大肠杆菌表达系统的研究进展综述

大肠杆菌表达系统的研究进展综述
大肠杆菌表达系统的研究进展综述

基因工程制药综述

班级:生技132

姓名:

学号:

大肠杆菌表达系统的研究进展综述

自上世纪 70 年代以来, 大肠杆菌一直是基因工程中应用最为广泛的表达系统。尽管基因工程表达系统已经从大肠杆菌扩大到酵母、昆虫、植物及哺乳动物细胞,并且近年来出现了很多新型的真核表达系统, 但是大肠杆菌仍然是基因表达的重要工具。尤其是进入后基因组时代以来, 有关蛋白结构以及功能研究的开展 ,对基因表达的要求更高,这时大肠杆菌往往是表达的第一选择。文章综述了近年来有关大肠杆菌表达载体及宿主细胞的改造工作。

1 表达载体

1. 1 表达调控

构建有效的表达载体是表达目的基因的基本要求, 同时也是影响基因表达水平以及蛋白活性的重要因素。标准的大肠杆菌表达载体的主要组成: 启动子、操纵子、核糖体结合位点、翻译起始区、多克隆位点、终止子、复制起点以及抗性筛选因子等。理想的表达载体要求在转录和翻译水平上可以控制目的基因的表达 ,然而目的基因在宿主体内过分表达(选用较强的启动子等)会对宿主造成压力, 引起相关的细胞应答反应, 影响蛋白的活性等。基因组、 RNA 转录组、蛋白质组、代谢调控组等领域的研究成果给我们提供了大量关于基因表达调控的信息[ 1]。现已能从基因和细胞的整体水平来方便地选择合适的启动子或合理开发新的载体系统。譬如 Lee 等利用二维凝胶电泳法比较了重组载体和空载体被分别转入宿主细胞后蛋白组学的差异,发现两者都产生了大肠杆菌热休克蛋白并引起了 cAMPCRP 调节蛋白的应答, 其中重组子的影响更为强烈;另外, 还发现外源基因的表达使宿主核糖体合成速率、翻译延长因子和折叠酶表达水平、细胞生长率下降 , 而使细胞呼吸活力上升[ 2]。目前应用的表达载体主要问题是表达过程中出现的全或无的情况, 通常表达的培养物都是非纯种的细胞群, 其中有一些细胞可以最大限度地被诱导,而另一些细胞在诱导后基因的表达被关闭。分离具有合适强度启动子及翻译速率的载体变种可以优化表达水平,说明启动子的选择对于基因的诱导表达非常重要。 Deborahat 提出在芯片上排列具有不同强度级别启动子的载体进行互补分析, 可能有助于筛选最为适合的启动子[3]。开发非 IPTG 或阿拉伯糖诱导的载体也可以提高基因表达水平, Qing 等利用 cspA 基因的独特性开发了一系列冷休克表达载体 pCold, 使目的基因在低温下(<15℃) 诱导表达,提高了产物的溶解性和稳定性[4]。

1. 2 融合表达载体

除了表达载体的调控性,为了提高蛋白产物的活性以及简化下游纯化的操作等 ,往往在表达载体上插入其它辅助的基因序列与目的基因构成融合蛋白表达。融合信号肽(PelB、Om pA 、MalE、PhoA 等)表达可以使融合蛋白通过经典的 Sec 途径分泌到周质或胞外表达, 有利于形成二硫键以及避免胞质蛋白酶的水解和 N 端甲硫氨酸的延伸。另外,最近开发的双

精氨酸转运体系(Tat)可以有效分泌正确折叠的重组蛋白[5]。常见的纯化标签多根据亲和层析的配体来选择,如 6H is、GST 、CAT 、MBP 等经过一步亲和纯化可以得到均一性较高的产物, 但化学洗脱会对产物的活性产生一定的影响。Ca2+依赖的钙调蛋白结合肽(CBP)和链球菌亲和素结合肽(SBP)作为纯化标签时, 只需要在洗脱液中移去标签依赖的离子或小分子就能实现温和的特异性洗脱[6 ,7]。再者, 应用一些非层析的纯化标签在纯化操作中非常经济实用, 如热敏型的类弹性蛋白多肽 (ELPs)可以使蛋白产物在溶解态和非溶解态之间转变, 后续应用逆转循环的纯化方法可以达到亲和纯化的回收率[8]。另外,在纯化标签与目的蛋白之间插入一些特殊的短肽,同时融合剪切酶可以在纯化操作中利用标签的自剪切直接得到产物蛋白。例如 SrtAc 酶所识别的短肽序列 GTEPL, 在蛋白 N 端依次连接短肽、剪切酶、6His 融合表达,亲和上柱后剪切酶发挥作用使 N 端带有 Gly 的目的蛋白从融合状态中释放出来[9]。噬菌体展示库是表达抗体或其它蛋白库的重要克隆技术, 与之相似将目的基因同适合的锚定序列融合可以使产物蛋白表达到大肠杆菌的表面。大肠杆菌展示所用的融合配体一般为细菌的膜蛋白或跨膜转运体,如 PadL 是大肠杆菌长链脂肪酸的一种外膜转运体蛋白,N 端融合 PadL 表达胞内酶,以全细胞的形式催化反应表现出非常高的稳定性[10] ;Yang 等利用恶臭假单胞菌 Pseudomonas putida 外膜酯酶 EstA 的转运结构域作为表达胞内β-内酰胺酶的锚定基序, 结果表明蛋白展示在细胞膜外并没有影响细胞的活力[11]。

1. 3 共表达载体

很多真核基因表达的产物都必须以多聚复合体的形式组合才能表现出相应的活性, 因此在表达这一类目的基因的时候常构建共表达载体,另外共表达的策略在辅助新生蛋白质的折叠和分泌中也很有意义。Dzinenu 等针对表达异源二聚体构建了可以同 pET 载体共表达的载体 pOKD ,这种载体含有 p15A 复制起点, 所以可以和大多数大肠杆菌表达载体共存于细胞中[12]。细菌释放素蛋白 (BRP)属于细菌中的一类分泌蛋白, 共表达目的蛋白与BRP 可以促进产物直接释放到培养基中[13]。另外,共表达分子伴侣也是促进蛋白正确折叠的手段。目前对于分子伴侣构成的网络模式还处于探索阶段, 研究发现大肠杆菌中常见的分子伴侣 GroEL、H sp 同系物 DnaK 并非细胞内所有蛋白折叠所必需的, 只有同核糖体结合的触发因子协调作用才能促进蛋白的适当折叠[13]。但是, 合理选择个别的分子伴侣共表达可以避免产物在细胞内错误的折叠以及沉积。M arco 等设计了共表达分子伴侣的 3 载体系统, 其中两种载体分别携带不同的分子伴侣, 另外一种载体携带目的基因, 分子伴侣与目的基因被分别独立诱导[14]。 Cpn60 和 Cpn10 是从嗜冷菌中分离的一类分子伴侣, 共表达后可以使大肠杆菌在 4℃低温下生长, 有利于蛋白的正确折叠[15]。与分子伴侣类似, 共表达 DsbA 或 Dsbc 等二硫键相关蛋白可以辅助形成正确的二硫键。

1. 4 双杂交系统

融合表达和共表达的另一个应用是利用双杂交系统研究蛋白质的相互作用。大肠杆菌双杂交系统也是有 3 种载体构成,诱饵蛋白融合表达载体、捕获蛋白融合表达载体和报告基

因表达载体[16]。以 AraC /LexA 双杂交系统为例,诱饵载体的启动子选用 IPTG 诱导的 pT rc, 诱饵蛋白融合在转录激活因子 ArcC 的 N 端表达, 带有卡那霉素的抗性基因; 捕获载体的启动子选择非IPTG 诱导的 pTet,可以在去水四环素的诱导下转录, 捕获蛋白融合在LuxA 操纵子效应物 LuxA 的 N 端, 带有氨苄青霉素的抗性基因; 报告基因 LacZ 的启动子选用大肠杆菌的 araBAD 启动子, 其活性依赖于上游的 AraC 操纵子, 同时在启动子下游安置 3 个定向重复的 LexA 操纵子半位点, 载体带有大观霉素的抗性基因,另外在 AraC 上游插入 4 个串联的 rrnB 终止子,减小转录通读对报告基因活性的背景影响。此 3 载体共表达系统的特点是诱饵蛋白同捕获蛋白分别独立诱导,可以通过控制诱导物的浓度逐步放大杂交蛋白相互作用对报告基因表达的抑制效应。诱饵蛋白与捕获蛋白分别结合在上游和下游的 2 个操纵子上, 如果二者可以发生杂交作用, 则在报告基因的 DNA 链上形成突环, 使 AraC 转录激活效应发生逆转, 所以通过菌落的蓝白斑差异可以筛选出发生相互作用的蛋白质。

