数值分析试题及答案

数值分析试题及答案
数值分析试题及答案

数值分析试题

一、 填空题(2 0×2′)

1.

??

????-=?

?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,

f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,

‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该

迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公

式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n

i i x a 0)( 1 ;所以

当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使

20的近似值的相对误差小于%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收

敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残

差r i= (b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。13.在非线性方程f(x)=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f(x)

的二阶导数不变号,则初始点x0的选取依据为f(x0)f”(x0)>0 。

14.使用迭代计算的步骤为建立迭代函数、选取初值、迭代计算。

二、判断题(10×1′)

1、若A是n阶非奇异矩阵,则线性方程组AX=b一定可以使用高斯消元法求解。( × )

2、解非线性方程f(x)=0的牛顿迭代法在单根x*附近是平方收敛的。

( ? )

3、若A为n阶方阵,且其元素满足不等式

则解线性方程组AX=b的高斯——塞德尔迭代法一定收敛。 ( × )

4、样条插值一种分段插值。 ( ? )

5、如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。 ( ? )

6、从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误差及

舍入误差。( ? )

7、解线性方程组的的平方根直接解法适用于任何线性方程组AX=b。 ( × )

8、迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步迭

代计算的舍入误差。 ( × ) 9、数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是截断

误差=舍入误差。 ( ? )

10、插值计算中避免外插是为了减少舍入误差。 ( × )

三、计算题(5×10′)

1、用列主元高斯消元法解线性方程组。

解答:

(1,5,2)最大元5在第二行,交换第一与第二行:

L

21=1/5=,l

31

=2/5= 方程化为:

(,)最大元在第三行,交换第二与第三行:L32==,方程化为:

回代得:

???

??-===00010.1 99999.500005.33

21x x x 2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式P 4(x ),并写出其截断误差的表达式(设f (x )在插值区间上具有直到五阶连续导数)。

解答: 做差商表

P4(x)=1-2x-3x(x-1)-x(x-1)(x-1)(x-2) R4(x)=f(5)(?)/5!x(x-1)(x-1)(x-2)(x-2)

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代公式,并简单说明收敛的理由。 解答:

交换第二和第四个方程,使系数矩阵为严格对角占优:

雅克比迭代公式: ??????

?=+-=-+=-+-=+-6

5 8 4 3 3 1

2431432321421x x x x x x x x x x x x

《计算机数学基础(2)》数值分析试题

一、单项选择题(每小题3分,共15分)

1. 已知准确值x *与其有t 位有效数字的近似值x =…a n ×10s (a 1?0)的绝对误差

?x *

-x ??( ).

(A) ×10 s -1-t (B) ×10 s -t (C) ×10s +1-t (D) ×10 s +t 2. 以下矩阵是严格对角占优矩阵的为( ).

(A) ????

?????

???------21001210012100

12, (B)?

?

???

????

???2100

141101410125 (C) ??

???????

???--2100

14121241

0125 (D) ??

???

??

??

???-513

114120141112

4 3. 过(0,1),(2,4),(3,1)点的分段线性插值函数P (x )=( )

(A) ???

??≤<+-≤≤+3210320123x x x x (B) ?????≤<+-≤≤+32103201232x x x x

(C) ?????≤<+-≤≤-3210320123x x x x (D) ?????≤<+-≤≤+3

24201

23

x x x x

4. 等距二点的求导公式是( )

(A) ???????-='+-='+++)(1)()(1)(111k k k k k k y y h x f y y h

x f

(B) ???

????

-='-='+++)(1)()(1)(111k k k k k k y y h x f y y h

x f

(C) ???

????-='+-='+++)(1)()(1)(111k k k k k k y y h x f y y h

x f

(D)

5. 解常微分方程初值问题的平均形式的改进欧拉法公式是 那么y p ,y c 分别为( ).

(A) ???+=+=+),(),(1k k k c k k k p y x hf y y y x hf y y (B) ?????+=+=+),()

,(1p k k c k k k p y x hf y y y x hf y y

(C) ?????+=+=),(),(p k k c k k k p y x f y y y x f y y (D) ?????+=+=+),()

,(1p k k c

k k k p y x hf y y y x hf y y

二、填空题(每小题3分,共15分) 6. 设近似值x 1,x 2满足?(x 1)=,?(x 2)=,那么?(x 1x 2)= .

