不等式知识点整理(可编辑修改word版)

不等式知识点整理(可编辑修改word版)
不等式知识点整理(可编辑修改word版)

一元一次不等式和一元一次不等式组一、概念:

定义 1:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

定义 2:能使不等式成立的未知数的值,叫做不等式的解。(不等式的解有时有无数个,有时有有限个,有时无解。)

定义 3:一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式。

定义 5:左右两边都是整式,只含有一个未知数,并且未知数的最高次数是 1 的不等式,叫做一元一次不等式。

定义 6:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。

定义 7:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

定义 8:求不等式组解集的过程,叫做解不等式组。

二、基本性质:

“等式的基本性质”和“不等式的基本性质”

(1)等式的基本性质:

等式基本性质 1:等式的两边都加上(或减去)同一个整式,等式仍旧成立

如果 a=b,那么a±c=b±c

等式基本性质 2:等式的两边都乘以(或除以)同一个不为 0 的数,等式仍旧成立

如果 a=b,那么 ac=bc,a÷c=b÷c(c≠0)

(2)不等式的基本性质:

不等式的基本性质 1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.

不等式的基本性质 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

不等式的基本性质 3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.

不等式的基本性质与等式的基本性质有哪些异同点?

不等式的基本性质有三条,等式的基本性质有两条;两个性质中在两边都加上(或都减去)同一个整式时,结果相似;在两边都乘以(或除以)同一个正数时,结果相似;在两边都乘以(或除以)同一个负数时,结果不同.

三、相关知识归纳:

(一)、将不等式的解集表示在数轴上时,要注意:

1、指示线的方向,“>”向右,“<”向左.

2、不等式的解集在数轴上表示时,当解集的符号是“≥”或“≤”时,用实心圆点表示,当解集的符号是“>”或“<”时,用空心圆圈表示。

3、不等式的解与解集的联系与区别:二者的区别在于,不等式的解是指能使不等式成立的每一个值;不等式的解集是指所有解的全体。联系是不等式的所有解组成一个解集,或者说不等式的解集包含不等式的每一个解。

4、将不等式的解集表示在数轴上,一般分三步:一是正确地画数轴,注意数轴的三要素;二是确定界点,注意区分实心圆点还是空心圆圈;三是辨别方向,大于指向界点的右方,小于指向界点的左方。

(二)、解一元一次不等式的一般步骤:

(1)去分母———不等式性质 2 或3

注意:

①勿漏乘不含分母的项;

②分子是两项或两项以上的代数式时要加括号;

③若两边同时乘以一个负数,须注意不等号的方向要改变.

(2)去括号——去括号法则和分配律

注意:

①勿漏乘括号内每一项;

②括号前面是“-”号,括号内各项要变号.

(3)移项——移项法则(不等式性质 1)

注意:移项要变号.

(4)合并同类项——合并同类项法则.

(5)系数化成 1——不等式基本性质 2 或性质 3.

注意:两边同时除以未知数的系数时,要分清不等号的方向是否改变(三)、解一元一次不等式应用题的步骤:

(1)审题,找不等关系;

(2)设未知数;

(3)列不等关系;

(4)解不等式;

(5)根据实际情况,写出全部答案

(四)、一元一次方程(组)、不等式(组)与一次函数的关系:

1、一元一次方程与一次函数的关系

任何一元一次方程都可以转化为ax+b=0 (a,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为 0 时,求相应的自变量的值。从图象上看,相当于已知直线y=ax+b,确定它与x 轴的交点的横坐标的值。

2、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0 或ax+b<0 (a,b 为常数,a≠0)的形式,所以解一元一次不等式可以看成:当一次函数值大(小)于 0 时,求自变量的取值范围。

3、规律总结

一次函数y=kx+b 与一元一次方程kx+b=0 及一元一次不等式的关系:函数y=kx+b 的图象在x 轴上方的点所对应的自变量x 的值,即为不等式kx+b>0 的解集;在x 轴上所对应的点的自变量的值即为方程kx+b=0 的解;在x 轴下方的点所对应的自变量的值即为不等式kx+b<0 的解集。

4、一次函数与一次方程(组)

?