1. 5 Univector 系统

通常在构建重组子表达时需要依赖限制性内切酶和连接酶的作有, 进行亚克隆, 而利用同源重组开发的载体可以实现基因的一次性克隆。Univector 表达系统(UPS) 就是这方面较为成功的实例[16]。Univector 系统由两类载体组成(图 1): 一种称为万能的进入载体pUN1, 具有特殊的 loxP 重组序列,通过重组酶 Cre 可以方便地穿梭进入表达载体; 另一种即表达载体 pHOST , 同样具有 loxP 序列, pHOST 是由不同的启动子与融合标签组成的载体系列, 便于高通量筛选蛋白产物。 Univector 系统的特点是平行独立克隆到多载体中, 使之在不同的诱导条件下表达, 大大提高了表达的成功率, 尤其在蛋白组的研究中具有很大的应用潜力[3]。

2 宿主细胞

在大肠杆菌细胞内表达目的基因的主要优势: 一个是宿主的遗传背景比较清楚, 易于控制基因的表达; 另一个是大肠杆菌容易培养, 可以获得较高产量的目的蛋白。但是在商业应用中很多的蛋白产物是真核基因编码, 并且具有高级的三、四级结构, 要求翻译后加工为正确的折叠形式或者糖基化蛋白等。由于大肠杆菌细胞的分子环境和折叠机制等与真核细胞具有很大的差异, 所以在应用大肠杆菌系统表达真核基因时有必要利用代谢工程或进化的方法改造细胞, 解决大肠杆菌表达系统的局限性, 提高产物的活性。

2. 1 代谢工程

载体携带目的基因进入宿主表达会给宿主本身造成代谢上的负担, 影响细胞的生长速率等, 推测可能是因为宿主不能提供足够外源基因表达所需的原料及能量。减轻表达对于宿主的压力可以通过控制质粒的拷贝数或者改变载体的抗性基因,还可以将目的基因直接插入染色体中表达。Flores 等则是将磷酸戊糖途径的代谢关键酶—6磷酸葡萄糖脱氢酶的基因克隆到多拷贝质粒中, 转化大肠杆菌使细胞的生长速率在诱导后得到恢复[17]。除了利用大

肠杆菌的代谢机制改进表达系统 ,另外还可以人为地在大肠杆菌中设计代谢途径, 例如Masip 等设计的二硫键合成途径。在大肠杆菌中催化二硫键形成的是周质蛋白 DsbA ,此蛋白通过膜蛋白 DsbB 得到循环利用。 Masip 等选择硫氧化还原蛋白 TrxA 作为二硫键的供体, 使之在氧化态的胞质内形成二硫键, 通过融合 Tat 特异性前导肽从细胞质转运到周质,使重组蛋白在周质获得二硫键。因此这一途径不依赖 DsbADsbS 体系,仅通过胞内的硫氧化还原蛋白就能形成二硫键,所以可以修复缺失 DsbADsbB 体系的宿主[18]。

2. 2 定向进化

通常重组蛋白对于细胞内的蛋白酶都很敏感,为了避免蛋白酶的作用除了分泌表达外还可以对相关的蛋白酶进行突变,例如筛选缺乏 ATP 依赖的胞内蛋白酶的菌株, 但是对于是否细胞因此而上调其它的蛋白酶浓度还不清楚。另外在周质中的蛋白酶也会降解产物蛋白, DegP 蛋白是存在于细胞周质中的主要蛋白酶, 所以可以应用 degP 失活的宿主表达蛋白。同时,C 端为非极性的蛋白应该在 prc 突变的宿主中表达(Prc 蛋白酶作用于 C 端非极性的蛋白), 或者以 N 端融合形式表达[19]。前文已经提到过选择分子伴侣的问题,利用定向进化的方法分离分子伴侣或折叠因子的变异体,可以针对重组蛋白进行高效的特异性折叠。Weissman 等对大肠杆菌进行多轮的 DNA 改组和筛选,分离出的 GroEL 突变体提高了对绿色荧光蛋白的折叠效率[20]。另外,定向进化的方法还可以扩大大肠杆菌的遗传密码,在蛋白中添加非天然的氨基酸。决定氨酰 tRNA 合酶催化 tRNA 携带正确氨基酸的因素是不同于氨酰化位点的一个编辑位点。通过对染色体的随机诱变,筛选出一类突变体可以催化 tRNAVal 结合Ser,并且20%细胞内的 Val都被类似于 Ser 的氨基丁酸取代[21] 。 Schultz 等向大肠杆菌中引入一对特殊的 tRNA /氨酰 tRNA 合酶, 掺入对琥珀密码子应答的甲基化酪氨酸, 在表达二氢叶酸还原酶的实验中发现,由于非天然氨基酸的存在使基因翻译的保真度达到99%[22]。

2. 3 蛋白质的糖基化

很长时间以来 , 大肠杆菌被认为不能表达糖基化蛋白,因为原核细胞普遍缺乏糖基化功能。而在真核细胞中,大多数分泌蛋白都在翻译后加工过程中获得 N 端的寡糖链。寡糖(Glc3Man9GlcAc2)被类脂运载体转运到蛋白的 N 端, 由寡糖转运酶催化寡糖与天冬酰氨或丝氨酸/苏氨酸残基形成 N 连接或 O 连接。空肠弯曲杆菌(Campylobacter jejuni)是目前发现的唯一具有类似真核糖基化代谢功能的原核生物, 其基因组中的 pgl 基因簇编码的蛋白类似于真核细胞中的糖基转移酶。Wacker 等将空肠弯曲杆菌的糖基化基因克隆到大肠杆菌中表达,结果 pgl 编码的蛋白 PglB 可以指导质粒编码的 AcrA 蛋白的糖基化。通过对表达产物的分析发现, 大肠杆菌与真核细胞表达的糖蛋白在寡糖链组成上没有相似性, 但是同样与 AsnXaaSer /Thr 的氨基酸残基结合[23]。Schultz 等将进化突变的方法应用于蛋白的翻译后加工中, 结果获得了高产率的糖基化的肌红蛋白。他们从甲烷球菌中分离出酪氨酸 tRNA 合酶 TyrRSs基因,在活性位点进行随机突变, 经过几轮阳性和阴性筛选后得到对

β-乙酰氨基葡萄糖-丝氨酸具有特异性的 TyrRSs。这种氨酰 tRNA 合酶可以对琥珀密码子TAG 应答催化形成 tRNATyrβGlcNAc 对; βGlcNAc 的掺入为蛋白的糖基化提供了初级的糖基化位点, 可以被糖基转运酶识别进一步合成复杂的糖链。这种方法也可以应用于其它的翻译后加工中 ,包括蛋白的甲基化、磷酸化、乙酰化等[24]。基因的表达过程是一个复杂的过程, 涉及基因的转录、翻译、翻译后加工、细胞的代谢以及细胞内基因与蛋白、蛋白与蛋白之间的相互作用。进入后基因时代之后, 大肠杆菌首先被选作研究蛋白组学、基因功能、蛋白质网络等新课题的模型, 揭示了很多基因表达的未知领域, 同时提供了更多发展大肠杆菌表达系统的依据。伴随分子生物学新技术的涌现,大肠杆菌势必在实验研究及工业生产重组蛋白的应用中发挥出更大的作用。

参考文献

[1] Reed J L, Palsson B. T hirteen Years of Building ConstraintBased In Silico Models of Escherichia coli [ J] . Journal of Bacteriology , 2003,185(9):2692. [2] Lee P S, Lee K H. Escherichia ColiA Model System That Benefits From and Contributes to the Evolution of Proteomics [ J] . Biotechnol Bioeng , 2003,84(7):801. [ 3] Berthold D A, Stenmark P, Nordlund P. Screening for functional expression and overexpression of a family of diironcontaining interfacial membrane proteins using the univector recombination sy stem [ J ] . Protein Science, 2003,12:124.

[ 4] Qing G, Ma L, Khorchid A, et al. Coldshock induced highyield protein production in Escherichia coli [ J]. NatureBiotechnology, 2004,22: 877.

[5] Choi J H, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli [ J]. Appl Microbiol Biotechnol, 2004,64(5):625.

