90NFR ∠=?,知D ,E ,F 在V 上, 故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆. 上述圆通常称为九点圆,也有人叫费尔巴哈圆或欧拉圆,显然,正三角形的九点圆即为其内切圆. 证法3由Rt Rt CBF ABD △∽△,有BC BA BF BD = .注意到L 、N 分别为BC 、BA 的中点, 则 BL BN BF BD = ,即BL BD BF BN ?=?,这表明L 、D 、F 、N 四点共圆(或者联结NL 、DF ,则由BDF BAC BNL ∠=∠=∠知L 、D 、F 、N 四点共圆).同理,L 、D 、E 、M 及E 、M 、F 、N 分别四点共圆.

九年级上学期圆的定义及垂径定理

【圆的认识】第11份 1、弦和直径:连接圆上任意叫做弦,其中经过圆心的弦叫做,是圆中最长的弦。 2、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。其中正确的有 3、下列四个命题:①经过任意三点可以作一个圆;②三角形的外心在三角形的内部;③等腰三角形的外心必在底边的中线上;④菱形一定有外接圆,圆心是对角线的交点。其中假命题有 4、若OP的半径为13,圆心P的坐标为(5, 12 ), 则平面直角坐标系的原点O与OP的位置关系是( ) A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定 5、圆上各点到圆心的距离都等于 , 到圆心距离等于半径的点都在 . 6、一个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是__________. 7、如图,AB, CD为⊙O的两条直径,E, F分别为OA, OB的中点,求证:四边形CEDF是平行四边形. 8、⊙0的半径为13cm,圆心O到直线l的距离d=OD=5cm.在直线l上有三点P,Q,R,且PD = 12cm, QD<12cm, RD>12cm,则点P在,点Q在,点R在 . 9、如图,点A,D,G,M在半圆上,四边形ABOC, DEOF,HMNO均为矩形,BC=a,EF=b, NH=C,则a,b,c有什么关系? 10、⊙0的半径为2,点P到圆心的距离OP=m, 且m使关于二的方程2x2-22x+m-1=0有实根,试确定点P 的位置. 11、如图,点P的坐标为(4,0),圆P的半径为5,且圆P与x轴交于点A,B,与y轴交于点 C,D, 试求出点A , B,C,D的坐标.12、下列说法正确的是( ) A.一个点可以确定一条直线 B.两个点可以确定两条直线 C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆 13、直角三角形两直角边长分别为3和l,那么它的外接圆的直径是( ) 14、下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整. 15、_______ 三角形的外心在它的内部,_______三角形的外心在它的外部;直角三角形的外心在 ______________. 16、下列命题正确的个数有( ) ①矩形的四个顶点在同一个圆上;②梯形的四个顶点在同一个圆上; ③菱形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上. A. 1个 B. 2个 C. 3个 D. 4个 17、在Rt△ABC中,AB=6 , BC=8,那么这个三角形的外接圆直径是() A. 5 B.10 C.5 或4 D. 10或8 18、已知等腰三角形ABC中,AB=AC,O是ABC ?的外接圆,若O的半径是4,120 BOC ∠=,求AB的长. 19、如图所示,平原上有三个村庄A、B、C,现计划打一口水井p,使水井到三个村庄的距离相等。 (1)在图中画出水井p的位置; (2)若再建一个工厂D,使工厂D到水井的距离等于水井到三个村庄的距离,且工厂D到A、C两个村庄的距离相等,工厂D应建在何处?请画出其位置. .A

各种圆定理总结.

