视频信号基础知识

视频信号基础知识
视频信号基础知识

1.1信号的基础知识

1.1.1模拟RGB信号(ARGB)

1.1.1.1 定义

RGB模拟基色视频信号是具有相同带宽,经过伽马校正的红、绿、蓝原色信号。信号中包含同步脉冲信号和行场消隐信号。R、G、B信号同步产生并携带同时生成的图像信息。

1.1.1.2 信号通道

RGB信号接口的三个分离通道用于传输特定的信号,如表1-1所示。

表1-1 视频信号通道

当使用复合RGB信号时,至少在绿通道上加载同步信号;也可以将同步信号与RGB信号分离传输。

1.1.1.3信号接口时序图

ARGB信号具有多种变种形式, RGB信号既可以与同步信号分离,又可以与同步信号复合。前者是最简单的RGBHV信号,后者目前最常见的是在绿通道上加载同步信号,也称RGsB信号,同步信号加载于绿色数据通道上,有时G也称其为SoG信号,表示其加载上了同步信号。

1)RGB信号与同步信号分离时(RGBHV)

a) RGB信号:700mVp-p, 正极性,75 ;

b) 行同步信号(HS):300mVp-p,TTL电平,负极性,高阻;

c) 场同步信号(VS):300mVp-p,TTL电平,负极性,高阻。

图1.1 1280×720p,50Hz的时序参数,图中省略了R、G、B相关颜色信号。1280表示水平方向上的有效像素值,720表示垂直高度上的有效扫描行数,p表示是逐行扫描信号,不需要进行去隔行处理了(i表示隔行扫描信号),50Hz表示的是场频。在实际的信号时序格式中,除了有效的扫描值外,为了信号消隐和同步的需要,通常还附加有许多信号前肩( Front porch)、后肩(back porch)、前(上)界(Front/Top Border)、后(下)界(Back(Bottom)Border)以及行同步信号(Hor Blank Time)、场同步信号(Ver Blank Time)等。

图1.1 1280×720p,50Hz的时序参数(分离同步信号)图片来自参考文献1

2)RGB信号与同步信号复合时(通常在绿通道上加载同步信号):

a) 复合同步信号其波形见图1.2;

b) RGB信号:700mVp-p,正极性,75 ;

c) 复合同步信号:±300mV。

图1.2复合同步信号(颜色通道加载上同步信号) 图片来自参考文献1图1.3是1280×720p,50Hz的时序参数(复合同步信号)。

图1.3 1280×720p,50Hz的时序参数(复合同步信号)图片来自参考文献1 1.1.1.4连接端子

1)75 的BNC类型的连接端子(包括插头和插座)

RGBHV信号的相关线缆颜色表示如下:

R(红色线缆)

G(绿色线缆)

B(蓝色线缆)

HS(黑色线缆)

VS(黄色线缆)

图1.4 RGBHV 线缆

2)小D形15针接口连接端子(包括插头和插座)

小D形15针孔座连接器的示意图与针脚分配如图1.5和表1-2所示。

图1.5小D形15针孔座连接器

插孔编号分配插孔编号分配

1 红色视频9 保留

2 绿色视频10 逻辑地线

3 蓝色视频11 保留

4 保留12 I2C数据(SDA、DDC1/2B)

5 DDC地线13 行同步HS

6 红色视频地线14 场同步VS

7 绿色视频地线15 I2C时钟(SCL、DDC2B)

8 蓝色视频地线

1.1.1.5 典型信号——VGA接口

计算机的VGA输出接口是典型的模拟RGB信号(analog RGB,简称ARGB)。

15针的VGA接口如图1.6所示

图 1.6 15针VGA接口

其中1、2、3三针分别是R、G、B模拟视频信号的输出端口;13针是HSYNC(行同

步信号)、14针是VSYNC(场同步信号),这两个是时钟信号,它们用来确定CRT显示器扫描点的周期性移动;5是地线,10是同步信号地线,12、15是串行总线通讯通道;常见的9针是空的,不过4、11有时也为空。在实际使用中,4、5、6、7、8、10、11可以接在一起共同作为地线使用。

这15针中,最关键的是1、2、3针的R、G、B模拟视频信号、13针的HSYNC以及14针的VSYNC信号。

CRT显示器每一个时刻只有一个像素点发亮,屏幕扫描路径如图1.7所示:

图 1.7 屏幕扫描路线图

每一行从左向右、每一屏从上到下扫描。其中在每一行扫到最右端后,电子枪需要返回屏幕最左端,这称为“水平回扫”;而进行回扫的期间内,必须保证电子枪不射出电子,称作“消隐期”。同理,每一屏扫到最下方时,也有“垂直回扫”。为了保证正常显示,消隐期要略大于回扫期,这也就是屏幕四周有黑色边缘的原因。

图 1.8 纯红下用示波器观测到的HSYNC和R通道波形

图1.8是在屏幕纯红下观测到的波形,可以看到HSYNC(经反相)和视频信号的时序关系。HSYNC的脉冲区域是回扫区,R通道的低电平区域是消隐区。

如果将普通(非纯色)视频模拟信号的波形放大,可以观察到它随着点频时钟不断变化(图中的每一格代表一个像素点处的波形。):

图1.9视频模拟信号随着像素点的变化

1.1.2数字RGB信号(DRGB)

1. 1.

2.1 定义

通过前面的介绍,我们知道ARGB图像信号由颜色信号R、G、B和同步信号HS、VS 组成。数字RGB信号与ARGB的不同之处在于,ARGB的颜色信号是模拟信号,其在后端需要经过A/D采样后才能进行数字化处理。DRGB的颜色信号是采样后的数字信号,一般每种颜色数字位宽为颜色深度,一般为8bits,因此每个像素点的数据为24bits/pixes(包含RGB)。在图像信号处理中,DRGB是信号处理的基础,所有其他信号格式的信号形式应转化为DRGB后再进行进一步处理。

1.1.

2.2 典型信号——DVI接口

DVI (Digital Visual Interface)信号是一种特殊的DRGB信号,主要是为了传输的需要将DRGB进行相关信号形式(转换为高速串行数据)的转换,其本质依然是DRGB信号,在这里将DVI作DRGB处理,因为使用Sil1161、Sil160变换后就可以轻易实现了两者的相互转换。

目前常见的DVI接口有两种,分别是DVI-Digital(DVI-D)与DVI-Integrated(DVI-I),DVI-D仅支持数字信号,而DVI-I则可以支持模拟信号,也就是说DVI-I的兼容性更强。通常我们在显卡的接口部分,看到的是DVI-I接口,而在显示器处,看到的则是DVI-D接口。 DVI-D是纯数字接口;DVI-I是数字、模拟混合接口,DVI-I接口旁边的4针是RAMDAC 转出来的模拟信号,DVI-I接口,它同时可兼容模拟接口。

DVI-D是纯数字视频接口,它支持双TMDS连接,包含24个接触点,并以3行8未连接,如下图(图1.10)所示,其下的表格(表1-3)列出了引脚的定义:

图1.10 DVI-D接口

表1-3 DVI-D 接口引脚定义

DVI-I是数字模拟视频兼容接口,它除了DVI-D包含的24个接触点外,还包含5个用于支持模拟视频的接触点,如下图(图1.11)所示,表1-4是其引脚定义。

图1.11 DVI-I接口

表1-4 DVI-I引脚定义

DVI-I ( I = A+D = Integrated ) 含及上述两个接口,在管脚定义上有明显的区分,当 DVI-I 接 VGA 时,就是起到了 DVI-A 的作用;当 DVI-I 接 DVI-D时,只起了DVI-D 的作用。