[6] Egorov M V, Tigerstrom A, Pestov N B, et al. Purification of a recombinant membrane protein tagged with a calmodulinbinding domain : properties of chimeras of the Escherichiacoli nicotinamide nucleotide transhydrogenase and the Cterminus of human plasma membrane Ca2+A TPase[ J] . Protein Expr Puri f , 2004,36(1):31. [ 7] Lamla T, Erdmann V A. The Nanotag, a streptavidinbinding peptide for the purification and detection of recombinant proteins [ J]. Protein Expr Puri f , 2004,33(1):39.

[8] T rabbicCarlson K, Liu L, Kim B, et al. Expression and purification of recombinant proteins from Escherichia coli: Comparison of an elastinlike polypeptide fusion with an ol i gohistidine fusion [ J ] . Protein Sci, 2004,13(12):3274.

[9] M ao H. A selfcleavable sortase fusion for onestep purification of free recombinant proteins[ J ] . Protein Expr Puri f , 2004,37(1):253.

[ 10] Lee S H , Choi J , Park S J, et al. Display of Bacterial Lipase on the Escherichiacoli Cell Surface by Using FadL as an Anchoring M otif and U se of the

Enzyme in Enantioselective Bio

catalysis [ J] . Applied and Environmental Microbiology , 2004,70(9):5074. [ 11] Yang T H, Pan J G, Seo Y S , et al. Use of Pseudomonas putida EstA as an Anchoring M otif for Display of a Periplasmic Enzyme on the Surface of Escherichia coli [ J] . Appl Environ Microbiol, 2004,70(12):6968.

[ 12] Dzivenu O K, Park H H , Wu H. General coexpression vectors for the overex pression of heterodimeric protein complexes in Escherichia coli [ J] . Protein Expr Puri f , 2004, 38(1): 1.

[ 13] Deuerling E, SchulzeSpeching A, Tomoyasu T, et al. Trigger factor and DnaK cooperate in folding of newly synthesized proteins [ J] . Nature, 1999,400: 693. [ 14] Marco A, Marco V D. Bacteria cotransfo rmed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning [ J] . J Biotechnol, 2004,109(12):45.

[ 15] Ferrer M , Chernikova T N, Timmis, et al. Expression of a temperaturesensitive esterase in a novel chaperonebased Escherichia coli strain [ J ] . Appl Environ Microbiol, 2004, 70(8): 4499.

[ 16] Hu J C, Kornacker M G, Hochschild A. Escherichia coli One-and Twohybrid systems for the analy sis and identification of proteinprotein interaction [ J] . Methods, 2000, 20: 80.

[ 17] Flores S, de Anda-Herrera R, Gosset G, et al. Growthrate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentosephosphate pathway [ J ] . Biotechnol Bioeng , 2004,87(4):485.

[ 18] Masip L, Pan J L, Haldar S, et al. An Engineered Pathway for the Formation of Protein Disulfide Bonds [ J] . Science, 2004,303:1185.

[ 19] Baneyx F, Mujacic M. Recombination protein folding and misfolding in E. coli [ J] . N ature Biotechnology, 2004, 22: 1399.

[ 20] Wang J D, Herman C, Tipon K, et al. Directed evolution of substrateoptimized GroEL /S chaperonins [ J] . Cell, 2002, 111: 1027.

[ 21] D ring V, Mootz H D. , Nangle LA, et al. Enlarging the Amino Acid Set of Escherichiacoli by Infiltration of the Valine Coding Pathway [ J ] . Science, 2001,292: 501.

[ 22] Wang L, Brock A, Herberich B, et al. Expanding the Genetic Code of Escherichia coli[ J] . Science, 2001,292: 498.

[ 23] Wacker M , Linton D, Hitchen P G, et al. NLinked Glycosylation in Campylobacter jejuni and its Functional T ransfer into E. coli[ J] . Science, 2002,298: 1790.

[ 24] Zhang Z, Gildersleeve J, Yang Y Y, et al. A New Strategy for the Synthesis of Glycoproteins [ J] . Science, 2004, 303: 371.

大肠杆菌的研究与应用

大肠杆菌的研究与应用 中文摘要:大肠埃希氏菌(E.coli)通常称为大肠杆菌,是Escherich在1885年发现的,在相当长的一段时间内,一直被当作正常肠道菌群的组成部分,认为是非致病菌。直到20世纪中叶,才认识到一些特殊血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼畜(禽),常引起严重腹泻和败血症。本文通过对大肠杆菌的结构及其致病机理等进行分析描述,以供大家参考学习。 关键词:大肠杆菌;致病性;危害;预防 The English abstract:Escherichia coli (E.c oli) are usually called escherichia coli, Escherich is found in 1885, in a long period of time, has been regarded as the normal bowel flora, that is part of the pathogen. Until the 20th century, realized some special type of escherichia coli serum of people and animals, especially for the infants and young (birds), often cause severe diarrhea and sepsis. Based on the structure and pathogenic escherichia coli mechanism analysis of reference, the study. Keywords:escherichia coli;The pathogenicity;Hazards;prevent 一、结构特征 大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,周身鞭毛,能运动,无芽孢。主要生活在大肠内。能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素b和k,以及有杀菌作用的大肠杆菌素。正常栖居条件下不致病。它侵入人体一些部位时,可引起感染,如腹膜炎、胆囊炎、膀胱炎及腹泻等。人在感染大肠杆菌后的症状为胃痛、呕吐、腹泻和发热。感染可能是致命性的,尤其是对孩子及老人。其主要具有以下一些特征: 1、大肠杆菌是细菌,属于原核生物;具有由肽聚糖组成的细胞壁,只含有核糖体简单的细胞器,没有细胞核有拟核;细胞质中的质粒常用作基因工程中的运载体。 2、大肠杆菌的代谢类型是异养兼性厌氧型。 3、人体与大肠杆菌的关系:在不致病的情况下(正常状况下),可认为是互利共生(一般高中阶段认为是这种关系);在致病的情况下,可认为是寄生。 4、培养基中加入伊红美蓝遇大肠杆菌,菌落呈深紫色,并有金属光泽,可鉴别大肠杆菌是否存在。 5、大肠杆菌在生物技术中的应用:大肠杆菌作为外源基因表达的宿主,遗传背景清楚,技术操作简单,培养条件简单,大规模发酵经济,倍受遗传工程专家的重视。目前大肠杆菌是应用最广泛,最成功的表达体系,常做高效表达的首选体系。 6、大肠杆菌在生态系统中的地位,假如它生活在大肠内,属于消费者,假如生活在体外则属于分解者。[1]

pET-32b(+)大肠杆菌表达载体说明

pET-32b(+) 编号 载体名称 北京华越洋生物VECT5030 pET--‐32b(+) pET32b载体基本信息 别名: pET32b, p et 32b 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5899bp 5' 测序引物: T7或者Trx--‐F 5' 测序引物序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3'; Trx--‐F: 5' T TCCTCGACGCTAACCTG 3' 载体标签: thioredoxin (N端); H is (中间和C端) 载体抗性: Ampicillin 备注: Production of soluble, active target proteins; N--‐term thrombin cleavage s ite; Nterm e nterokinase c leavage s ite; a,b,c v ary b y M CS 稳定性: 瞬时表达 Transient 组成型: 组成型 Constitutive 病毒/非病毒: 非病毒 pET32b载体质粒图谱和多克隆位点信息