费尔巴赫定理 费尔巴赫定理三角形的九点圆与内切圆内切,而与旁切圆外切。 此定理由德国数学家费尔巴赫(K·W·Feuerbach,1800—1834)于1822年提出。 费尔巴赫定理的证明 在不等边△ABC中,设O,H,I,Q,Ia分别表示△ABC的外心,垂心,内心,九点圆心和∠A所对的旁切圆圆心.s,R,r,ra分别表示△ABC的半周长,外接圆半径,内切圆半径和∠A 所对的旁切圆半径,BC=a,CA=b,AB=c. 易得∠HAO=|B-C|,∠HAI=∠OAI=|B-C|/2; AH=2R*cosA,AO=R,AI=√[(s-a)bc/s],AIa=√[sbc/(s-a)] 在△AHI中,由余弦定理可求得: HI^2=4R^2+4Rr+3r^2-s^2; 在△AHO中,由余弦定理可求得: HO^2=9R^2+8Rr+2r^2-2s^2; 在△AIO中,由余弦定理可求得: OI^2=R(R-2r). ∵九点圆心在线段HO的中点, ∴在△HIO中,由中线公式可求得. 4IQ^2=2(4R^2+4Rr+3r^2-s^2)+ 2(R^2-2Rr)-(9R^2+8Rr+2r^2-2s^2) =(R-2r)^2 故IQ=(R-2r)/2. 又△ABC的九点圆半径为R/2, 所以九点圆与内切圆的圆心距为 d=R/2-r=(R-2r)/2=IQ. 因此三角形的九点圆与内切圆内切。 在△AHIa中,由余弦定理可求得: IaH^2=4R^2+4Rr+r^2-s^2+2(ra)^2; 在△AOIa中,由余弦定理可求得: IaO^2=R(R+2ra). 在△HIaO中,由中线公式可求得. 4IaQ^2=2(4R^2+4Rr+r^2-s^2+2ra^2)+2(R^2+2Rra)-(9R^2+8Rr+2r^2-2s^2)=(R+2ra) ^2 故IaQ=(R+2ra)/2.

初中圆定理和公式汇总

4圆是定点的距离等于定长的点的集合 5圆的内部可以看作是圆心的距离小于半径的点的集合 6圆的外部可以看作是圆心的距离大于半径的点的集合 7同圆或等圆的半径相等 8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 12 ①直线L和⊙O相交d<r ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r 13切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 14切线的性质定理圆的切线垂直于经过切点的半径 15推论1 经过圆心且垂直于切线的直线必经过切点 16推论2 经过切点且垂直于切线的直线必经过圆心 17切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18圆的外切四边形的两组对边的和相等 19弦切角定理弦切角等于它所夹的弧对的圆周角 20推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 31推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 32切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 33推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 34如果两个圆相切,那么切点一定在连心线上 35 ①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r) ④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 36定理相交两圆的连心线垂直平分两圆的公共弦 37 定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 38定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

一些圆的性质及定理

一些圆的性质及定理 圆的基本性质 平面上到定点距离等于定长的点的集合 周长2πr(滚一圈),面积πr2(微元法) 切、割、弦、角 切线长定理 1)若已知圆的两条切线相交,则切线长相等; 2)若已知两条切线平行,则圆上两个切点的连线为直径; 3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形; 4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补; 5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 圆周角定理 圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半。(连接圆心和三点,利用等腰三角形。同时定理说明同一条弧所对的圆周角是相等的) 弦切角定理 弦切角等于它所夹的弧所对的圆心角的一半,等于它所夹的弧所对的圆周角。(利用切点半径垂直于切线和半径相等构成等腰三角形) 圆内角和相交弦定理 1)圆内角:圆的两条弦在圆内相交所成的角叫做圆内角。 2)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。(对两个对顶圆内角作所在的三角形证相似) 切割线定理 切割线定理是指从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。(通过连接切点和割线与圆的交点,利用弦切角定理证明相似) 圆外角和割线定理 1)圆外角:过圆外一点作圆的两条割线所成的角叫做圆外角。 2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 (过圆外角定点作圆切线,用两次切割线定理) 圆幂定理 过一定点P作直线交⊙O于两点,点P与两交点所成线段长度乘积等于|OP2-r2|。(该定理是相交弦、切割线和割线定理的统一,可以分情况一一证明) 圆和三角形 三角形内心和内切圆 1)内心:三个内角角分线交点,记I 内心到三边距离相等(AAS),记r 2)内切圆:以内心为圆心半径为r的圆 三边所在直线为内切圆切线。

数学定理【圆,三角形】

数学定理【圆,三角形】 1. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角 形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点. 2. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心. 3. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以 及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半; (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点; (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕. 4. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上. 5. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr . 6. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. 7. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ; (2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ????===3 1 ; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则 ①222222 333GC AB GB CA GA BC +=+=+; ②)(3 12 22222CA BC AB GC GB GA ++=++; ③2 2222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点); ④到三角形三顶点距离的平方和最小的点是重心,即2 22GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 8. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (C c B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍; (2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上; (3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆; (4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.