1.1.3视频信号

视频信号的格式和种类很多,NTSC、PAL和SECAM是几种常见的标准电视视频信号格式,它们规定了显示图像的线数、色彩信息的定义和扫描线的速度(即刷新频率)。

NTSC制式,又称正交平衡调幅制式,基本上是传送亮度信号Y及两个色差信号R-Y(U),B-Y(V)的系统(之所以这样选择,是为了保证与黑白接收机的兼容)。NTSC制式是将色差信号R-Y(U),B-Y(V)转换为I信号(宽通频带颜色信号)及Q信号(窄通频带颜色信号)进行传送的。对于传输Y、U、V的NTSC制式,扫描行数为625行,场频为50Hz,色副载波频率为4.43MHz;对于传输Y、I、Q的NTSC制式,扫描行数为525行,场频为60Hz,色副载波频率为3.58MHz。

PAL制式,又称逐行倒相正交平衡调幅,我国目前采用的是这一制式。PAL制式采用色差信号U、V作为色度信号的两个分量进行传送,并将色度信号的分量V逐行倒相,对色度信号因相位畸变而因此的失真有明显的改善作用,副载波采用场间交错(25Hz偏置)1/4行频间置,进一步减少色度与亮度信号之间的干扰,色同步信号逐行跳变(±135°),以提供副载波的基准相位和逐行倒相识别信号。我国PAL制式基本参数是,扫描行数为625,行频15 625Hz,场频为50Hz,色副载波频率为4.43MHz,图像载波与伴音载频的差为6.5MHz。

SECAM制式是1966年由法国研制成功的,是法文“顺序传送彩色与存储”的缩写词。SECAM制式中对R-Y、B-Y两个色差信号采用逐行轮换调频制,在同一时间内,在传送通道

中只存在一个色差信号,从而避免两个色差信号的串扰。

有关NTSC、PAL、SECAM的编解码原理,请详见相关参考书籍,在这里不做过多的描述。

1.1.3.1 S-video/CVBS

连接器类型:BNCx3

信号格式:S-video、CVBS

信号制式:PAL、NTSC、SECAM

信号幅度:0.5 Vpp~2.0Vpp

1)S-Video

S-Video具体英文全称叫Separate Video,也称二分量视频接口,有时也称YC信号,Separate Video 的含义就是将Video 信号分开传送,也就是在AV接口的基础上将色度信号C和亮度信号Y进行分离,再分别以不同的通道进行传输。S-Video 要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb 和Cr 进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) ,而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远,S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口。

在DVD播放设备中,带有的S端子就是S-video视频输出接口。DVD将分量信号经编码电路及4.43MHz副载波进行复合调制,将三路色差信号变为亮度信号Y和复合色度信号C,经S端子送入Display Panel,在Display Panel中Y信号经视放电路送入矩阵,而C信号需要经彩色解码电路,将4.43MHz的色度信号进行U/V分离,再解码而得出R-Y、B-Y两个色差信号,再送入矩阵电路处理、显示。显然这种接法信号传达室输路径长,反复处理多,信号损失和失真都会比色差分量方式大,图像质量不如前者,存在色度副载波干扰。

2)CVBS 复合视频信号

复合视频信号(Composite Video signal),复合视频信号定义为包括亮度和色度的单路模拟信号,也即从全电视信号中分离出伴音后的视频信号,这时的色度信号还是间插在亮度信号的高端。复合视频信号(CVBS)就是将亮度,色度,同步信号放在一根线上传输的信号。

DVD机若将S视频中的Y和C信号再进行混合调幅,则成为单一的复合视频信号(CVBS),它是将色度信号的带宽限制后调幅在Y信号上,显然DVD将此信号接入Display Panel视频图像(Video)端子后,在Display Panel中还要经过亮色分离、色度解调、矩阵处理才能显示,不仅传输路径长且重复地混合、编码、解码,重复加工过多,图像质量比前二者更差,不仅有色度副载波网纹干扰,也存在亮度之间相互干扰,使彩色界面出现斑点干扰,色度波形前后沿也有失真,形成色彩界面混染等。

图1.12 CVBS 信号

1.1.3.2 色差分量接口YCrCb/YPrPb

连接器类型:BNCx3

信号格式:YCrCb、YPrPb

分辨率:480P、576P、720P、1080i

信号幅度:0.5Vpp~1.0Vpp

色差分量接口,通常采用YPbPr 和YCbCr两种标识,前者表示逐行扫描色差输出,后者表示隔行扫描色差输出。色差分量信号是直接将图像信号以分量格式(Cr、Cb)经色差分量端子送入Display Panel。这时Display Panel中仅需经过矩阵电路(宽带的电阻相加减网络)后,经末级视放送到Display Panel去显示。这种接法信号传输路径短,加工少,电路带宽在10MHz以上,超过亮度和色度信号的带宽(6MHz),既无彩色制式差别,也没有高频副色度载波干扰辐射存在,故图像质量最好。

1.1.4信号间的基本转换

从上述讨论,我们知道RGB是目前最常用的一种显示方式,十分方便对图像的处理。因而,一般图像的输出终端均采用RGB合成方式,比如CRT、LED、DLP等。

但在实际的信号输入源中由于压缩或传输的需要,有着各种各样的输入格式,因而需要对信号间进行转换。

1、矩阵转换

YUV到RGB的图像信号转换可通过集成电路(LT1399)实现,计算转换是基于前面介绍的转换公式:

Y = 0.299R + 0.587G + 0.114B

通过矩阵变换,得到RGB信号。

2、复合同步信号分离

色差信号 YUV 的 Y 信号带有复合同步信号,由水平同步信号(HS)与垂直同步信号(VS)组成。因而需要通过电路或器件将Y信号上的同步信号分离出来,产生HS、VS信号。