pET32b载体简介 The pET--‐32a--‐c series is designed for cloning and high--‐level expression of peptide sequences fused with the 109aa Trx?Tag? thioredoxin protein (1). Cloning sites are available for producing fusion proteins also containing cleavable His?Tag? and S?Tag? sequences for detection and purification. Unique sites are shown on the circle map. Note that t he s equence i s n umbered b y t he p BR322 c onvention, s o t he T7 e xpression r egion i s reversed on the circle map. The cloning/expression region of the coding strand transcribed by T7 RNA polymerase is shown below. The f1 origin is oriented so that infection with helper phage will produce virions containing single--‐stranded DNA that corresponds to the coding strand. Therefore, single--‐stranded sequencing should be performed u sing t he T7 t erminator p rimer . pET32b载体序列 ORIGIN 1 ATCCGGATAT AGTTCCTCCT TTCAGCAAAA AACCCCTCAA GACCCGTTTA GAGGCCCCAA 61 GGGGTTATGC TAGTTATTGC TCAGCGGTGG CAGCAGCCAA CTCAGCTTCC TTTCGGGCTT 121 TGTTAGCAGC CGGATCTCAG TGGTGGTGGT GGTGGTGCTC GAGTGCGGCC GCAAGCTTGT 181 CGACGGAGCT CGAATTCGGA TCCGATATCG CCATGGCCTT GTCGTCGTCG TCGGTACCCA 241 GATCTGGGCT GTCCATGTGC TGGCGTTCGA ATTTAGCAGC AGCGGTTTCT TTCATACCAG 301 AACCGCGTGG CACCAGACCA GAAGAATGAT GATGATGATG GTGCATATGG CCAGAACCAG 361 AACCGGCCAG GTTAGCGTCG AGGAACTCTT TCAACTGACC TTTAGACAGT GCACCCACTT 421 TGGTTGCCGC CACTTCACCG TTTTTGAACA GCAGCAGAGT CGGGATACCA CGGATGCCAT 481 ATTTCGGCGC AGTGCCAGGG TTTTGATCGA TGTTCAGTTT TGCAACGGTC AGTTTGCCCT 541 GATATTCGTC AGCGATTTCA TCCAGAATCG GGGCGATCAT TTTGCACGGA CCGCACCACT 601 CTGCCCAGAA ATCGACGAGG ATCGCCCCGT CCGCTTTGAG TACATCCGTG TCAAAACTGT 661 CGTCAGTCAG GTGAATAATT TTATCGCTCA TATGTATATC TCCTTCTTAA AGTTAAACAA 721 AATTATTTCT AGAGGGGAAT TGTTATCCGC TCACAATTCC CCTATAGTGA GTCGTATTAA 781 TTTCGCGGGA TCGAGATCGA TCTCGATCCT CTACGCCGGA CGCATCGTGG CCGGCATCAC 841 CGGCGCCACA GGTGCGGTTG CTGGCGCCTA TATCGCCGAC ATCACCGATG GGGAAGATCG 901 GGCTCGCCAC TTCGGGCTCA TGAGCGCTTG TTTCGGCGTG GGTATGGTGG CAGGCCCCGT 961 GGCCGGGGGA CTGTTGGGCG CCATCTCCTT GCATGCACCA TTCCTTGCGG CGGCGGTGCT 1021 CAACGGCCTC AACCTACTAC TGGGCTGCTT CCTAATGCAG GAGTCGCATA AGGGAGAGCG 1081 TCGAGATCCC GGACACCATC GAATGGCGCA AAACCTTTCG CGGTATGGCA TGATAGCGCC 1141 CGGAAGAGAG TCAATTCAGG GTGGTGAATG TGAAACCAGT AACGTTATAC GATGTCGCAG 1201 AGTATGCCGG TGTCTCTTAT CAGACCGTTT CCCGCGTGGT GAACCAGGCC AGCCACGTTT 1261 CTGCGAAAAC GCGGGAAAAA GTGGAAGCGG CGATGGCGGA GCTGAATTAC ATTCCCAACC 1321 GCGTGGCACA ACAACTGGCG GGCAAACAGT CGTTGCTGAT TGGCGTTGCC ACCTCCAGTC 1381 TGGCCCTGCA CGCGCCGTCG CAAATTGTCG CGGCGATTAA ATCTCGCGCC GATCAACTGG 1441 GTGCCAGCGT GGTGGTGTCG ATGGTAGAAC GAAGCGGCGT CGAAGCCTGT AAAGCGGCGG 1501 TGCACAATCT TCTCGCGCAA CGCGTCAGTG GGCTGATCAT TAACTATCCG CTGGATGACC 1561 AGGATGCCAT TGCTGTGGAA GCTGCCTGCA CTAATGTTCC GGCGTTATTT CTTGATGTCT 1621 CTGACCAGAC ACCCATCAAC AGTATTATTT TCTCCCATGA AGACGGTACG CGACTGGGCG 1681 TGGAGCATCT GGTCGCATTG GGTCACCAGC AAATCGCGCT GTTAGCGGGC CCATTAAGTT 1741 CTGTCTCGGC GCGTCTGCGT CTGGCTGGCT GGCATAAATA TCTCACTCGC AATCAAATTC

石斑鱼饲养饲料营养技术知识

石斑鱼营养与饲料研究 海洋与渔业信息 石斑鱼种类较多,全世界约100多种,属暖水性中下层的肉食性鱼类,栖息于潮流缓慢、透明度不大的岩礁和珊瑚丛海区,为海水网箱养殖的主要品种之一。国内石斑鱼的养殖主要集中在广东、广西、福建、浙江和海南五省区的沿海。 目前,石斑鱼营养需求的研究较多,但配合饲料的开发利用仍然处于起步阶段。我国养殖石斑鱼主要是投喂冰鲜小杂鱼,也有个别饲料厂在尝试石斑鱼饲料的生产和推广,但基本上并不能在整个养殖过程全部使用配合饲料,这与养殖观念有关,更重要的是配合饲料本身存在着营养的全面性、诱食性、促生长及抗病防病能力等问题。本文综述了现有石斑鱼营养与饲料的研究资料,希望能为解决目前海水养殖石斑鱼人工配合饲料问题,减少饲料资源的浪费及其对海水养殖区域环境污染,促进海水养殖健康持续发展提供参考依据。 1石斑鱼肌肉氨基酸组成分析 肌肉必需氨基酸组成模式的研究在鱼类营养学和人工配合饲料设计上有着重要意义。张本等分析了花点石斑鱼E.maculatus、青石斑鱼(E.awoara)、鲑点石斑鱼E.fario、蜂巢石斑鱼E.merra、黑边石斑鱼E.fasci

atus和巨石斑鱼E.tauvina的肌肉中氨基酸组成。石斑鱼氨基酸总含量、必需氨基酸含量和鲜味氨基酸含量均较高。氨基酸组成与种间和分布海域间的差异不大,但存在月际及随体长的增长而变化的现象。天然与养殖石斑鱼氨基酸组成也有一定差异。石斑鱼必需氨基酸含量间的比值相对稳定,综合得出了石斑鱼的必需氨基酸的组成模式,并将此组成模式作为石斑鱼配合饲料氨基酸平衡的依据,应用于其所配制的配合饲料,进行E.maculatus的喂养实验,初步显示了一定的效果。陈学豪等报道了养殖的赤点石斑鱼肌肉中氨基酸总量为733.5mg/g,必需氨基酸总量为404.1mg/g,鲜味氨基酸含量为326.4mg/g,均低于野生鱼。 2蛋白质和氨基酸需求 庄建隆和刘擎华报道了投喂以白鱼粉为主要蛋白源制成的6组不同蛋白质的饲料,体重1.5g的E.salmonides以蛋白质含量最高(54.06%)组饲料的生长速度及饲料效率最好。虽然各组饲料间的生长率差异并不明显,但蛋白质含量过低或投喂量不足时,会引起互相残杀,从而导致存活率下降。网箱养殖的E.salmonides,其蛋白质最适需求量为40%~50%。 陈学豪等探讨了投喂不同蛋白质含量的配合饲料对赤点石斑鱼生长的影响,得出配合饲料中蛋白质含量为49.52%时增重率、体

大肠杆菌表达系统的研究进展综述

基因工程制药综述 班级:生技132 : 学号:

大肠杆菌表达系统的研究进展综述 自上世纪 70 年代以来, 大肠杆菌一直是基因工程中应用最为广泛的表达系统。尽管基因工程表达系统已经从大肠杆菌扩大到酵母、昆虫、植物及哺乳动物细胞,并且近年来出现了很多新型的真核表达系统, 但是大肠杆菌仍然是基因表达的重要工具。尤其是进入后基因组时代以来, 有关蛋白结构以及功能研究的开展 ,对基因表达的要求更高,这时大肠杆菌往往是表达的第一选择。文章综述了近年来有关大肠杆菌表达载体及宿主细胞的改造工作。 1 表达载体 1. 1 表达调控 构建有效的表达载体是表达目的基因的基本要求, 同时也是影响基因表达水平以及蛋白活性的重要因素。标准的大肠杆菌表达载体的主要组成: 启动子、操纵子、核糖体结合位点、翻译起始区、多克隆位点、终止子、复制起点以及抗性筛选因子等。理想的表达载体要求在转录和翻译水平上可以控制目的基因的表达 ,然而目的基因在宿主体过分表达(选用较强的启动子等)会对宿主造成压力, 引起相关的细胞应答反应, 影响蛋白的活性等。基因组、RNA 转录组、蛋白质组、代调控组等领域的研究成果给我们提供了大量关于基因表达调控的信息[ 1]。现已能从基因和细胞的整体水平来方便地选择合适的启动子或合理开发新的载体系统。譬如 Lee 等利用二维凝胶电泳法比较了重组载体和空载体被分别转入宿主细胞后蛋白组学的差异,发现两者都产生了大肠杆菌热休克蛋白并引起了 cAMPCRP 调节蛋白的应答, 其中重组子的影响更为强烈;另外, 还发现外源基因的表达使宿主核糖体合成速率、翻译延长因子和折叠酶表达水平、细胞生长率下降 , 而使细胞呼吸活力上升[ 2]。目前应用的表达载体主要问题是表达过程中出现的全或无的情况, 通常表达的培养物都是非纯种的细胞群, 其中有一些细胞可以最大限度地被诱导,而另一些细胞在诱导后基因的表达被关闭。分离具有合适强度启动子及翻译速率的载体变种可以优化表达水平,说明启动子的选择对于基因的诱导表达非常重要。 Deborahat 提出在芯片上排列具有不同强度级别启动子的载体进行互补分析, 可能有助于筛选最为适合的启动子[3]。开发非 IPTG 或阿拉伯糖诱导的载体也可以提高基因表达水平, Qing 等利用 cspA 基因的独特性开发了一系列冷休克表达载体pCold, 使目的基因在低温下(<15℃) 诱导表达,提高了产物的溶解性和稳定性[4]。 1. 2 融合表达载体 除了表达载体的调控性,为了提高蛋白产物的活性以及简化下游纯化的操作等 ,往往在表达载体上插入其它辅助的基因序列与目的基因构成融合蛋白表达。融合信号肽(PelB、Om pA 、MalE、PhoA 等)表达可以使融合蛋白通过经典的 Sec 途径分泌到周质或胞外表达, 有利于形成二硫键以及避免胞质蛋白酶的水解和 N 端甲硫氨酸的延伸。另外,最近开发的双精氨酸转运体系(Tat)可以有效分泌正确折叠的重组蛋白[5]。常见的纯化标签多根据亲和层

pET-48b(+)大肠杆菌表达载体说明

pET-48b(+) 编号 载体名称 北京华越洋生物VECT4670 pET--‐48b(+) pET48b载体基本信息 别名: pET48b, p ET 48b 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5605 b p 5' 测序引物序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3'; Trx--‐F: 5'--‐TTCCTCGACGCTAACCTG--‐3' 3' 测序引物序列: T7t: 5'--‐TGCTAGTTATTGCTCAGCGG--‐3' 载体标签: N--‐Trx, N--‐His,N--‐HRV 3C, C--‐S, C--‐Thrombin 载体抗性: Kanamycin (卡那霉素) 备注: Same as pET47 but also has Nterm Trx Tag; contains HRV 3C Protease cleavage site for fusion tag removal at low temperatures; Cterm thrombin c leavage s ite. 稳定性: 瞬时表达 组成型: 组成型 病毒/非病毒: 非病毒 pET48b载体质粒图谱和多克隆位点信息

pET48b载体简介 pET--‐48b载体含有N端Trx和His标签,在标签后面紧跟着的是HRV 3C蛋白酶切位点。HRV 3C蛋白酶能够高特异性的识别LEVLFQ↓GP蛋白序列,能够在低温下高效切割掉融合标签序列。pET--‐48b载体还含有一个可选择的C端Thrombin蛋白酶切位点,紧接着位点后是S标签。 pET48b载体的单一的多克隆位点见上面的环状质粒图谱。注意:载体序列是以pBR322质粒的编码规矩进行编码的,所以T7蛋白表达区在质粒图谱上面是反向的。 T7 RNA聚合酶启动的克隆和表达区域在质粒图谱中也被标注了出来。质粒的F1复制子是被定向的,所以在T7噬菌体聚合酶的作用下,包含有蛋白编码序列的病毒 粒子能够

酵母表达系统的特点 大肠杆菌表达系统是常用的外源基因表达系统

1.酵母表达系统的特点大肠杆菌表达系统是常用的外源基因表达系统,人们已利用该系统表达了多种蛋白。大肠杆菌基因结构简单,易于进行基因操作,而且它生长迅速,周期短,营养需求简单,适于工业化生产。但同时该系统还存在很多缺陷。它是原核表达系统,缺少真核生物的翻译后加工过程,产生的外源基因产物往往无活性,它表达的蛋白多以包含体形式存在,需要经过复性,过程复杂,它产生的杂蛋白较多,不易纯化,所以产物中有可能会含有原核细胞中的有毒蛋白或有抗原性的蛋白。昆虫细胞表达系统和哺乳动物细胞表达系统都是真核细胞表达系统,它们可以进行多种蛋白的转录后加工,很适合于真核基因的表达。但是,它们遗传背景复杂,操作困难,易污染,生产成本高,所以并不利于实际应用[2,3] 2.核生物基因和制备有功能的表达蛋白质。某些酵母表达系统具有外分泌信号序列,能够将所表达的外源蛋白质分泌到细胞外,因此很容易纯化[4]。所以近年来,酵母表达系统已广泛应用于工业生产,为社会创造了极大的经济效益 3.酵母一般可分成三大类:(1) 酿酒酵母(Saccharomyces cerevisiae),又称面包酵母;(2) 粟酒裂殖酵母(Schizosaccharomyces pombe);(3) 非常规酵母(Nonconventional yeast),是指除酿酒酵母和粟酒裂殖酵母外的酵母统称 4.酿酒酵母(Saccharomyces cerevisiae)又名面包酵母,它是单细胞真核微生物,一直以来酿酒酵母被称为真核生物中的―大肠杆菌‖。它是最早应用于酵母基因克隆和表达的宿主菌。自1981年Hitzemom等用酿酒酵母表达人干扰素获得成功后,人们还用酿酒酵母表达了多种原核和真核蛋白,目前科学家对酿酒酵母表达系统的研究已非常深入。 5.2.1.2 用于基因表达的宿主菌——酿酒酵母在遗传学方面,人们对酿酒酵母进行了广泛的研究,酿酒酵母基因组序列(约1.2×107bp)早在1996年就完成,它有16条染色体,约6000个ORF,仅4%的酵母基因有内含子。由于人们对酿酒酵母的遗传背景十分清楚,因此酿酒酵母是很理想的真核表达宿主菌。

大肠杆菌文献综述

文献综述 禽大肠杆菌病的研究进展 郑琳红 西南大学荣昌校区动物医学系,重庆荣昌402460 摘要:禽大肠杆菌病是由致病性大肠杆菌引起各种禽类的一种急性或慢性传染病,主要侵害鸡、鸭、鹅,以及各类珍、特禽,临床上有多种表现形式,其中以急性败血型、卵黄性腹膜炎和生殖器官损害较常见,危害性也最为严重。本文主要在病原学、流行病学、临床症状、病理变化和诊断与防治等方面对禽大肠杆菌病进行了综述。 关键词:禽大肠杆菌;流行特点;疫病防治;研究进展 禽大肠杆菌病(colibacillosis)是由致病性大肠埃希氏菌( E. coli )引起禽类的一种急性、慢性传染病的总称。其病型和病变复杂多样。本菌抗原结构复杂,血清型多,变异菌株不断出现,分布极广,不同地区有不同血清型,同一地区不同养殖场甚至同一养殖场同一种群也可能有多个血清型。本病的普遍性,给养禽业造成严重威胁和重大经济损失[1,2]。 禽大肠杆菌病常继发于其他致病因子或与其他致病因子一同作用,使其表现得复杂多变,往往使真正的罪魁祸首得以掩盖。禽大肠杆菌病发病频繁,容易反复发作,加上用药较乱,病原菌血清型多、抗原结构复杂,极易产生耐药性,使其防不胜防。1976年Smits等发现新城疫疫苗、传染性支气管炎疫苗免疫,支原体感染与大肠杆菌感染之间的关系,气雾免疫法及支原体感染大幅提高大肠杆菌感染率[3]。 1.病原学 大肠杆菌是人和动物肠道中的常见菌,多为条件性致病菌,当机体健康,抵抗力强时,这些菌株不表现致病性,当机体健康状况下降,特别是在应激情况下,其致病性增强,引起发病。致病性大肠杆菌在自然界中广泛存在,凡有哺乳动物和禽类活动的环境空气、水源和土壤中均有本菌存在。当禽舍通风不良、饲养密度大、卫生条件差、饲料质量不好、禽舍污染严重时,该病传播途径可经过消化道、呼吸道、交配等途径水平传播,还可通过其它多种途径,使种蛋被污染而进行垂直传播[1]。 禽大肠杆菌病病原是革兰氏阴性、非抗酸性、染色均一,不形成芽孢,两端钝圆的短杆菌,需氧或兼性厌氧。有时大小和形态可能是多变的,许多菌株有运动性,有周身