7. 三次样条函数S (x )满足:S (x )在区间[a ,b ]内二阶连续可导,S (x k )=y k (已

知),k =0,1,2,…,n ,且满足S (x )在每个子区间[x k ,x k +1]上是 .

8. 牛顿-科茨求积公式∑?=≈n

k k k b

a x f A x x f 0

)(d )(,则∑=n

k k A 0

= .

9. 解方程f (x )=0的简单迭代法的迭代函数?(x )满足在有根区间内 ,则在有根区间内任意取一点作为初始值,迭代解都收敛.

10. 解常微分方程初值问题的改进欧拉法预报――校正公式是 预报值:),(1k k k k y x hf y y +=+,校正值:y k +1= . 三、计算题(每小题15分,共60分)

11. 用简单迭代法求线性方程组

的X (3).取初始值(0,0,0)T ,计算过程保留4位小数.

12. 已知函数值f (0)=6,f (1)=10,f (3)=46,f (4)=82,f (6)=212,求函数的

四阶均差f (0,1,3,4,6)和二阶均差f (4,1,3).

13.将积分区间8等分,用梯形求积公式计算定积分?+3

12d 1x x ,计算过程保留

4位小数.

14. 用牛顿法求115的近似值,取x =10或11为初始值,计算过程保留4位

小数. 四、证明题(本题10分)

15. 证明求常微分方程初值问题

在等距节点a =x 0

y (x k +1)?y k +1=y k +2

h [f (x k ,y k )+f (x k +1,y k +1)]

其中h =x k +1-x k (k =0,1,2,…n -1)

《计算机数学基础(2)》数值分析试题答案

一、单项选择题(每小题3分,共15分)

1. A

2. B

3. A

4. B

5. D 二、填空题(每小题3分,共15分)

6. ?x 2?+?x 1?

7. 3次多项式

8. b -a 9. ???(x )??r <1 10. y k +)],(),([2

11+++k k k k y x f y x f h hf (x k +1,

1+k y ) .

三、计算题(每小题15分,共60分) 11. 写出迭代格式

X (0)=(0,0,0)T .

得到X (1)=,3,3)T 得到X (2)=, 7, 0)T 得到X (3)= 4, 6, 6)T .

12. 计算均差列给出.

f (0,1,3,4,6)=

15

f (4, 1, 3)=6

13. f (x )=21x +,h =25.08

2=.分点x 0=,x 1=,x 2=,x 3=,x 4=,x 5=,x 6=,x 7=,

x 8=.

函数值:f = 2,f = 8,f = 8,f = 6,f = 1,f = 2,f = 6,f = 2,f = 3.

))]()()()()()()((27654321x f x f x f x f x f x f x f +++++++ (9分)

=

2

25

.0×[ 2+ 3+2× 8+ 8+ 6 + 1+ 2+ 6+ 2)]

=× 5+2× 3)= 1

14. 设x 为所求,即求x 2-115=0的正根.f (x )=x 2-115.

因为f ?(x )=2x ,f ?(x )=2,f (10)f ?(10)=(100-115)×2<0,f (11)f ?(11)=(121

-115)×2>0

取x 0=11.

有迭代公式 x k +1=x k -)

()(k k x f x f '=k k k k k x x x x x 2115

221152

+

=--(k =0,1,2,…) x 1=11

2115

211?+

= 3

x 2=3727.102115

23727.10?+= 8 x 3=

8

723.102115

28723.10?+= 8

x *? 8

四、证明题(本题10分)

15. 在子区间[x k +1,x k ]上,对微分方程两边关于x 积分,得

y (x k +1)-y (x k )=?

+1

d ))(,(k k

x x x x y x f

用求积梯形公式,有

y (x k +1)-y (x k )=))](,())(,([2

11+++k k k k x y x f x y x f h

将y (x k ),y (x k +1)用y k ,y k +1替代,得到

y (x k +1)?y k +1=y k +2

h [f (x k ,y k )+f (x k +1,y k +1)](k =0,1,2,…,n -1)

数值分析期末试题

一、 填空题(20102=?分)

(1)设????