可以用业界通用的集成电路 LM1881、GS1881 等芯片完成同步信号分离的功能。如果需要额外分离出水平同步信号,则可以选用 GS4981。

3、同步信号消除

在某些情况,图像信号中叠加了同步信号,因而在转换为一般的RGB时需要在RGB中去掉同步信号,还原出HS、VS单独信号。

1)色度分离

将复合的色度信号U/V分离开来,得到独立的U、V信号。

2)亮色分离

将复合的亮度色度信号Y/C分离,得到独立的Y、C信号。

1.1.5 信号转换

1、DVI信号到RGB信号转换

由于DVI信号的RGB信号复合了同步信号,故要采用消除同步信号。可采用的集成器件有Sii161/1161、sii141、si151等。

2、YCrCb转换为RGB

去隔行变为逐行YPrPb,然后对Y进行复合同步分离(A/D9883)得Y、HS、VS,再采用矩阵转换得RGB。

3、YPrPb转换为RGB

对Y进行复合同步分离(A/D9883)得Y、HS、VS,再采用矩阵转换得RGB。

4、S-端子转换为RGB

对Y复合同步分离得Y、HS、VS,对U/V进行色度分离得U、V;再将Y、U、V矩阵转换得RGB。

第08章_数字视频基础

第八章数字视频基础 本章开始讨论视频技术。视频被认为是互联网时代最具影响力的媒体形式,无论是数字电影与电视,还是网络与移动视频,所有这些应用的核心都是视频技术。从数据形态来看,视频就是图像序列,视频技术的基础当然就是图像处理技术。但是由于视频表现为序列化的数据流,这使得视频的数据量急剧增长,同时,时间关系也变得十分重要。本章首先介绍模拟视频的基本概念,因为数字视频是从模拟视频转换而来的,对模拟视频的了解会有助于全面把握数字视频技术。其次介绍模拟视频的数字化,主要是采样格式问题。第三部分对数字视频数据的形态进行分析,这是本章的重点,也体现了本教程的一贯风格。 8.1 模拟视频 模拟视频的典型代表就是模拟电视。模拟电视是一个复杂的系统,涉及信号采集与处理、网络传输、接收和呈现等等。与其他信息技术类似,数据或信号处于核心地位。因此,本节以电视信号为线索,介绍模拟电视系统的几个关键概念。 8.1.1 扫描 扫描是通过信号去控制显示屏以得到电视图像的过程。从形成图像的方式看,扫描分为隔行扫描(interlaced scanning)和逐行扫描(progressive scanning)两种。图8-1表示了这两种扫描方式的差别。黑白电视和彩色电视都用隔行扫描,而计算机显示图像时一般都采用非隔行扫描。 (a) 逐行扫描 (b) 隔行扫描 图8-1 图像的光栅扫描

在逐行扫描中,电子束从显示屏的左上角一行接一行地扫到右下角,在显示屏上扫一遍就显示一幅完整的图像,如图8-1(a)所示。 在隔行扫描中,电子束扫完第1行后回到第3行开始的位置接着扫,如图8-1(b)所示,然后在第5、7、……行上扫,直到最后一行。奇数行扫完后接着扫偶数行,这样就完成了一帧(frame)的扫描。由此可以看到,隔行扫描的一帧图像由两部分组成:一部分是由奇数行组成,称奇数场(field),另一部分是由偶数行组成,称为偶数场,两场合起来组成一帧图像。因此在隔行扫描中,无论是摄像机还是显示器,获取或显示一幅图像都要扫描两遍才能得到一幅完整的图像。 在隔行扫描中,扫描的行数一定是奇数。如前所述,一帧画面分两场,第一场扫描总行数的一半,第二场扫描总行数的另一半。隔行扫描要求第一场结束于最后一行的一半,不管电子束如何折回,它必须回到显示屏顶部的中央,这样就可以保证相邻的第二场扫描恰好嵌在第一场各扫描线的中间。正是这个原因,隔行扫描的总行数是奇数。 每秒钟扫描多少行称为行频;每秒钟扫描多少场称为场频;每秒扫描多少帧称帧频。 8.1.2 电视制式 全球有三种主要的模拟彩色电视制式:NTSC制式、PAL制式和SECAM制式。 NTSC(N ational T elevision S ystems C ommittee)彩色电视制是1952年美国国家电视标准委员会定义的彩色电视广播标准,称为正交平衡调幅制式。美国、加拿大等大部分西半球国家,以及日本、韩国、菲律宾等国和中国的台湾采用这种制式。 由于NTSC制式存在相位敏感造成彩色失真的缺点,因此德国(当时的西德)于1962年制定了PAL(P hase-A lternative L ine)制彩色电视广播标准,称为逐行倒相正交平衡调幅制式。德国和英国等一些西欧国家,以及中国大陆、香港等国家和地区采用这种制式。 法国制定了SECAM(法文:Se quential C oleur A vec M emoire)彩色电视广播标准,称为顺序传送彩色与存储制式。法国、俄罗斯、东欧等国家和地区采用这种制式。 NTSC、PAL和SECAM制式都是兼容制式。这里说的“兼容”有两层意思,一是指黑白电视机能接收彩色电视广播,显示的是黑白图像,另一层意思是彩色电视机能接收黑白电视广播,显示的是黑白图像,这叫向后兼容(或逆兼容)。为了既能实现兼容性而又要有彩色特性,彩色电视系统应满足下列要求: (1) 必需采用与黑白电视相同的一些基本参数,如扫描方式、扫描行频、场频、帧频、同步信号、图像载频、伴音载频等等。 (2) 需要将摄像机输出的三基色信号转换成一个亮度信号,以及代表色度的两个色差信号,并将它们组合成一个彩色全电视信号进行传送。在接收端,彩色电视机将彩色全电视信号重新转换成三个基色信号,在显示器上重现发送端的彩色图像。 PAL制式信号的主要扫描特性是:(1) 625行(扫描线)/帧,25帧/秒(40 ms/帧) ;(2) 高宽比(aspect ratio):4:3 ;(3) 隔行扫描,2场/帧,312.5行/场;(4) 颜色模型:YUV。一帧图像的总行数为625,分两场扫描。行扫描频率是15625Hz,周期为64μs;场扫描频率是50 Hz,周期为20 ms;帧频是25 Hz,是场频的一半,周期为40 ms。在发送电视信号时,每一行中传送图像的时间是52.2μs,其余的11.8μs不传送图像,是行扫描的逆程时间,同

数字视频技术基础复习题

数字视频技术考复习题 一、填空题 1、MPEG-1视频流采取分层式数据结构,包括视频序列、、图像、 像条、、块共六层。 2、已知HDB3码为-1000-1+1000+l-l+l-100-1+l,原信息代码 为。 3、以在上一帧图像中找到相似的块,这两个宏块之间的位移,称为。 4、数字复接过程中,按各支路信号的交织情况来分,可以分为复 接、复接和复接。 5、视频基本码流(ES)层次结构由视频序列层、、、像条层、 宏块层和。 6、当前宏块与它匹配的宏块之间的差值称为。 7、模拟彩色电视信号,世界存在三种制式,它们分别是制、制 和制。 8、PAL制式彩色电视信号中,为了节省频带宽度,一般将色度信号调制在 -----MHZ的频率上,再安插在信号中。 9、在NTSC制式电视信号中,色度矢量的幅度代表,初 相位代表。 10、标准清晰度电视演播室标准规定,亮度信号每行的取样点 数,取样频率为MH Z。 11、基带传输时,接收波形满足取样值无串扰的充要条件是:仅在本码元的取 样时刻上有,而在其他码元的取样时刻,本码元的值为。 12、准同步复接中一般采用正码速调节,其方式为当缓存器即将读空时,禁止 读时钟输出,使缓存器读出一位,在输出码流中插入一个,可以把码速调高。 13、某一信道传输二进制时,速率为a,如果利用这一信道传输8进制时, 传输速率将是。 14、MPEG-2结构可分为和层,针对不同的环 境,MPEG-2规定了两种系统编码句法,分时是流和流。 15、H.264标准算法在概念上分为2个层次,分别是层和层。 16、H.264除了有I、P、B帧之外,还有2个切换帧,分别是帧 和帧。 17、SDH帧结构由和两大部分组成,他们的字长分别 ()和。 18、在一个STM-1中,可包容的基群个数为。