pET-22b(+)大肠杆菌表达载体说明

pET-22b(+) 编号 载体名称 北京华越洋生物VECT5200 pET--‐22b(+) pet22b载体基本信息 别名: pET22b, p et 22b, p ET--‐22b(+) 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5500bp 5' 测序引物及序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3' 3' 测序引物序列: T7t: 5'--‐GCTAGTTATTGCTCAGCGG--‐3' 载体标签: N--‐pelB; C--‐His 载体抗性: 氨苄 备注: pET22b载体含有PelB信号肽序列, 能够将表达的目的蛋白定位在细胞外周质腔。 稳定性: 瞬时表达 Transient 组成型: 组成型 Constitutive 病毒/非病毒: 非病毒 pet22b载体质粒图谱和多克隆位点信息

pet22b载体简介 pET--‐22b(+)载体携带有一个N端的pelB信号肽序列,能够将表达的目的蛋白定位于外周质腔,同时载体含有C端His标签。载体的单一的多克隆位点见上面的环状质粒图谱。注意:载体序列是以pBR322质粒的编码规矩进行编码的,所以T7蛋白表达区在质粒图谱上面是反向的。 T7 RNA聚合酶启动的克隆和表达区域在质粒图谱中也被标注了出来。质粒的F1复制子是被定向的,所以在T7噬菌体聚合酶的作用下,包含有蛋白编码序列的病毒 粒子能够产生,并启动蛋白表达,同时蛋白表达将被T7终止子序列的作用下终止蛋白翻译。 pet22b载体序列 ORIGIN 1 ATCCGGATAT AGTTCCTCCT TTCAGCAAAA AACCCCTCAA GACCCGTTTA GAGGCCCCAA 61 GGGGTTATGC TAGTTATTGC TCAGCGGTGG CAGCAGCCAA CTCAGCTTCC TTTCGGGCTT 121 TGTTAGCAGC CGGATCTCAG TGGTGGTGGT GGTGGTGCTC GAGTGCGGCC GCAAGCTTGT 181 CGACGGAGCT CGAATTCGGA TCCGAATTAA TTCCGATATC CATGGCCATC GCCGGCTGGG 241 CAGCGAGGAG CAGCAGACCA GCAGCAGCGG TCGGCAGCAG GTATTTCATA TGTATATCTC 301 CTTCTTAAAG TTAAACAAAA TTATTTCTAG AGGGGAATTG TTATCCGCTC ACAATTCCCC 361 TATAGTGAGT CGTATTAATT TCGCGGGATC GAGATCTCGA TCCTCTACGC CGGACGCATC 421 GTGGCCGGCA TCACCGGCGC CACAGGTGCG GTTGCTGGCG CCTATATCGC CGACATCACC 481 GATGGGGAAG ATCGGGCTCG CCACTTCGGG CTCATGAGCG CTTGTTTCGG CGTGGGTATG 541 GTGGCAGGCC CCGTGGCCGG GGGACTGTTG GGCGCCATCT CCTTGCATGC ACCATTCCTT 601 GCGGCGGCGG TGCTCAACGG CCTCAACCTA CTACTGGGCT GCTTCCTAAT GCAGGAGTCG

光唇鱼的综述

文献综述 (2015届本科)题目:光唇鱼的研究进展综述 学院:专业:班级:水产与生命学院水族科学与技术11级水族1班 学号:1118119 姓名:王乐乐 指导教师:孙大川 二O一五年五月

光唇鱼的研究进展综述 1.前言 光唇鱼,俗称“石斑鱼”,是山区重要的野生渔业资源,光唇鱼喜栖息于石砾底质、水清流急之河溪中,常以下颌发达之角质层铲食石块上的苔藓及藻类。每年6-8月在浅水急流中产卵。主要分布于上海、江苏、安徽、浙江、福建、台湾等地的溪流中。该鱼肉质细嫩,味道鲜美,深受大众喜爱。近年来,由于环境变化、人为滥捕等因素的影响,其野生资源不断减少,对保持自然水域生物资源多样性产生严重的负面影响。 近年来,为实现光唇鱼的人工保护与开发,各地纷纷开展人工繁养殖技术研究和人工增殖放流探索,也取得了一定成效。杭州市水产技术推广总站在调查杭州地区光唇鱼种群分布、自然生长特性、资源现状等条件的基础上,开展了亲鱼培育、流水诱导自然产卵、人工催产授精、人工孵化、苗种培育和池塘流水式养殖等技术研究,经多年实践努力,总结出一套适用于杭州山区溪涧开展光唇鱼人工繁养殖技术,制定了杭州市地方标准《光唇鱼池塘养殖技术规范[1]。 光唇鱼作为山区渔业的优质品种,人工养殖效益好,具有良好的发展前景,在修复与维护山区自然生态环境的同时,也为促进本地区光唇鱼的资源保护和合理开发,打造生态渔业起到积极作用。 光唇鱼是一种极具特色的养殖品种,即适合在库叉、溪流或河道放养,也适于在山塘及养鳗场等人工养殖,也可作为游钓、观赏鱼开发,是一种非常有开发前景的经济鱼类。据相关资料阁报道,目前光唇鱼属已知种和亚种共有21个。在系统分类方面,吴秀鸿等于1981年在武夷山自然保护区境内鉴定出光唇鱼的新种;赵俊等嘲通过形态学特征、解剖学及同工酶表型的分析的方法,研究了厚唇光唇鱼A.1abiatus和侧条光唇鱼A.p0rallens的差别,发现地理隔离是这两种光唇鱼形成的主要原因;其后赵俊等于1997年在湖南吉首采集得到鲤科鱼类1新种,并将其命名为吉首光唇鱼.ishouensis sp.nOV王莉等同利用线粒体ND4基因序列研究了光唇鱼的系统发育特征。唐安华等对云南光唇鱼的胚胎及胚后发育做了细致的研究。此外,张玉明等对光唇鱼的人工繁殖技术进行了研究。迄今为止,对光唇鱼详细的药物耐受性致死实验药物指标的实验鲜有报道[2]。 2.光唇鱼的品种及介绍

大肠杆菌表达系统与蛋白表达纯化(参考资料)