?

?

?

(1) 以二元一次方程 ax +by=c 的解为坐标的点组成的图象与一次函数

的图象相同。

(2) 二元一次方程组

的解可以看成是两个一次函数

的图象的交点。

5、一次函数与方程(组)的应用

在实际生活中,如何应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解。

6、一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于 0 时即为方程,当函数值大于或小于 0 时即为不等式。

(五)、两个一元一次不等式所组成的不等式组的解集有以下四种情形.

设 a <b ,那么

?x > a

(1) 不等式组?x > b 的解集是 x >b ; ?x < a

(2) 不等式组?x < b 的解集是 x <a ; ?x > a

(3) 不等式组?x < b 的解集是 a <x <b ; ?x < a

(4) 不等式组?x > b 的解集是无解. 这是用式子表示,也可以用语言简单表述为:

大大取大;小小取小;大小小大取中间;大大小小题无解.

(六)、解一元一次不等式的步骤有:(投影)

去分母;去括号;移项;合并同类项;不等式两边都除以未知数的系数.

下面我们对比地学习解一元一次不等式与解一元一次方程的异同

本章知识结构图

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

不等式知识点汇总

不等式知识点汇总 1、不等式的基本性质 ②(传递性),a b b c a c >>?> ①(对称性)a b b a >?> ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑦(开方法则)0,1)a b n N n >>?∈>且 ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性) 0,0a b a b c d c d >>< ⑥(平方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>?<<> 2、几个重要不等式 ②(基本不等式) 2 a b +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ⑤3 3 3 3(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ①()2 2 2a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式: 22 .2 a b ab +≤

④()2 2 2 a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ③(三个正数的算术—几何平均不等式) 3 ()a b c R + ∈、、(当且仅当 a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑧220;a x a x a x a x a >>?>?<->当时,或 2 2 .x a x a a x a >>>,,规律:小于1同加则变大, 大于1同加则变小. ⑨绝对值三角不等式.a b a b a b -≤±≤+ 3、几个著名不等式 ①平均不等式: 112a b a b --+≤≤ +()a b R + ∈, (当且仅当a b =时取 ""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式:2 22 ;22a b a b ab ++??≤≤ ??? 222 ().2a b a b ++≥ ②幂平均不等式:222212121 ...(...).n n a a a a a a n +++≥+++ ③≥1122(,,,).x y x y R ∈ ④二维形式的柯西不等式2 2 2 2 2 ()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当 ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222 123123112233()()().a a a b b b a b a b a b ++++≥++ ⑥一般形式的柯西不等式:222222 1212(...)(...) n n a a a b b b ++++++