视频信号测试与测量

1. 理解复合视频信号 复合视频信号是所有需要生成视频信号的成分组合在同一信号中的信号。构成复合信号的三个主要成分如下: ● 亮度信号——包含视频图像的强度(亮度或暗度)信息 ● 色彩信号——包含视频图像的色彩信息 ● 同步信号——控制在电视显示屏等显示器上信号的扫描 单色复合信号是由两个成分组成的:亮度和同步。图1显示了这个信号(通常成为Y信号)。 图1:单色复合视频信号(亮度从白过渡到黑) 色彩信号通常被称为C信号,在图2中示出。 图2:彩色条的色彩信息信号(包括颜色突发) 复合彩色视频信号通常成为彩色视频、消隐与同步(CVBS)信号示Y与C之和,如图3所示。 CVBS = Y + C

图3:彩色条的彩色复合视频信号两个组成部分Y与C可以作为两个独立信号分开传输。这两个信号合称为Y/C或S视频。 2. 视频信号组成 单一水平视频行信号由水平同步信号、后沿、活动象素场以及前沿组成,如图4所示。 图4:视频信号组成 水平同步(HSYNC)信号示每条新的视频行的开始。其后是后沿,用来作为从浮地(交流耦合)视频信号去除直流分量的参考电平。这是通过单色信号的钳制间隔实现的,它出现在后沿中。对于合成彩色信号,钳制发生在水平同步脉冲中,由于大部分后沿用于色彩突发,它提供了信号色彩成分解码信息。在MAX帮助中,视频信号的所有设置参数都有较清楚的描述。 色彩信息可以包含在单色视频信号中。复合色彩信号包含标准单色信号(RS-170或CCIR),并加入了以下成分: ● 色彩突发:位于后沿,这是提供后续色彩信息相位和幅值参考的高频场。

● 色彩信号:这是实际的色彩信息。它由两个以色彩突发频率调制到载波的象限成分组成。这些组成部分的相位和幅值决定了每个象素的色彩内容。 视频信号的另一方面是垂直同步(VSYNC)脉冲。这实际上是在场之间发生的脉冲序列,用于通知显示器,完成垂直重跟踪,准备扫描下一场。在每个场中都有几行是不包含活动视频信息的。有些只包含HSYNC脉冲,而其他包含均衡与VSYNC脉冲序列。这些脉冲是在早期的广播电视中定义的,所以从那以后构成了标准的一部分,虽然之后的硬件技术能够避免部分附加脉冲的使用。在图5中给出了复合RS-170交叉信号,其中包括垂直同步脉冲,为了简单起见,下面给出了一个6行帧: 图5:VSYNC脉冲 应当理解对于从模拟相机得到的图片,其垂直尺寸(以象素为单位)是由帧接收器对水平视频行采样的速率所决定的。而这个速率是由垂直行速率合相机的体系结构所决定的。相机CCD阵列的结构决定了每个象素的大小。为了避免图像失真,您必须对水平方向,以一定速率进行采样,将水平的活动视频场分割为正确的象素点数。下面是RS-170标准的实例: 感兴趣参数: ● 行/帧数:525(其中包括用于显示的485线;其余是每两个场之间的VSYNC行) ● 行频率:15.734 kHz ● 行持续时间:63.556微秒 ● 活动水平持续时间:52.66微秒 ● 活动象素/行数:640 现在,我们可以进行一些计算: ● 象素时钟频率(每个象素达到帧接收器的频率):640象素/行/ 52.66 e-6 秒/行= 12.15 e6 象素/行(12.15 MHz) ● 活动视频的象素行长度+ 定时信息(称为HCOUNT):63.556 e-6 秒* 12.15 e6 象素/秒= 772 象素/行

视频基础知识详解

视频基础知识详解 视频技术发展到现在已经有100多年的历史,虽然比照相技术历史时间短,但在过去很长一段时间之内都是最重要的媒体。 由于互联网在新世纪的崛起,使得传统的媒体技术有了更好的发展平台,应运而生了新的多媒体技术。而多媒体技术不仅涵盖了传统媒体的表达,又增加了交互互动功能,成为了目前最主要的信息工具。 在多媒体技术中,最先获得发展的是图片信息技术,由于信息来源更加广泛,生成速度高生产效率高,加上应用门槛较低,因此一度是互联网上最有吸引力的内容。 然而随着技术的不断进步,视频技术的制作加工门槛逐渐降低,信息资源的不断增长,同时由于视频信息内容更加丰富完整的先天优势,在近年来已经逐渐成为主流。 那么我们就对视频信息技术做一个详细的介绍。 模拟时代的视频技术 最早的视频技术来源于电影,电影技术则来源于照相技术。由于现代互联网视频信息技术原理则来源于电视技术,所以这里只做电视技术的介绍。 世界上第一台电视诞生于1925年,是由英国人约翰贝德发明。同时也是世界上第一套电视拍摄、信号发射和接收系统。而电视技术的原理大概可以理解为信号采集、信号传输、图像还原三个阶段。 摄像信号的采集,通过感光器件获取到光线的强度(早期的电视是黑白的,所以只取亮度信号)。然后每隔30~40毫秒,将所采集到光线的强度信息发送到接收端。而对于信号的还原,也是同步的每隔30~40毫秒,将信号扫描到荧光屏上进行展示。 那么对于信号的还原,由于荧光屏电视采用的是射线枪将射线打到荧光图层,来激发荧光显示,那么射线枪绘制整幅图像就需要一段时间。射线枪从屏幕顶端

开始一行一行的发出射线,一直到屏幕底端。然后继续从顶部开始一行一行的发射,来显示下一幅图像。但是射线枪扫描速度没有那么快,所以每次图像显示,要么只扫单数行,要么只扫双数行。然后两幅图像叠加,就是完整的一帧画面。所以电视在早期都是隔行扫描。 那么信号是怎么产生的呢? 跟相机感光原理一样,感光器件是对光敏感的设备,对于进光的强弱可以产生不同的电压。然后再将这些信号转换成不同的电流发射到接收端。电视机的扫描枪以不同的电流强度发射到荧光屏上时,荧光粉接收到的射线越强,就会越亮,越弱就会越暗。这样就产生了黑白信号。 那么帧和场的概念是什么? 前面说到,由于摄像采集信号属于连续拍摄图像,比如每隔40毫秒截取一张图像,也就是说每秒会产生25副图像。而每个图像就是一帧画面,所以每秒25副图像就可以描述为帧率为25FPS(frames per second)。而由于过去电视荧光屏扫描是隔行扫描,每两次扫描才产生一副图像,而每次扫描就叫做1场。也就是说每2场扫描生成1帧画面。所以帧率25FPS时,隔行扫描就是50场每秒。 模拟时代在全世界电视信号标准并不是统一的,电视场的标准有很多,叫做电视信号制式标准。黑白电视的时期制式标准非常多,有A、B、C、D、E、G、H、I、K、K1、L、M、N等,共计13种(我国采用的是D和K制)。到了彩色电视时代,制式简化成了三种:NTSC、PAL、SECAM,其中NTSC又分为NTSC4.43和NTSC3.58。我国彩色电视采用的是PAL制式中的D制调幅模式,所以也叫PAL-D 制式。有兴趣的可以百度百科“电视制式”来详细了解。 另外你可能会发现,场的频率其实是和交流电的频率一致的。比如我国的电网交流电的频率是50Hz,而电视制式PAL-D是50场每秒,也是50Hz。这之间是否有关联呢?可以告诉你的是,的确有关联,不过建议大家自己去研究。如果确实不懂的同学可以@我。 彩色信号又是怎么产生的呢?