??????---=283012251

A ,则=∞A ______13_______。

(2)对于方程组?

??=-=-34101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ???

???05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的3

1

倍。

(4)求方程)(x f x =根的牛顿迭代公式是)

('1)

(1n n n n n x f x f x x x +--

=+。

(5)设1)(3-+=x x x f ,则差商=]3,2,1,0[f 1 。

(6)设n n ?矩阵G 的特征值是n λλλ,,,21Λ,则矩阵G 的谱半径=)(G ρi n

i λ≤≤1max 。

(7)已知??

?

?

??=1021A ,则条件数=∞)(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2--x x 改写为

)1ln(2++-x x 。

(9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。

(10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(313

1

∑==i i x f y 。

二、

(10分)证明:方程组???

??=-+=++=+-1

2112321

321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。

证明:Jacobi 迭代法的迭代矩阵为

J B 的特征多项式为

J B 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故25.1)(=J B ρ>1,因而迭代

法不收敛性。

三、 (10分)定义内积

试在{}x Span H ,11=中寻求对于x x f =)(的最佳平方逼近元素)(x p 。 解:1)(0≡x ?,x x ≡)(1?,

1),(1

00==

?

dx ??,2

1

),(1

01==

?

xdx ??,3

1

),(1

2

11==

?

dx x ??,3

2),(1

0=

=

?

dx x f ?,5

2),(1

1=

=

?

dx x x f ?。 法方程

解得1540=

c ,15

12

1=c 。所求的最佳平方逼近元素为 x x p 15

12

154)(+=

,10≤≤x 四、 (10分)给定数据表

试用三次多项式以最小二乘法拟合所给数据。 解:332210)(x c x c x c c x y +++=

?????

??

?????????----=84211111000111118421A , ?????

?

??????=

130034003401034010001005A A T 法方程

的解为4086.00=c ,39167.01=c ,0857.02=c ,00833.03=c 得到三次多项式

误差平方和为000194.03=σ

五. (10分) 依据如下函数值表

建立不超过三次的Lagrange 插值多项式,用它计算)2.2(f ,并在假设1)()4(≤x f 下,估计计算误差。

解:先计算插值基函数

所求Lagrange 插值多项式为

12

1445411)(3)(23)(9)()()()(2332103

03+-+-

=+++==∑=x x x x l x l x l x l x l x f x L i i i 从而0683.25)2.2()2.2(3=≈L f 。

据误差公式))()()((!

4)

()(3210)4(3x x x x x x x x f x R ----=

ξ及假设1)()4(≤x f 得误差估计:

六. (10分) 用矩阵的直接三角分解法解方程组

解 设

由矩阵乘法可求出ij u 和ij l 解下三角方程组

有51=y ,32=y ,63=y ,44=y 。再解上三角方程组

得原方程组的解为11=x ,12=x ,23=x ,24=x 。

七. (10分) 试用Simpson 公式计算积分 的近似值, 并估计截断误差。

解:

截断误差为

八. (10分) 用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求

81

10--<-k

k k x x x 。

解:此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。设

则 x x f 11)('-

=, 21

)(''x

x f = Newton 法迭代公式为

1)