九年级数学圆幂定理及相似天天训练1(有答案)

圆幂定理专题训练一 班级:九()班学生姓名:家长签名:

222PA PB PC PD PT OP R ?=?==- 由于PA PB ?均等于22OP R -,为一常数,叫做点P 关于⊙O 的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理. 1.如图,⊙O 的弦AB 、CD 相交于点P ,若AP=3,BP=4,CP=2,则CD 长为( ) A .6 B .12 C .8 D .不能确定 2.如图,矩形ABCD 为⊙O 的内接四边形,AB=2,BC=3,点E 为BC 上一点,且BE=1, 延长AE 交⊙O 于点F ,则线段AF 的长为( ) 755135 3.如图,过点P 作⊙O 的两条割线分别交⊙O 于点A 、B 和点C 、D ,

A.3 B.7.5 C.5 D.5.5 4.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB、BC分别交于点D、E. 求AB、AD的长. 圆幂定理专题训练二 班级:九()班学生姓名:家长签名: 1.如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm, 求⊙O的半径. 2.如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC等于() A.2 B.3 C.4 D.5 3.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D, 若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是() A.B.C.D. 4.如图所示,已知⊙O中,弦AB,CD相交于点P,AP=6,BP=2,CP=4,则PD的长是() A.6 B.5 C.4 D.3

(答案)奥赛经典-奥林匹克数学中的几何问题---第七章九点圆定理及应用答

第七章九点圆定理及应用 习题A 1.设POP '是ABC △的外接圆(圆心为O )的直径,关于P 点的西姆松线为1l ,关于P '点的西姆松线为2l 因为1l 与2l 的交角可以? 12 PP '度量,从而1l 与2l 的交角为直角.设H 为ABC △的垂心,则1l 和2l 分别经过PH ,P H '的中点Q ,Q ',而Q 和Q '在ABC △的九点圆上,H 点是三角形的九点圆和外接圆的 外 位似中心,线段QQ '是线段PP '的位似图形,从而QQ '是九点圆的直径,故1l 与2l 的交点在ABC △的九点圆上. 2.连AG 并延长交BC 于L ,则A 在ABC △的外接圆上,L 在ABC △的九点圆上,又G 是ABC △的 外接圆与九点圆的内位似中心,且位似此为21∶.而21PG GQ =∶∶,且P 点在外接圆上,则Q 点必在九点圆上. 3.设I ,O ,H ,V 分别为ABC △的内心、外心、垂心及九点圆圆心,R ,r ,ρ分别为ABC △外接圆、内切圆、九点圆的半径,A I ,A ρ分别为在BC 边外侧相切的旁切圆圆心和半径,则由心距公式,有222OI R Rr =-,2222IH r R ρ=-,224OH R R ρ=-. 注意到V 为OH 的中点,由斯特瓦尔特定理的推论(即三角形中线长公式),有 ()2 2 22222111242VI VI HI VH R Rr r R r ?? =+-=-+=- ??? ,即12VI R r =-.故九点圆与内切圆相内切. 同理,2 2 2A A OI R R ρ=+,得2 21 12A VI R ρ?? =+ ??? ,即有112VI R ρ=-,故九点圆与此旁切圆相外切. 同理,可证九点圆与其他两个旁切圆相外切. 4.设G 是ABC △的重心,V 是九点圆的圆心,O 和V 对于G 和H 是共线且调和共轭的,考察以O 点 为起点的向量,则33332OA OB OC OH OG OA OB OC ??==++=++ ? ???u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r .因此3OH OA OB OC R ++=≤u u u u r u u u r u u u r u u u r ,仅当A B C ==时等号成立,这是不可能的.故3OH R <. 5.设O ,H 分别为ABC △的外心与垂心,I ,1I ,2I ,3I 分别为ABC △的内心和三个旁心,由于H ,A ,B ,C 构成一老垂心组(四点中,任一点是另三点构成的三角形的垂心,此四点为垂心组);I 与1I ,2I ,3I 构成一新垂心组,又ABC △的外接圆是123I I I △的九点圆,从而123I I I △的外心O '是关于O 的I 的对称点. 其余以此类似地推证,从而新垂心组各点与老垂心组各点关于123I I I △的九点圆的圆心对称. 习题B 1.(1)设E ,F 分别是边BA 的延长线,CA 的延长线上的点,由旁心的定义,知A I A 平分BAC ∠,B I A 平分CAE ∠,C I A 平分BAF ∠.又BAF CAE ∠=∠,从而有B I ,A ,C I 三点共线,且A B C I A I I ⊥.