数字视频基础

数字视频基础 数字视频的采样格式及数字化标准 模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。 模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV或YIQ分量,然后用三个模/数转换器对三个分量分别进行数字化,最后再转换成RGB 空间。 一、数字视频的采样格式 根据电视信号的特征,亮度信号的带宽是色度信号带宽的两倍。因此其数字化时可采用幅色采样法,即对信号的色差分量的采样率低于对亮度分量的采样率。用Y:U:V来表示YUV三分量的采样比例,则数字视频的采样格式分别有4:1:1、4:2:2和4:4:4三种。电视图像既是空间的函数,也是时间的函数,而且又是隔行扫描式,所以其采样方式比扫描仪扫描图像的方式要复杂得多。分量采样时采到的是隔行样本点,要把隔行样本组合成逐行样本,然后进行样本点的量化,YUV到RGB色彩空间的转换等等,最后才能得到数字视频数据。 二、数字视频标准 为了在PAL、NTSC和 SECAM电视制式之间确定共同的数字化参数,国家无线电咨询委员会(CCIR)制定了广播级质量的数字电视编码标准,称为CCIR 601标准。在该标准中,对采样频率、采样结构、色彩空间转换等都作了严格的规定,主要有: =13.5MHz 1、采样频率为f s 2、分辨率与帧率 的采样率,在不同的采样格式下计算出数字视频的数据量: 3、根据f s 这种未压缩的数字视频数据量对于目前的计算机和网络来说无论是存储或传输都是不现实的,因此在多媒体中应用数字视频的关键问题是数字视频的压缩技术。 三、视频序列的SMPTE表示单位 通常用时间码来识别和记录视频数据流中的每一帧,从一段视频的起始帧到终止帧,其间的每一帧都有一个唯一的时间码地址。根据动画和电视工程师协会SMPTE(Society of

高清视频采集盒1080p 可采集SDI、DVI、VGA、HDMI、分量信号

JMC-U200高清视频采集盒 产品品牌:巨渺科技 型号:JMC-U200 产品特性: ●可采集1 路高清或标清视频信号,1 路模拟双声道音频信号。 ●输入视频信号可达1080p/60 Hz。 ●高清信号可采集SDI、DVI、VGA、HDMI、分量信号。 ●可采集SDI 内嵌音频。 ●可采集HDMI 中的LPCM 音频信号。 ●微软AV Stream 标准驱动,可支持大部分Windows 上的多媒体视频软件或流媒体软件。 高级特性: ●支持UVC、UAC 协议,在Window、Linux 和 Mac OS X 平台上都可以即插 即用。 ●高清USB3.0 输出,实际数据传输速度高达 390 MB/S。 ●高清输入可动态切换信号源类型:SDI、 DVI/HDMI,VGA,分量。

●可兼容复合视频(CVBS)输入信号。 ●自动输入视频格式侦测,自动视频有效区域侦 测,自动VGA 采集相位调节。逐行视频中运动画面 会有锯齿出现,会自动选择合适的方式(行滤波去 隔行或单场去隔行)去隔行,提升画面的锐利度和 清晰度。 ●针对VGA 视频,提供了自动相位校正功能,使 采集视频中的文字边缘更加锐利,易于辨识、 阅读。 ●手工设定有效画面区域功能,可用于画面的剪裁和对特殊输入信号时序的支持。 ●多阶画面缩放功能,具有三种针对画面宽高比的缩放模式。 ●支持垂直滤波和运动自适应去隔行功能。采用了新的视频处理流水线,能够处理RGB 和YUV 色彩空间的视频。 ●根据输入和输出格式,尽量减少RGB 和YUV 之间的转换,从最大程度地避免了YUV 色彩空间视频的色彩失真。 ●新的视频处理流水线目前能够处理YUV601、YUV709、Studio RGB、Computer RGB 这4 种不同的色彩空间。 ●硬件色彩转换,可输出RGB24,RGB32,YUY2,UYVY,I420 色彩格式。 ●支持色彩调节功能,可调节画面的对比度、亮度、色彩饱和度、色相、Gamma;并可单独调节R,G,B 三色的亮度、对比度。 ●高质量的图像缩放、剪裁、色彩空间转换、自动去除画面黑边、自动检测隔行视频源和去隔行。

视频信号基础常识

各种视频信号格式及端子介绍 RF/AV/SVIDEO/YUV/VGA/RGB/RGBS/DVI/HDMI/ 视频信号是我们接触最多的显示信号,但您并不一定对各种视频信号有所了解。因为国内用到的视频信号格式和端子非常有限,一般就是复合视频和S端子,稍高级一些的就是色差及VGA。对于那些经常接触国外电器和二手设备的朋友,就会遇到各种希奇古怪的信号端子,我们也经常接到读者这方面的提问。请读者注意:我们这 里所说的视频信号并不是严格意义上的带宽只有5MHz的视频信 号,而是泛指能作为输入输出的显示信号。本文试图把常用视频 信号做一简单叙述,有不全和不对的地方请读者朋友指出。 一、各种视频信号 复合视频信号(Video) 复合视频信号是我们日常生活中最为常见的视频信号,它在 一个传输信号中包含了亮度、色度和同步信号。由于彩色编码的 不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz (NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL 和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成 亮度和色度的相互干扰,使得复合视频成为最差的视频信 号。复合视频信号一般用RCA插头连接,就是通常说的莲 花插头,见图1。欧洲也用SCART接口,老式的视频设备 也有用BNC插头连接。 S视频信号(S-Video) S视频信号俗称S端子信 号,它同时传送两路信号:亮度 信号Y和色度信号C。由于将亮 度和色度分离,所以图象质量优 于复合视频信号,色度对亮度的 串扰现象也消失。由于S视频信 号亮度带宽没有改变,色度信号仍须解调,所以其图象质 量的提高是有限的,但肯定解决了亮色串扰,消除图象的 爬行现象。S端子用四芯插头,见图2。欧洲也用SCART 插头,老式的视频设备也有用两个BNC插头连接,计算机 显卡也有用七芯插头,其外形与S端子一样,只是又包含 了复合视频信号。 隔行色差信号(Y、Cr、Cb)

视频信号的基础知识

一、视频信号的结构与使用 ?图象采集卡是对模拟视频信号采样并作A/D转换而成为数字信号的,为了获得正确的数字信号,对模拟视频信号有一个大概的了解是十分重要的,尤其在一些特殊的应用领域,例如: ?实时处理 ?多路视频输入 ?非标准视频采集 ?立体视觉 ?序列图象分析 ?运动图象 ?等都对摄象机的同步连接;多路切换;图象处理与视频信号的同步配合;图象窗口的选择;亮度与对比度的调节有着特殊的要求,为了满足这些要求,把视频信号的结构了解清楚后,会对用户很快构成并调试好自己的图象处理系统;设计好自己的软件;充分提高CPU处理图象的效率等带来很大的好处