8.大肠杆菌表达系统与蛋白表达纯化 大肠杆菌表达系统遗传背景清楚,目的基因表达水平高,培养周期短,抗污染能力强等特点, 是分子生物学研究和生物技术产业化发展进程中的重要工具。因此熟练掌握并运用大肠杆菌表达系统的基本原理和常规操作是对每一个研究生来说是非常必要 的。本章节介绍了实验室常用的大肠杆菌表达系统的构成特点,归纳了利用大肠杆菌表达系统纯化重组蛋白的基本流程和详细 操作步骤,并且结合笔者的操作经验,总结了初学者在操作过程中可能遇到的问题和解决策略。 8.1大肠杆菌表达系统的选择与构建 8.1.1表达载体的选择 根据启动子的不同这些载体大致可以分为热诱导启动子,如λPL,cspA 等和另外一类就是广泛使用的IPTG诱导的启动子,如lac,trc,tac,T5/lac operator,T5/lac operator等。根据表达蛋白质的类型可分为单纯表达载体和融合表达载体。融合表达是在目标蛋白的N端或C端添加特殊的序列,以提高蛋白的可溶性,促进蛋白的正确折叠,实现目的蛋白的快速亲和纯化,或者实现目标蛋白的表达定位。常用的用于亲和纯化融合标签包括 Poly-Arg, Poly-His, Strep-Tag Ⅱ,S-tag,MBP等。其中His-Tag 和GST-Tag 是目前使用最多的。His Tag 大多数是连续的六个His 融合于目标蛋白的N端或C端,通过His 与金属离子:Cu2+>Fe2+>Zn2+>Ni2+ 的螯合作用而实现亲和纯化,其中Ni2+是目前使用最广泛的。His 标签具有较小的分子量,融合于目标蛋白的N端和C端不影响目标蛋白的活性,因此纯化过程中大多不需要去除。目前常使用的表达载体主要是由Novagen 提供的pET 系列和Qiagen 公司提供的pQE 系列。 除了His 标签外,还原性谷胱甘肽S-转移酶是另一种实验室常用的融合标签。它可以通过还原性谷胱甘肽琼脂糖亲和层析而快速纯化。此外,与His 相比,GST 很多时候能够促进目标蛋白的正确折叠,提高目标蛋白表达的可溶性,因此,对于那些用his 标签表达易形成包涵体的蛋白,可以尝试用GST融合表达来改进。当然,GST 具有较大的分子量(26kDa),可能对目的蛋白的活性有影响,因此很多时候切除GST是必须的。目前,GST融合表达系统主要是由GE Healthcare (原Amersham)提供。 8.1.2宿主菌的选择 重组质粒的构建一般选择遗传稳定,转化效率高,质粒产量高的菌株作为受体菌,常用的有E.coli DH5α,E.coli JM 109,E.coli DH 10B ,E.coli NovaBlμe等rec A–和end A–型细胞。作为表达宿主菌必须具备几个基本特点:遗传稳定,生长速度快,表达蛋白稳定。具体操作过程中,根据所使用的表达载体的特点,目的基因密码子的组成等选择特定的表达宿主菌。以下是实验室常用的几种表达宿主: BL2: lon和ompT 蛋白酶缺陷型,避免了宿主对外源蛋白的降解。是经典的使用最广泛的表达受体。适用于Tac,Trc,Lac,λPL,cspA等作为启动子的载体。 BL21(DE3): DE3噬菌体溶源于BL21 形成的带有染色体T7 RNA 聚合酶基因大肠杆菌。IPTG 诱导的lac ΜV5 启动子控制T7 RNA 聚合酶基因表达T7 RNA 聚合酶,进而控制T7 表达系统表达目的蛋白。 BL21(DE3)衍生系列:在经典的T7表达系统BL21(DE3)的基础上,Novagen 公司开发了一些特殊的表达宿主细胞。比如:Origami (DE3),Origami B(DE3)和Rosetta-gami (DE3)菌株带有 trxB和

CHO细胞表达系统研究进展

CHO细胞表达系统研究进展 影响外源基因在哺乳动物细胞中表达水平的因素很多,层次也很广泛,涉及复制、转录和转录后、翻译和翻译后等各级水平,其中mRNA的转录是真核基因表达谓节的基本控制点,它的翻译对表达水平也有一定作用。研究表明,所有提高转录水平的策略均与蛋白质编码序列无关,主要是通过载体构建基因转染方法和选择不同标记来调控。而提高翻译水平则主要是通过增强与核糖体结合能力和改造编码基因的结构来实现。 转录水平的调控可以概括为顺式作用元件(cis acting element)与反式作用因子(trans-acting factor)的相互作用。它们分别由表达载体和宿主细胞提供。因此,表达载体的元件组成及结构是ClIO细胞高效表达外源基因的关键因素之一。借助真核基因表达调控的理论,可以将较强的顺式作用元件集中到一个载体中,使其方便而高效地用于外源基因的表达。目前在这一理论指导下,已经构建了许多来源于细菌质粒的表达载体,它们包含着适当的顺式作用元件和选择标记。顺式作用元件主要有启动子一增强子元件、转录剪切和Poly A信号等。 1、启动子 启动于是影响外源基因表达效率的关键因素因为细菌的主要启动子和增强子在动物细胞中不起作用,所以这些调控元件大多从启动效率高而且生物背景清楚的病毒基因组中分离。各种启动子效率可用报告基因在细胞中测定。SV40、AdMLP、LTR和CMV启动子在CHO细胞中效果良好。刘文军等比较了SV40、L TR和CMV在ClIO细胞中的表达活性,认为三种启动子的转录活性依次为CMV启动子>SV40启动子> LTR启动子,前者分别是后两者的l0倍和30倍左右。 来源于噬菌体的一些启动子,如17启动子也可用于动物细胞。17启动子能被T7RNA聚合酶特异识别,依此建立起来的偶联系统具有常规表达系统不能实现的高效表达特性。除了这些常用的启动子之外,还有多种强的启动子被用于CHO细胞表达载体中。如肽链延长因子基因的启动子,金属硫蛋白(MT)基因的启动子等。在启动子周围其它核苷酸序列对其转录活性也有影响。改变CMV和AdMLP之后EPO基因的前

大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展 教郁,高维凡,胡彩光 (沈阳农业大学,辽宁省沈阳市,110000) 摘要:大肠杆菌是典型的革兰氏阴性杆菌,其引起的大肠杆菌病是一种常见疾病,在治疗过程中 容易产生耐药性,且耐药谱广,耐药机制复杂,给养鸡业预防和治疗该病带来很大困难。大肠杆茵对抗生素的耐药问题是当前国内外研究的热点。本文对大肠杆菌耐药的现状以及产生耐药性机制的研究进行了综述,以便正确理解大肠杆菌耐药性的特点及其规律,从而为防治大肠杆菌耐药性的产生及合理用药提供理论依据。 关键词:大肠杆菌;耐药性;作用机制 The research progress on mechanism of Drg-resistance of Escherichia coli Abstract: E.coli is gram-negative bacteria, colibacillosis is a kind of common disease. Escherichia coli strains showed high levels of resistance, resistance spectrum to expand, and multiple drug resistance. The drug resistant gene is complex and diverse. So the prevention and treatment of the disease bring a lot of difficulties. Antibiotic resistance is the current domestic and international research hot spot. The advances on mechanism of resistance and the present situation of E coli resistance are summarized.Thus the trend of the drug-resistance on the E coli resistance can be understood better and the basis for preventing the production of the resistant stains and using drugs reasonablely can be furtherly provided. Keywords: Eescherichia coli; resistance; resistance mechanism 致病性大肠杆菌为医学和兽医学临床感染中最常见的病原菌之一。从发病情况看,大肠杆菌病发病率在细菌病引发的疾病中居世界首位。兽医临床上大肠杆菌造成的危害十分严重,它一年四季均可致病,一直是困扰养殖业发展的常见病、多发病,给养禽业造成了严重的经济损失;大肠杆菌病的主要防治措施是应用疫苗及抗生素。国内外已研制出多种疫苗对大肠杆菌病进行预防,但因大肠杆菌具有多种血清型,仅国内报导就有80余种,应用疫苗对大肠杆菌病进行防治尚不能满足对该病的防治要求。抗生素在大肠杆菌病预防及治疗方面有着不可替代的作用,但是随着抗生素的广泛、持续及不当使用,大肠杆菌耐药谱不断扩大和耐药水平不断提高,大肠杆菌耐药及多重耐药现象已十分严重。虽然新型抗生素不断问世,但抗生素的研制速度远远低于耐药菌的产生速度。因此了解大肠杆菌耐药状况,掌握大肠杆菌耐药趋势,研究大肠杆菌耐药机理,对控制耐药菌株的蔓延具有十分重要的意义。 1.大肠杆菌耐药性现状 近年来,随着抗生素及各种化学合成药物在我国畜牧业生产中的广泛应用,大量的抗生素、消毒剂等不断进入水、土壤、河流、沉积物等各种环境中。使得大肠杆菌耐药谱不断扩大和耐药水平不断提高,给我国畜牧业的持续发展和人类健康带来潜在的危害。国内外各地均分离得到耐药家畜源性大肠杆菌,并对这些病原菌进行了耐药谱系的检测。梅姝等[1]报道分离得到的长春地区127株鹿源大肠杆菌对5种抗菌药物呈现不同