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

不等式知识点整理

元一次不等式和一元一次不等式组 概念: 定义1:一般地,用符号“V” (或“W”),“>”(或“》”)连接的式子叫做不等式。 定义2:能使不等式成立的未知数的值,叫做不等式的解。(不等式的解有时有无数个,有时有有限个,有时无解。)定义3:一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式。 定义5:左右两边都是整式,只含有一个未知数,并且未知数的最高次数是 1 的不等式,叫做一元一次不等式。 定义6:一般地, 关于同一未知数的几个一元一次不等式合在一起, 就组成一个一元一次不等式组。 定义7:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 定义8:求不等式组解集的过程,叫做解不等式组。 基本性质: 等式的基本性质”和“不等式的基本性质” 1)等式的基本性质:等式基本性质1:等式的两边都加上(或减去)同一个整式,等式仍旧成立女口果a=b, 那么a± c=b± c 等式基本性质2:等式的两边都乘以(或除以)同一个不为0的数,等式仍旧成女口果a=b,那么ac=bc, a*c = b*c (c工0)2)不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 不等式的基本性质与等式的基本性质有哪些异同点不等式的基本性质有三条,等式的基本性质有两条;两个性质中在两边都加上(或都减去)同一个整式时,结果相似;在两边都乘以(或除以)同一个正数时,结果相似;在两边都乘以(或除以)同一个负数时,结果不同 三、相关知识归纳: 一)、将不等式的解集表示在数轴上时,要注意:1、指示线的方向, “>”向右, “<”向左. 2、不等式的解集在数轴上表示时,当解集的符号是“》”或“W”时,用实心圆点表示,当解集的符号是“>”或“V”时,用空心圆圈表示。 3、不等式的解与解集的联系与区别: 二者的区别在于, 不等式的解是指能使不等式成立的每一个值; 不等式的解集是指所有解的全体。联系是不等式的所有解组成一个解集, 或者说不等式的解集包含不等式的每一个解。 4、将不等式的解集表示在数轴上,一般分三步:一是正确地画数轴,注意数轴的三要素;二是确定界点,注意区分实心圆点还是空心圆圈;三是辨别方向,大于指向界点的右方, 小于指向界点的左方。 二)、解一元一次不等式的一般步骤: 1)去分母不等式性质2或3 注意: ①勿漏乘不含分母的项; ②分子是两项或两项以上的代数式时要加括号; ③若两边同时乘以一个负数,须注意不等号的方向要改变 2)去括号——去括号法则和分配律 注意: ①勿漏乘括号内每一项; ②括号前面是“-”号,括号内各项要变号 3)移项——移项法则(不等式性质1) 注意:移项要变号.

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式

1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ); 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥+; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小)

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

最新高中数学不等式知识点归纳汇总

最新高中数学不等式知识点归纳汇总 知识点一:绝对值三角不等式 1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|, 当且仅当ab ≥0时,等号成立. 2.定理2:如果a ,b ,c 是实数,那么|a -c|≤ |a -b|+ |b -c|,当且仅当(a-b)(b-c) ≥0时,等号成立.知识点二:绝对值不等式的解法 1.不等式|x|a 的解集: 不等式 a>0a =0a<0|x|a {x|x>a ,或x<-a}{x|x ≠0}R 2.|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法: (1)|ax +b|≤c?-c ≤ax +b ≤c; (2)|ax +b|≥c?ax +b ≤-c 或ax +b ≥c. (3)|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法: 巩固专区:典例 [例1].函数y=|x+1|+ |x+3|的最小值为___________. 解析:由|x+1|+ |x+3|≥|(x+1)-(x+3)|=2,故y 的最小值2。 [例2].不等式|2x-1|0的解集是________. 解析:∵|x|2-2|x|-15>0,∴|x|>5或|x|<-3(舍去),∴x<-5或x>5. 答案:(-∞,-5)∪(5,+∞) [例4].若存在实数x 满足不等式|x -4|+|x -3|

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+(2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 特别说明:以上不等式中,当且仅当b a =时取“=” 5、常用结论 (1)若0x >,则1 2x x +≥(当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤-(当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥b a 112 + 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2 2 2 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ?????? ---≥ ??????????? 6、选修4—5:不等式选讲