1-1、视频信号的概述 ?视频信号最初是用于广播电视的,也就是说是要经过传输,尤其是无线传输而送到观众接收机上,由于图象的信息量是如此巨大,如果不对视频信号作一定的处理,就会占据无线通讯很宽的宝贵频带,为此对全电视信号在清晰度、闪烁性、叠加彩色后的与黑白图象的兼容性、所占用的带宽等方方面面作了精心的权衡与安排,研究设计出目前的黑白/彩色全电视信号标准。例如隔行扫描就是考虑到带宽、抗闪烁、清晰度等方面而巧妙设计的;PAL或NTSC的彩色图象制式就是考虑到人眼对颜色的着色特性,与原黑白视频的兼容性,在不影响黑白灰度信息的前提下,而将彩色信息调制后插入黑白全电视信号频谱的缝隙之中的。而所谓的不影响仅仅是理论上的,由于技术上的局限性,在接收端将黑白信息与彩色信息分离时,在大多数情况下会大大影响黑白信息的分辨率。视频信号的这些特性在广播电视中带来了巨大的好处,但在图象处理的使用场合又会带来很大的不便与缺陷。

1-2、黑白全电视信号及采集 ?摄象机获取图象形成视频信号是用扫描的方式逐行顺序进行的,从景物的左上角开始扫描第一行,然后向下移动扫描第二行,直至这场扫描完312行(PAL制),到第313行的一半时,这一场结束,形成了一幅奇场图象;从图象的最上部中间开始第313行的后半部扫描,见图一,开始第二场即偶场的扫描,第二场的每一行夹在第一场的相邻行中间,直至625行结束,第二场图象结束,形成了一幅偶场图象,同时相邻行由奇场和偶场图象交叉形成了一帧图象。帧图象、奇偶场图象之间的关系见图二。从图一和图二可以看出,在水平方向一行中的像素从左到右是以纳秒级的速度顺序出现的,而一帧图象的上下二个相邻象素的相隔时间为一场的场周期,可达几十毫秒。这种隔行方式,在同样的分辨率、没有因人眼惰性有限而带来太大的闪烁性的情况下,视频信号的频带带宽几乎减低了一倍,节省了宝贵的通信资源。

视频信号格式

视频端口/视频信号格式(2008-12-19 10:07:59) Y”表示明亮度(Luminance或Luma),C色度(Chrominance或Chroma), YPbPr是将模拟的Y、PB、PR信号分开,使用三条线缆来独立传输,保障了色彩还原的准确性,YPbPr表示逐行扫描色差输出.YPbPr接口可以看做是S端子的扩展,与S端子相比,要多传输PB、PR两种信号,避免了两路色差混合解码并再次分离的过程,也保持了色度通道的最大带宽,只需要经过反矩阵解码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号通道,避免了因繁琐的传输过程所带来的图像失真,保障了色彩还原的准确,目前几乎所有大屏幕电视都支持色差输入。 YCbCr表示隔行分量端子. 所说的Y Cb Cr和Y Pb Pr只是为了方便新人快速区分国产电视上隔/逐行接口而已. Cb Cr 就是本来理论上的分量/色差的标识, C代表分量(是component的缩写)Cr、Cb分别对应r(红)、b(蓝)分量信号,Y除了g(绿)分量信号,还叠加了亮度信号. 至于Y Pb Pr,是后来为了强调逐行概念,显示其飞跃性的变化,这个概念,有一定知识背景的人很容易理解,但普通用户只会更糊涂 YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL)。YUV主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的带宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V”表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是通过RGB输入信号来创建的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面—色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB 信号亮度值之同的差异。 *****U,V分别是与蓝,红的色差.范围是16-240 一、高频或射频信号 https://www.360docs.net/doc/e62086858.html,/cword/3153.shtml 视频端口是背投电视和信号源(比如影碟机)连接的接口,通过这些端口,可以将电影等图像在背投设备上播放。视频端子有不同类型,购买背投电视时尽量挑接口齐全的产品,尤其是最常见的接口,这样可以更方便的和各种设备连接。目前最基本的视频端子是复合视频端子(也叫AV端子)、S端子;另外常见的还有色差端子、VGA端子、DV I端子、HDMI端口。 复合视频端子

数字视频基础知识

第三章 数字视频基础知识 3.1 视频的基础知识 在人类接受的信息中,有70%来自视觉,其中视频是最直观、最具体、信息量最丰富的。我们在日常生活中看到的电视、电影、VCD、DVD以及用摄像机、手机等拍摄的活动图像等都属于视频的范畴。 摄影机是指用胶片拍摄电影的机器,摄像机是用磁带、光盘、硬盘等作为界质记录活动影像的机器,广泛用于电视节目制作、家庭及其他各个方面。 摄影机使用胶片和机械装置记录活动影像,所采用的是光学和化学记录方式,摄象机是采用电子记录方式。 1 视频的定义 ?视频(Video)就其本质而言,是内容随时间变化的一组动态图像(25或30帧/秒),所以视频又叫作运动图像或活动图像。 ?一帧就是一幅静态画面,快速连续地显示帧,便能形运动的图像,每秒钟显示帧数越多,即帧频越高,所显示的动作就会越流畅。 『视觉暂留现象』 ?人眼在观察景物时,光信号传人大脑神经,需经过一段短暂的时间,光的作用结束后,视觉形象并不立即消失,这种残留的视觉称“后像”,视觉的这一现象则被称为“视觉暂留现象”。 ?具体应用是电影的拍摄和放映。 ?根据实验人们发现要想看到连续不闪烁的画面,帧与帧之间的时间间隔最少要达到是二十四分之一秒。 ?视频信号具有以下特点: ?内容随时间而变化 ?有与画面动作同步的声音(伴音) ?图像与视频是两个既有联系又有区别的概念:静止的图片称为图像(Image),运动的图像称为视频(Video)。 ?图像与视频两者的信源方式不同,图像的输入靠扫描仪、数字照相机等设备;视频的输入是电视接收机、

摄象机、录象机、影碟机以及可以输出连续图像信号的设备。 2.视频的分类 ?按照处理方式的不同,视频分为模拟视频和数字视频。 ?模拟视频(Analog Video) ?模拟视频是用于传输图像和声音的随时间连续变化的电信号。早期视频的记录、存储和传输都采用模拟方式,如在电视上所见到的视频图像是以一种模拟电信号的形式来记录的,并依靠模拟调幅的手段在空间传播,再用盒式磁带录像机将其作为模拟信号存放在磁带上。 ?模拟视频的特点: ?以模拟电信号的形式来记录 ?依靠模拟调幅的手段在空间传播 ?使用磁带录象机将视频作为模拟信号存放在磁带上 ?传统视频信号以模拟方式进行存储和传送然而模拟视频不适合网络传输,在传输效率方面先天不足,而且图像随时间和频道的衰减较大,不便于分类、检索和编辑。 ?要使计算机能对视频进行处理,必须把视频源即来自于电视机、模拟摄像机、录像机、影碟机等设备的模拟视频信号转换成计算机要求的数字视频形式,这个过程称为视频的数字化过程。 ?数字视频可大大降低视频的传输和存储费用、增加交互性、带来精确稳定的图像。 ?如今,数字视频的应用已非常广泛。包括直接广播卫星(DBS)、有线电视(如图5.2)、数字电视在内的各种通信应用均需要采用数字视频。 ?一些消费产品,如VCD和DVD,数字式便携摄像机,都是以MPEG视频压缩为基础的。 数字化视频的优点 ?适合于网络应用 ?在网络环境中,视频信息可方便地实现资源共享。视频数字信号便于长距离传输。 ?再现性好 ?模拟信号由于是连续变化的,所以不管复制时精确度多高,失真不可避免,经多次复制后,误差就很大。