ln 1(112ln 1-+=

-

---

=+k k k k

k k k k x x x x x x x x , Λ,2,1,0=k 取30=x ,得146193221.34=≈x s 。

九. (10分) 给定数表

求次数不高于5的多项式)(5x H ,使其满足条件 其中,1i x i +-= 3 ,2 ,1 ,0=i 。

解:先建立满足条件

)()(3i x f x p =, 3,2,1,0=i

的三次插值多项式)(3x p 。采用Newton 插值多项式

[][]))((,,)(,)()(1021001003x x x x x x x f x x x x f x f x p --+-+=+

再设 )2)(1()1)(()()(35--+++=x x x x b ax x p x H ,由 得 解得36059-

=a ,360

161

=b 。 故所求的插值多项式

第一章 1、 在下列各对数中,x 是精确值 a 的近似值。 3 .14,7/100)4(143 .0,7/1)2(0031 .0,1000/)3(1 .3,)1(========x a x a x a x a ππ 试估计x 的绝对误差和相对误差。 解:(1)0132.00416 .01.3≈= ≈-= -=a e e x a e r π (2)0011.00143 .0143.07/1≈= ≈-=-=a e e x a e r (3)0127.000004 .00031.01000/≈= ≈-=-=a e e x a e r π (4)001.00143 .03.147/100≈= ≈-=-=a e e x a e r 2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。 解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2 x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2 x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10 -4 x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5 由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σn i=1∣?f/?x i ∣δx i e r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1 x 2δx 3] =0.34468/88.269275 =0.0039049 e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3 / x 1δx 4] =0.501937 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。 解:设=()u f x , ()()()()() ()||||||||||()||()|| | |()||()||||r r r x e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ= ≈==≤ ()||10.2 (())| |()||ln ln ln r r r r df x x x x f x x x dx u x x x x δδδδ==??==

第九章习题解答 1.已知矩阵????? ???????=??????????=4114114114,30103212321A A 试用格希哥林圆盘确定A 的特征值的界。 解:,24)2(, 33)1(≤-≤-λλ 2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞, 试证明特征值的估计式∑≠=≤-n i j j ij ii a a 1λ. 解:,x Ax λ = ∞∞∞∞≤==x A x x Ax i λλ 由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11 j n j i i ij i ii x a x a ∑≠==-1)(λ j n j i i ij j n j i i ij i ii x a x a x a ∑∑≠=≠=≤=-11λ ∑∑≠=≠=≤≤-n j i i ij i j n j i i ij ii a x x a a 11λ 3.用幂法求矩阵 ???? ??????=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[2,3,2;10,3,4;3,6,1]; for k=1:100 y=A*z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end

z=y/c if abs(c-d)<0.0001,break; end d=c end 11.0000 =c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)=========== 强特征值为11,特征向量为T 0.7500) 1.0000 0.5000(。 4.用反幂法求矩阵???? ??????=111132126A 最接近6的特征值和特征向量,迭代初值取 T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[6,2,1;2,3,1;1,1,1]; for k=1:100 AA=A-6*eye(3); y=AA\z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end z=y/c; if abs(c-d)<0.0001,break; end d=c end d=6+1/c

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****1 2 3 4 5 1.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234 ,,,x x x x 均为第3题所给 的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设0 28,Y =按递推公式 11 783100 n n Y Y -=( n=1,2,…) 计算到100Y .若取78327.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字78327.982). 8. 当N 充分大时,怎样求2 11N dx x +∞ +?? 9. 正方形的边长大约为100㎝,应怎样测量才能

使其面积误差不超过1㎝2 ? 10. 设212 S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1 101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 21)f =,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 63 22)70 2. (21)(322)--++ 13. 2 ()ln(1)f x x x =-,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 2 2 ln(1)ln(1)x x x x -=-+ 计算,求对数时误差有多大? 14. 试用消元法解方程组 {101012121010;2. x x x x +=+=假定只用 三位数计算,问结果是否可靠? 15. 已知三角形面积 1 sin ,2 s ab c = 其中c 为弧 度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证明面积的误差s ?满足 .s a b c s a b c ????≤++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

()()()()()()()()()收敛较慢 代入上式得:将解: 收敛速度次并分析该迭代公式的迭代的根求方程 取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+?+?? ? ??===++= =∴++= ==-++=++=++014.01022220||10 2202613381013202132020 132010212010220. 2.0 20102110220 4.1222 222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ?????? )))()()()[]()()[])49998.0cos 215.0cos 2 1,022,00cos 2 102 12,0210,2,0.cos 2 10sin 2 11,cos 2 113cos 2 12; 1.0cos 2 12.4120101==== ==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则 取上有一个根在所以上在为单调递增函数故则令解: 位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ

500 .0105.0102.0||3412≈*?

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试 指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -= ( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求 211N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的 绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y ≈(三位有效数

字),计算到10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大? 若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大? 14. 试用消元法解方程组 { 101012121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin ,2s ab c = 其中c 为弧度, 02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ???证明面积的误差s ?满足 .s a b c s a b c ????≤++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令 20000112111 2 1 ()(,,,,)11 n n n n n n n n n x x x V x V x x x x x x x x x x ----== 证明()n V x 是n 次多项式,它的根是01,,n x x - ,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=-- . 2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式. 3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.