九年级数学:定理、公式汇编

九年级数学定理、公式汇编 一、数与代数 1. 数与式 (1) 实数 实数的性质:①实数a 的相反数是—a ,实数a 的倒数是 a 1 (a ≠0); ②实数a 的绝对值:?? ? ??<-=>=)0()0(0)0(a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。 二次根式: ①积与商的方根的运算性质: b a ab ?=(a ≥0,b ≥0); b a b a =(a ≥0,b >0); ②二次根式的性质:? ??<-≥==)0() 0(2 a a a a a a (2)整式 ①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=?(m 、n 为正整数); ②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a ≠0,m 、n 为正 整数,m>n ); ③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数); ④零指数:10 =a (a ≠0); ⑤负整数指数:n n a a 1=-(a ≠0,n 为正整数);或 n n a a ?? ? ??=-1(当a 是分数时) ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即2 2 ))((b a b a b a -=-+; ⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即 2222)(b ab a b a +±=±;或写成:ab b a b a 2)(222±+=±

分式 ①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即 m b m a b a ??= ;m b m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bd ac d c b a =?; ③分式的除法法则:)0,0(≠≠=?=÷c b bc ad c d b a d c b a ; ④分式的乘方法则:n n n b a b a =)((n 为正整数); ⑤同分母分式加减法则:c b a c b c a ±= ±; ⑥异分母分式加减法则:bc cd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02 =++c bx ax (a ≠0)的求根公式:)04(242 2≥--±-= ac b a ac b b x ②一元二次方程根的判别式:ac b 42-=?叫做一元二次方程02 =++c bx ax (a ≠0)的根的判别 式: ?>?0方程有两个不相等的实数根;a ac b b x 242-±-= ?=?0方程有两个相等的实数根;a b x x 221-== ?

定理

推荐内容:数学手册目录 1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分. 4、四边形两边中心的连线与两条对角线中心的连线交于一点. 5、间隔地连接六边形的边的中心所作出的两个三角形的重心是重合的. 6、三角形各边的垂直平分线交于一点. 7、三角形的三条高线交于一点. 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL. 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上. 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上. 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上. 12、库立奇·大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆. 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: r=(p?a)(p?b)(p?c)p?????????????????√ p为三角形周长的一半. 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点. 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有 AB2+AC2=2(AP2+BP2). 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有

nAB2+mAC2=(m+n)AP2+mn(m+n) BC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD. 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上. 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD. 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形. 21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形. 22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形. 23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有 BP PC?CQ QA?AR RB=1 24、梅涅劳斯定理的逆定理:(略) 25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C 的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线. 26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则 BP PC?CQ QA?AR RB=1 28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M.

九年级《圆》垂径定理练习及答案

九年级《圆》垂径定理练习 一、选择题 1. 在Rt△ABC,∠C=90°,BC=5,AB=13,D是AB的中点,以C为圆心,BC为半径作⊙C,则⊙C与点D的位置关系是() A. D在圆内B.D在圆上C.D在圆外D.不能确定2.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶角的距离相等;④半径相等的两个半圆是等弧.其中正确的有() A.4个B.3个C.2个D.1个 3.下面的四个判断中,正确的一个是() A.过圆内的一点的无数条弦中,有最长的弦,没有最短的弦; B.过圆内的一点的无数条弦中,有最短的弦,没有最长的弦; C. 过圆内的一点的无数条弦中,有一条且只有一条最长的弦,也有且只有一条最短的弦; D.过圆内的一点的无数条弦中,既没有最长的弦,也没有最短的弦. 4.下列说法中,正确的有()①菱形的四个顶点在同一个圆上;②矩形的四个顶点在同一个圆上; ③正方形四条边的中点在同一个圆上;④平行四边形四条边的中点在同一个圆上. A.1个B.2个C.3个D.4个 5.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是() A.AC=CB B. C. D. OC=CN 6.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 c() A. B . C. 8 cm D . 7.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径等于() A.6 cm B .C.8 cm D . 8.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4,CE=2,那么⊙O 的半径等于()A. 5 B. C. D. 9. 如图所示,AB是⊙O的一固定直径,它把⊙O分成上、下两个半圆,自 上半圆上一点C作弦CD⊥AB.∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变 C. 等分D.随C点的移动而移动 10. 如图所示,同心圆中,大圆的弦AB交小圆于C、D两点,且AC=CD ,AB 的弦心距等于CD的一半。则这两个同心圆的大小圆的半径之比() A. 3:1 B. C. D. 二、填空题 11.半径为5 cm的定圆O中,长度为6 cm的弦的中点的集合是______.

相关主题
相关文档
最新文档