石斑鱼繁殖生物学和人工繁殖技术研究现状_雷从改

第23卷第3期海南大学学报自然科学版Vol.23No.3 2005年9月NATURAL SCIENCE JOU RNAL OF HAINAN UNIVERSITY Sep.2005文章编号:1004-1729(2005)03-0288-05 石斑鱼繁殖生物学和人工繁殖技术研究现状 雷从改,尹绍武,陈国华 (海南大学海洋学院,海南海口570228) 摘要:就石斑鱼繁殖生物学特征以及人工繁育研究的现状进行了综述,并提出了当前人工繁 育研究中存在的问题. 关键词:石斑鱼;繁殖;人工育苗 中图分类号:S965.334文献标识码:A 石斑鱼(Epinephelus)属鲈形目(Perciformes)、鲈亚目(Percoidei)、鱼旨科(Serranidae).石斑鱼具有许多优良性状,如肉质鲜美、体色好、适合活体运输等,一些种类因生长速度快、对环境的适应能力相对强,适合人工养殖.随着石斑鱼自然资源减少,人工养殖石斑鱼越来越受到重视.近10多年来,我国南方沿海的石斑鱼养殖发展很快,苗种供应渐显不足,为了解决苗种不足的问题,许多学者竞相开展石斑鱼人工繁殖技术研究,因而石斑鱼的繁殖生物学研究也倍受关注. 1繁殖生物学研究 1.1雌雄区别和性转变石斑鱼与许多鱼旨科鱼类一样,属雌雄同体(Hermaphrodite)、雌性先熟(Protogyny)型,从发生性分化开始,先表现为雌性性别,长到一定大小即发生性转变,成为雄性.并且,不同种类发生性转变的年龄不同.福建沿海的赤点石斑鱼(E.akaara)初次性成熟年龄多数为3龄,体长231~295m m,体质量(体重)245~685g,个别为2龄(体长181~235mm);从雌性转变为雄性的性转变年龄一般为6龄(雄鱼占57.5%),体长340~400mm,体质量960~1700 g,个别为5龄(雄鱼只占7.2%),体长312~355m m[1~3].浙江北部沿海青石斑鱼(E.awoara)体长250~340mm时,雄鱼仅占总个体数的6%~23%,350m m时,雄鱼占50%左右,370mm 时,雄鱼占85%以上,420mm以上者几乎全是雄鱼[4].南海巨石斑鱼(E.tauvina)成熟雌鱼最小体长为450~540mm,而有成熟精巢的雄鱼最小体长是740mm;体质量11kg以上,体长660 ~720mm者性腺在转变之中,同时具有卵巢和精巢组织[5].香港的赤点石斑鱼体质量500g者为成熟雌鱼,1000g以上者为雄鱼[6].海南海水网箱养殖的点带石斑鱼E.malabaricus(Bloch& Schneider)3~4龄绝大多数为雌性,极少见到自然转性的雄鱼[7]. 雌雄性石斑鱼的识别,可从肛门、生殖孔和排尿孔的形态变化来区别.雌鱼腹部有3个孔,从前至后依次为肛门、生殖孔和排尿孔,雄鱼只有肛门和泌尿生殖孔2个孔.另外还可以从个体大小加以区别.南海巨石斑鱼成熟雌鱼最小体长为450~540mm,而有成熟精巢的雄鱼最小体长是740mm[5].鞍带石斑鱼在产卵前1个月,雄鱼的体侧背面转变成黑褐色,腹部发白,呈深 收稿日期:2005-01-05 基金项目:国家科技部农业科技成果转化资金项目(02EFN214601172)和海南省自然科学基金项目(80411) 作者简介:雷从改(1978-),女,河北石家庄人,海南大学海洋学院2003级硕士研究生.

pMal c X大肠杆菌表达载体说明

pMal-c2X 编号 名称 北京华越洋VECT--‐570 pMal--‐c2X pMalc2x载体基本信息 载体名称: pMal--‐c2X, p Malc2X, p Mal c2X 质粒类型: 大肠杆菌蛋白表达载体 表达水平: 高 启动子: Tac 克隆方法: 多克隆位点,限制性内切酶 载体大小: 6646 b p 5' 测序引物及序列: MalE引物: 5'--‐GGTCGTCAGACTGTCGATGAAGCC--‐3'; MBP--‐F: 5'--‐gatgaagccctgaaagacgcgcag--‐3' 3' 测序引物及序列: pBad--‐R: 5'--‐gatttaatctgtatcagg--‐3'; M13--‐F: 5'--‐TGTAAAACGACGGCCAGT--‐3' 载体标签: N--‐MBP, N--‐Factor X a 载体抗性: Ampicillin 氨苄 备注: 融合表达麦芽糖结合蛋白MBP,蛋白定位于细胞周质。 稳定性: 瞬时表达 Transient 组成型: 诱导表达 病毒/非病毒: 非病毒 pMalc2x载体质粒图谱和多克隆位点信息

pMalc2x载体简介 pMAL?系统是一种高效的蛋白融合表达及纯化系统。pMAL载体含有编码麦芽糖结合蛋白(Maltose B inding P rotein, M BP)的大肠杆菌malE基因,其下游的多克隆位点便于目的基因插入,表达N端带有MBP的融合蛋白。通过"tac"强启动子和malE翻译起始信号使克隆基因获得高效表达,并进一步利用MBP对麦芽糖的亲和性达到用Amylose柱对融合蛋白的一步亲和纯化。 The s ystem u ses t he p MAL v ectors w hich a re d esigned s o t hat i nsertion i nterrupts a l acZα gene allowing a blue--‐to--‐white screen for inserts on X--‐gal (5). pMAL--‐c2 series has an exact deletion of the malE signal sequence, resulting in cytoplasmic expression of the fusion protein. pMAL--‐p2 series contains the normal malE signal sequence, which directs the fusion protein through the cytoplasmic m embrane. p MAL--‐p2 f usion p roteins c apable o f b eing e xported c an b e p urified f rom the p eriplasm. B etween t he m alE s equence a nd t he p olylinker t here i s a s pacer s equence c oding for 10 a sparagine r esidues. T his s pacer i nsulates M BP f rom t he p rotein o f i nterest, i ncreasing t he chances that a particular fusion will bind tightly to the amylose resin. The vectors also include a sequence c oding f or t he r ecognition s ite o f a s pecific p rotease. T his a llows t he p rotein o f i nterest to be cleaved from MBP after purification, without adding any vector--‐derived residues to the protein (6). For this purpose, the polylinker includes a restriction site superimposed on the sequence coding for the site of the specific protease. This is where the gene of interest is inserted. An EcoR I site in the same reading frame as that of λgt11 and a number of other useful sites are present directly downstream. The vectors also include the M13 origin of DNA replication which allows the production of single--‐stranded DNA for sequencing and mutagenesis by i nfecting w ith M13KO7 h elper p hage. pMalc2x载体序列 ORIGIN 1 CCGACACCAT CGAATGGTGC AAAACCTTTC GCGGTATGGC ATGATAGCGC CCGGAAGAGA 61 GTCAATTCAG GGTGGTGAAT GTGAAACCAG TAACGTTATA CGATGTCGCA GAGTATGCCG 121 GTGTCTCTTA TCAGACCGTT TCCCGCGTGG TGAACCAGGC CAGCCACGTT TCTGCGAAAA 181 CGCGGGAAAA AGTGGAAGCG GCGATGGCGG AGCTGAATTA CATTCCCAAC CGCGTGGCAC 241 AACAACTGGC GGGCAAACAG TCGTTGCTGA TTGGCGTTGC CACCTCCAGT CTGGCCCTGC 301 ACGCGCCGTC GCAAATTGTC GCGGCGATTA AATCTCGCGC CGATCAACTG GGTGCCAGCG 361 TGGTGGTGTC GATGGTAGAA CGAAGCGGCG TCGAAGCCTG TAAAGCGGCG GTGCACAATC 421 TTCTCGCGCA ACGCGTCAGT GGGCTGATCA TTAACTATCC GCTGGATGAC CAGGATGCCA 481 TTGCTGTGGA AGCTGCCTGC ACTAATGTTC CGGCGTTATT TCTTGATGTC TCTGACCAGA 541 CACCCATCAA CAGTATTATT TTCTCCCATG AAGACGGTAC GCGACTGGGC GTGGAGCATC 601 TGGTCGCATT GGGTCACCAG CAAATCGCGC TGTTAGCGGG CCCATTAAGT TCTGTCTCGG 661 CGCGTCTGCG TCTGGCTGGC TGGCATAAAT ATCTCACTCG CAATCAAATT CAGCCGATAG 721 CGGAACGGGA AGGCGACTGG AGTGCCATGT CCGGTTTTCA ACAAACCATG CAAATGCTGA 781 ATGAGGGCAT CGTTCCCACT GCGATGCTGG TTGCCAACGA TCAGATGGCG CTGGGCGCAA 841 TGCGCGCCAT TACCGAGTCC GGGCTGCGCG TTGGTGCGGA TATCTCGGTA GTGGGATACG 901 ACGATACCGA AGACAGCTCA TGTTATATCC CGCCGTTAAC CACCATCAAA CAGGATTTTC 961 GCCTGCTGGG GCAAACCAGC GTGGACCGCT TGCTGCAACT CTCTCAGGGC CAGGCGGTGA 1021 AGGGCAATCA GCTGTTGCCC GTCTCACTGG TGAAAAGAAA AACCACCCTG GCGCCCAATA

相关文档
最新文档