第二章习题解答 1. ( 1) R n Xn中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。 (2)R n Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是 封闭的。 -1 设A是nXn的正交矩阵。证明A也是nXn的正交矩阵。 证明:⑴证明:A为上三角阵,B为上三角阵,A, B R n n a ij 0(i j ), b ij 0(i j) n C AB 则G j a ik b kj, C j 0(i j) k1 上三角阵对矩阵乘法封闭。 以下证明:A为正交矩阵,B为正交矩阵,A,B R n n AA T A T A E,BB T B T B E (AB)((AB)T) ABB T A T E,( AB)T(AB) B T A T AB E AB为正交矩阵,故正交矩阵对矩阵乘法封闭。 (2) A是nXn的正交矩阵 A A-1 =A-1A=E 故(A-1) -1 =A A-1(A1) -1= (A-1) -1A-1 =E 故A-1也是nXn 的正交矩阵。 设A是非奇异的对称阵,证A也是非奇异的对称阵。 A非奇异.A可逆且A-1非奇异 又A T=A .( A-1)T=( A T)-1=A-1 故A-1也是非奇异的对称阵 设 A 是单位上(下)三角阵。证A-1也是单位上(下)三角阵。 -1 证明:A是单位上三角阵,故|A|=1 ,.A可逆,即A存在,记为(b ij ) n Xn n 由 A A =E,则a j b jk ik (其中a ij 0 j >i 时,1) j1 故b nn=1, b ni=0 (n 丰 j) 类似可得,b ii =1 (j=1 …n) b jk=0 (k > j) 即A-1是单位上三角阵 综上所述可得。F t Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。 2、试求齐次线行方程组Ax=0 的基础解 系。 1 21 41 A= 0 11 00

第八章习题解答 3、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =产生的迭代序列{}0k k x ∞=对任意的初值0(,)x ∈-∞+∞,当20M λ<<时,均收敛于方程的根。 证明: 设()()x x f x ?λ=-,可知()x ?在(,)-∞∞上可导 对于任意给定的λ值,满足条件'0()m f x M <≤≤时 (1)''()1()x f x ?λ=- 则1'()11M x m λ?λ-≤≤-< 又20M λ<<,M>0 则02M λ<<时,11M λ-<- 所以11'()11M x m λ?λ-<-≤≤-< 若令max{1,1}L M m λλ=--,则可知'()1x L ?≤< (2)由0()(0)'()(0)'()x x x dx x ?????ε=+=+? 则()lim 1x x L x ?→∞??≤< ??? 所以,存在一个数a ,当x a >时,()x x ?< 同时,()x ?在[,]a a -内有界,即存在0b >使得[,]x a a ?∈-,()x b ?< 我们选取 max{,}c a b =,则对任意x 有0()max{,}x c x ?< 则对给定的任意初值0x ,设0max{,}d c x = 则0[,]x d d ∈-,于是在区间[,]d d -上有()x d ?< 即满足映内性 有(1)、(2)可知,()x ?满足收敛定理 迭代序列0{}k k x ∞=收敛于方程的根 6. 给出计算...222+++=x 的迭代格式,讨论迭代格式的收敛性,并证明2=x 解:构造迭代格式10,1,2,k x k +==??? 2k x ≤ 令()x ?=x ?∈?时,()x ??∈? '() x ?=,当x ?∈?时,1 '()12x ?<<

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解:(1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用123134,,x x x ===,1239156,,y y y ===构造如下差商表: 于是可得插值多项式: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 150 1511751350656304 .(.)(..).R -= -=-◆ 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑

第八章习题解答 1、已知方程3210x x --=在 1.5x =附近有根,将方程写成以下三种不同的等价形式: ①2 11x x =+ ;②x = x =试判断以上三种格式迭代函数的收敛性,并选出一种较好的格式。 解:①令121()1x x ?=+ ,则'132()x x ?=-,' 13 2(1.5)0.592611.5?=≈<,故迭代收敛; ②令2()x ?=2' 2 32 2()(1)3 x x x ?-=+,'2(1.5)0.45581?≈<,故迭代收敛; ③令3()x ?= '3()x ?=,' 3(1.5) 1.41421?≈>,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k = 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。 证明:设()()x x f x ?λ=-,则''()1()x f x ?λ=-,故'1()1M x m λ?λ-<<-,进而可知, 当2 0M λ<< 时,'1()1x ?-<<,即'()1x ?<,从而由压缩映像定理可知结论成立。 3、试分别用Newton 法和割线法求以下方程的根 cos 0x x -= 取初值010.5,4 x x π == ,比较计算结果。 解:Newton 法:1230.75522242,=0.73914166,=0.73908513x x x =; 割线法:23450.73638414,=0.73905814,=0.73908515,=0.73908513x x x x =; 比较可知Newton 法比割线法收敛速度稍快。 4、用嵌套算法求下列方程的根 ①32250 (1,4)x x x --=∈,取初值0 2.5x =; ②3210x x x ---=,求方程的正根,取初值0 1.5x =。 解:①依代数方程求根的嵌套算法 ()0 1() (0,1,2,) k k k k b x x k c +=-= 其中()() 00 k k b c 与分别由 1(1,2,,1,0) n n i i k i b a b a x b i n n +=?? =+=--?

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

第四章 习题 1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)()()()()? --++-≈h h h f A f A h f A dx x f 1010; (2)()()()()? --++-≈h h h f A f A h f A dx x f 221010; (3)()()()()[]3/3211 121?-++-≈x f x f f dx x f ; (4)()()()[]()()[]h f f ah h f f h dx x f h '0'2/020 +++≈? 解:(1)求积公式中含有三个待定参数,即101A A A ,,-,将()21x x x f ,,=分别代入求积公式,并令其左右相等,得 ()()??? ???? =+=+-=++---3 1121 110132 02h A A h A A h h A A A 解得h A h A A 34 31011===-,。 所求公式至少具有2次代数精度。又由于 ()() ()() 4 4 4 3 33 3 3 33h h h h dx x h h h h dx x h h h h ? ?--+ -≠ +-≈ 故()()()()? --++-≈h h h f A f A h f A dx x f 1010具有三次代数精度。 (2)求积公式中含有三个待定系数:101A A A ,,-,故令公式对()2 1x x x f ,,=准确成立,得()()??? ???? =+=+-=++---3 1121110131604h A A h A A h h A A A ,解得h h h A h A h A A 34 316424381011-=- =-===-, 故()()()[]()03 43 822hf h f h f h dx x f h h - +-≈ ? - 因()?-=h h dx x f 220 而 ()() []03 83 3 =+-h h h 又[ ]4 45 5 6224 3 83 165 2h h h h h dx x h h += ≠= ? -

第一章绪论 设x>0,x 的相对误差为{,求Inx 的误差. 设x 的相对误差为2%,求x"的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: X ; = 1.1021, Xo = 0.031,%3 = 385.6, x ; = 56.430, x ; = 7x1.0. 利用公式(3.3)求下列各近直的误差限: 计算到Zoo .若取^783 ^27. 982 (五位有效数字),试问计算乙。。将有多大误差? 求方程 X 2-56X + 1 = 0的两个根,使它至少具有四位有效数字(^783 ~27. 982). 当川充分大时,怎样求加1 + f ? 正方形的边长大约为100 cm,应怎样测量才能使其面积误差不超过1 cm? ? 设 2 假定&是准确的,而对r 的测量有±0.1秒的误差,证明当打曾加时S 的绝 对 误差增加,而相对误差却减小. 序列}满足递推关系儿=1°儿-一1 (n=l, 2,…),若% =血心141 (三位有效数字), 计算到 X 。时误差有多大?这个计算过程稳定吗? 计算/ = (V2-1)6;取迈心1.4,利用下列等式计算,哪一个得到的结果最好? /?(x) = ln(x -二I),求并30)的值.若开平方用六位函数表,问求对数时误差有多大?若 改用另 一等价公式 ln(%_ Jx 2 -1) = _ln(x + yjx 2 +1) 计算.求对数时误差有多大? (x 1+101°^2=1010; 已知三角形面积 2 其中c 为弧度, 2,且测量a ,b ,c 的误差分别为 △a,血Ac.证明面积的误差Av 满足 S = -gt 试用消元法解方程组 假定只用三位数计算,问结果是否可靠 ? 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 设人=28,按递推公式

相关文档
最新文档