视频信号规格及存储计算

D1:480i格式(525i):720×480(水平480线,隔行扫描),和NTSC模拟电视清晰度相同,行频为15.25kHz,相当于我们所说的4CIF (720×576) D2:480P格式(525p):720×480(水平480线,逐行扫描),较 D1隔行扫描要清晰不少,和逐行扫描DVD规格相同,行频为31.5kHz D3:1080i格式(1125i):1920×1080(水平1080线,隔行扫描),高清放松采用最多的一种分辨率,分辨率为1920×1080i/60Hz,行频 为33.75kHz D4:720p格式(750p):1280×720(水平720线,逐行扫描),虽然分辨率较D3要低,但是因为逐行扫描,市面上更多人感觉相对于1080I(实际逐次540线)视觉效果更加清晰。不过个人感觉来说,在最大分辨率达到1920×1080的情况下,D3要比D4感觉更加清晰,尤 其是文字表现力上,分辨率为1280×720p/60Hz,行频为45kHz D5:1080p格式(1125p):1920×1080(水平1080线,逐行扫描),目前民用高清视频的最高标准,分辨率为1920×1080P/60Hz,行频为67.5KHZ。 (1)存储容量计算 单个通道24小时存储1天的计算公式∑(GB)=码流大小(Mbps)÷8×3600秒×24小时×1天÷1024。 (2)标清D1(704*576)格式 按2Mbps码流计算,存放1天的数据总容量 2Mbps÷8 ×3600秒×24小时×(1天)÷1024=21GB。

30天需要的容量∑(GB)=21GB×30天=525GB (3)高清720P(1280*720)格式 按4Mbps码流计算,存放1天的数据总量4Mbps÷8 × 3600秒× 24小时×(1天)÷1024=42GB 30天需要的容量∑(GB)=42GB×30天=1050GB (4)高清1080P(1920*1080P)格式 按8Mbps码流计算,存放1天的数据总量8Mbps÷8 × 3600秒× 24小时×(1天)÷1024=84.375GB 30天需要的容量∑(GB)=84.375GB×30天=2531GB≈2.47TB (5)图片存储容量计算 对500万一台摄像机而言:一张图片按照0.6M计算,平均一天大约通过5000辆车,每条车道保存30天,则按照计算公式:0.6M*5000*30/1024/1024= 0.09T 对200万一台摄像机而言:一张图片按照0.3M计算,平均一天大约通过5000辆车,则每条车道按照计算公式:0.3M*5000*30/1024/1024=0.05T

数字视频的基本概念

数字视频的基本概念(一) 电视的实现,不仅扩大和延伸了人们的视野,而且以其形象、生动、及时的优点提高了信息传播的质量和效率。在当今社会,信息与电视是不可分割的。多媒体的概念虽然与电视的概念不同,但在其综合文、图、声、像等作为信息传播媒体这一点上是完全相同的。不同的是电视中没有交互性,传播的信号是模拟信号而不是数字信号。利用多媒体计算机和网络的数字化、大容量、交互性以及快速处理能力,对视频信号进行采集、处理、传播和存储是多媒体技术正在不断追求的目标。可以说视频是多媒体的一种重要媒体。与视频有关的名词如下: 视像(visual image):电视信号或录像带(videotape)上记录的连续的图像。 伴音(audio):伴随视像的声音信号。 数字视频(digital video):包括运动图像(visual)和伴音(audio)两部分。 一般说来,视频包括可视的图像和可闻的声音,然而由于伴音是处于辅助的地位,并且在技术上视像和伴音是同步合成在一起的,因此具体讨论时有时把视频(video)与视像(visual)等同,而声音或伴音则总是用audio表示。所以,在用到“视频”这个概念时,它是否包含伴音要视具体情况而定。 本章首先介绍模拟视频信号的基本概念,然后介绍视频信号的数字化标准,数字视频的几种主要格式MPEG、AVI和MOV,以及格式间的转换。 模拟电视制式及信号 电视系统是采用电子学的方法来传送和显示活动景物或静止图像的设备。在电视系统中,可以说视频信号是连接系统中各部分的纽带,其标准和要求也就是系统各部分的技术目标和要求。电视的发展前景是数字彩色电视,数字视频系统的基础是模拟视频系统,而彩色电视又是在黑白电视的基础上发展起来的。 黑白电视信号 一、电视原理:电视同样也是采用动画的视觉原理构造而成的,其基本原理为顺序扫描和传输图像信号,然后在接收端同步再现。电视图像扫描是由隔行扫描组成场,由场组成帧,一帧为一幅图像。定义每秒钟扫多少帧为帧频;每秒钟扫描多少场为场频;每秒钟扫描多少行为行频。 二、场频和帧频:我国的电视画面传输率是每秒25帧、50场。25Hz的帧频能以最少的信号容量有效地满足人眼的视觉残留特性;50Hz的场频隔行扫描,把一帧分成奇、偶两场,奇偶的交错扫描相当于有遮挡板的作用。这样,在其它行还在高速扫描时,人眼不易觉察出闪烁,同时也解决了信号带宽的问题。由于我国的电网频率是50Hz,采用50Hz的场刷新率可以有效地去掉电网信号的干扰。 三、全电视信号:电视信号中除了图像信号以外,还包括同步信号。所谓同步是指摄像端(发送端)的行、场扫描步调要与显像端(接收端)扫描步调完全一致,即要求同频率、同相位才能得到一幅稳定的画面。一帧电视信号称为一个全电视信号,它又由奇数场行信号和偶数场行信号顺序构成。 四、分解率:电视的清晰度一般用垂直方向和水平方向的分解率来表示。垂直分解率与扫描行数密切相关。扫描行数越多越清晰、分解率越高。我国电视图像的垂直分解率为575行或称575线。这是一个理论值,实际分解率与扫描的有效区间有关,根据统计,电视接收机实际垂直分解率约400线。 水平方向的分解率或像素数决定电视信号的上限频率。最复杂的电视图像莫过于黑白方块交错排列的图案,而方块的大小由分解率决定。根据这种图案,可以计算出电视信号逐行扫描时的信号带宽约为10MHz;而隔行扫描时的信号带宽约为5MHz。我国目前规定的电

模拟视频与数字视频的区别

模拟视频与数字视频的区别 视频信号可分为模拟视频信号和数字视频信号两大类。 模拟视频是指每一帧图像是实时获取的自然景物的真实图像信号。我们在日常生活中看到的电视、电影都属于模拟视频的范畴。模拟视频信号具有成本低和还原性好等优点,视频画面往往会给人一种身临其境的感觉。但它的最大缺点是不论被记录的图像信号有多好,经过长时间的存放之后,信号和画面的质量将大大的降低;或者经过多次复制之后,画面的失真就会很明显。 数字视频信号是基于数字技术以及其他更为拓展的图像显示标准的视频信息,数字视频与模拟视频相比有以下特点: (1)数字视频可以可以不失真的进行无数次复制,而模拟视频信号每转录一次,就会有一次误差积累,产生信号失真。 (2)模拟视频长时间存放后视频质量会降低,而数字视频便于长时间的存放。 (3)可以对数字视频进行非线性编辑,并可增加特技效果等。 (4)数字视频数据量大,在存储与传输的过程中必须进行压缩编码。 随着数字视频应用范围不断发展,它的功效也越来越明显。 -------------------------------------------------------------------------------- 模拟摄像机 模拟摄像机所输出的信号形式为标准的模拟量视频信号,需要配专用的图像采集卡才能转化为计算机可以处理的数字信息。模拟摄像机一般用于电视摄像和监控领域,具有通用性好、成本低的特点,但一般分辨率较低、采集速度慢,而且在图像传输中容易受到噪声干扰,导致图像质量下降,所以只能用于对图像质量要求不高的机器视觉系统。常用的摄像机输出信号格式有: pal(黑白为ccir),中国电视标准,625行,50场 ntsc(黑白为eia),日本电视标准,525行,60场 secam s-video 分量传输 模拟跟数字的区别还是比较大的: 1、前端。 模拟:只有模拟摄象机即可,视频没有经过压缩,图象质量好,但占用资源极多,存储和检索不方便,反复查看录像会造成录像效果越来越差。

史上最全视频信号音频信号接口汇总,视频、音频工程师必备

信号接口1.S端子 标准S端子 标准S端子连接线

音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。 显卡上配置的9针增强S端子,可转接色差

S端子转接线 欧洲插转色差、S端子和A V

与电脑S端子连接需使用专用线,如VIVO线 2.VGA接口 DVI接口正在取代VGA,图为DVI转VGA的转接头 VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA端子也叫D-Sub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT显示器或具备VGA接口的电视机相连,VGA 接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。

VGA转DVI线,可用在没有VGA接口的设备上 目前VGA接口不仅被广泛应用在了电脑上,投影机、影碟机、TV等视频设备也有很多都标配此接口。很多投影机上还有BGA输出接口,用于视频的转接输出。 3.分量视频接口 3RCA连接线

数字视频技术总复习题

数字视频技术总复习题 一基本概念填空题 1 摄像机在拍摄时,通过光敏器件,将光信号转换为电信号,这种电信号就是(RGB)信号。 2 模拟彩色电视机的制式主要有(NTSC制、PAL制和SECAM制);中国、朝鲜等国家采用(PAL)制式彩色电视机标准。 3 电视机的扫描方式有(隔行扫描和非隔行扫描(逐行扫描))之分。 4 行频f H是指(每秒钟扫描多少行);场频f f是指(每秒钟扫描多少场);每秒扫描多少帧称为(帧频)f F。 5 PAL制式电视的场扫描频率是(50 Hz),周期为(20 ms);帧频是25 Hz,是场频的(一半),周期为(40 ms)。 6 彩色电视中,用Y、C1, C2彩色表示法分别表示亮度信号和两个色差信号,C1,C2的含义与具体的应用有关。在NTSC彩色电视制中,C1,C2分别表示(I、Q)两个色差信号;在PAL彩色电视制中,C1,C2分别表示(U、V)两个色差信号;在CCIR 601数字电视标准中,C1,C2分别表示(Cr,Cb)两个色差信号。 7 电视图像数字化常用的方法有两种,一种是(从复合彩色电视图像中分离出彩色分量,然后数字化);另一种是(用一个高速A/D转换器对彩色全电视信号进行数字化,然后在数字域中进行分离,以获得所希望的YCbCr,YUV,YIQ 或RGB分量数据)。 8 NTSC制、PAL制和SECAM制共同的电视图像采样频率是fs=(13.5MHZ)。 9 目前数字电视图像使用(MPEG-2)video标准。 10 目前传输数字电视的主要方式是(卫星,地面广播和电缆);用它们传输的电视分别称为(卫星数字电视、地面数字电视和有线数字电视)。 11 数字彩色电视机的制式主要有(ATSC DTV、DVB和ISDB)。中国等国家采用(欧洲DVB)制式数字彩色电视机标准。 12 数字电视的视频接口主要有(DVI、HDMI、UDI和DisplayPort)四种接口。 13 模拟电视信号转换为数字电视信号的过程是(模拟/数字转换编码过程),称可为(PCM调制脉冲编码调制),由(A/D转换器实现)。数字电视信号转换为模拟信号则称(PCM解调过程),由(D/A转换器实现)。 14全数字电视系统的信源编码采用(MPEG-2标准对数字化视频信号进行)压缩编码,其目的是(降低数字信号的传输码率)。 15全数字电视系统压缩编码后的数字视频信号在调制前,为了保证在传输工程中尽可能减少差错,通常还要加入(用于纠错的RS码和卷积码)。其目的是(提高数字信号的传输的可靠性)。 16 为了在编码中实现最大的压缩比,MPEG使用三种类型的图像,分别是(I 帧、P帧和B帧)。 17 VCD视频压缩采用(MPEG-1)标准,图像分辨率为(352×240);DVD视频压缩采用(MPEG-2)标准,图像分辨率为(720×480). 18 信息熵表示的是(信源产生信息量的大小)。信息熵越大,不确定度越大,所含信息越多。

数字视频信号的传输

数字视频信号的传输 刘怀林 数字视音频的大潮已经向我们涌来。数字小岛、数字视音频中心、数字转播车已陆续在我国不少电视台出现。甚至数字播出与发射已不再是纸上谈兵。数字化及计算机化将引起电视技术领域的极大变革。本文将从一个非常小的侧面谈一下这个数字大潮。因为数字视频信号的传输在系统设计与安装中是不可缺少的一环。 目前,设备间、系统间的数字视频信号的传输多使用串行信号。其接口为SDI(Serial Digital Interface)。这是因为该方式较简单易行。传送距离较远。因此本文所谈的数字信号的传输实质上就是串行数字视频信号的传输。 数字视频信号的传输在某种意义上讲与模拟信号相似。分为同轴电缆传送,三同轴传送和光纤传送三种。 但由于两者信号有着本质的不同。所以其处理手法上有着很大的区别。 一、同轴电缆传送 在数字环境中,设备间、系统之间的数字视频信号的传送多采用同轴电缆,其接口为SDI。它由三部分组成。如图1所示。 1、串行数据发送: 串行数据发送电路的主要功能是:将数字视频并行信号变成串行信号,通过扰频(scrambler)和NRZI(NonreturntoZeroInverfed)编码,可限制信号的直流成份,前者还有利于接收端回收时钟信号。图2是其示意图: 我们知道,数字分量并行数据率为27MB/秒,10比特。当变成串行数据时,27MHZ10倍频成为270MHZ时钟。在并──串移位寄存器的输出端就变成了270Mb/s的串行数据。 2、电缆和连接器 目前模拟环境下使用的高质量视频电缆可以运行于数字系统。模拟环境下的视频电缆从直流到10MHZ都呈现很低的阻抗。这在数字领域也是需要的。但由于串行数字信号频率很高,这种电缆传输对数字视频信号将有明显的衰减。由于SDI接收端设有自动电缆均衡,另外串行数字信号对这种衰减不敏感。因此现在使用的优质电缆原则上可用于数字环境。为了更好地传输数字视频信号。电缆厂家已生产出专门为串行数字信号设计的新的低耗泡沫介质电缆。比目前电缆更细、更柔软,并且对数字信号有更好的电特性。如Belden1505A。有关连接器,直至目前,视频电缆采用BNC连接器。阻抗为50欧姆。而同轴电缆阻抗为75欧姆。这种看上去不合理的现象为什么能保持至今呢?其主要原因是在视频信号所涉及的频率率上。这种失配并不产生什么问题。但在数字视频信号频率很高的情况下会不会引起脉冲畸变或比特率误差呢?经测试表明,只要接收端输入阻抗看上去为75欧姆。这种50

相关文档
最新文档