不等式知识点整理

不等式知识点整理 一、不等关系: 1.实数的大小顺序与运算性质之间的关系: 0>-?>b a b a ; 0<-? (自反性) (2)c a c b b a >?>>, (传递性) (3)c b c a b a +>+?> (可加性) (4)bc ac c b a >?>>0,; bc ac c b a 0, (可乘性) (5)d b c a d c b a +>+?>>, (同向加法) (6)bd ac d c b a >?>>>>0,0; (同向乘法) (7)n n n n b a b a n N n b a >>?>∈>>,1,,0。 (同向乘方) 3.常用的基本不等式和重要的不等式 (1)0,0,2≥≥∈a a R a , 当且仅当0a =取“=”. (2)ab b a R b a 2,,22≥+∈则(当且仅当a b =时取“=”) (3)+∈R b a ,,则ab b a 2≥+(当且仅当a b =时取“=”) 注:2 a b +——集几何平均数. (4)222()22 a b a b ++≥(当且仅当a b =时取“=”) (5)2222()33 a b c a b c ++++≥(当且仅当a b c ==时取“=”) (6)22222()()()a b c d ac bd ++≥+(当且仅当a b c d =时取“=”)(柯西不等式) 4、最值定理:设,0,x y x y >+≥由 (1)如积xy P =为定值,则当且仅当x y =时x y +有最小值 (2)如和x y S +=为定值,则当且仅当x y =时x y ?有最大值2()2 S . 即:积定和最小,和定积最大. 注:运用最值定理求最值的三要素:一正二定三相等. 5.含绝对值的不等式性质: b a b a b a +≤±≤±(注意等号成立的情况). 二、不等式的证明方法 1.比较法 (1)作差比较法:作差——变形(通分、因式分解等)——判别符号; (2)作商比较法:作商——变形(化为幂的形式等)——与1比大小.(分母要为正的) 2.综合法——由因导果(由前面结论)

一元一次不等式知识点汇总

一元一次不等式知识点汇总 【知识点一】不等式的有关概念 1、不等式定义:用符号“<”、“≤”、“>”、“≥”、“≠”连接而成的数学式子,叫做不等式。这5个用来连接的符号统称不等号。 2、列不等式:步骤如下 (1)根据所给条件中的关系确定不等式两边的代数式; (2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过等确切的含义; (3)选择与题意符合的不等号将表示不等关系的两个式子连接起来。 3、用数轴表示不等式 (1)x a <表示小于a 的全体实数,在数轴上表示a 左边的所有点,不包括a 在内。 (2)x a ≥表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内。 (3)()b x a b a <<<表示大于b 而小于a 的全体实数。

1、不等式的基本性质 (1)基本性质1:若a b <,b c <,则a c <。(不等式的传递性) (2)基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。 ①若a b >,则a c b c +>+,a c b c ->-;②若a b <,则a c b c +<+,a c b c -<-。 (3)基本性质3:①不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立; 若a b >,且0c >,则ac bc >, a b c c >。 ②不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。 若a b >,且0c <,则ac bc <,a b c c <。 2、比较等式与不等式的基本性质

1、一元一次不等式的概念:不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次。 2、不等式的解集:能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。 3、一元一次不等式的解法:步骤如下 (1)去分母:在不等式两边同乘分母的最小公倍数;(根据基本性质3) (2)去括号:把所有因式展开;(根据单项式乘多项式法则) (3)移项:把含未知数的项移到不等式的左边,不含有未知数的项移到不等式的右边;(根据基本性质2) (4)合并同类项:将所有的同类项合并,得ax b >或ax b <(0a ≠)的形式; (5)系数化为1:不等式两边同除以未知数的系数,或乘未知数系数的倒数。(根据基本性质3) 4、一元一次不等式的应用:解有关应用题步骤如下 (1)审题:认真审题,分清已知量、未知量及其关系,抓住题设中的关键字眼,如“大于”、“不小于”等; (2)设:设出适当的未知数; (3)找:找出不等关系; (4)列:根据题中的不等关系,列出不等式; (5)解:解出所列不等式的解集; (6)答:写出答案,并检验答案是否符合题意。

基本不等式知识点归纳.doc

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、 同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0).

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

不等式知识点归纳与总结

授课教案

③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1 -= n n S S 偶 奇 (4)常用公式:①1+2+3 …+n =()2 1+n n ②()()6 1213212222++=+++n n n n Λ ③()2 2 13213333?? ??? ?+=++n n n Λ [注]:熟悉常用通项:9,99,999,…110-=?n n a ; 5,55,555,…()1109 5-=?n n a . 2 等比数列 (1)性质 当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2 =a p a q ,数列{ka n },{ ∑=k 1 i i a }成等比数列。 3 等差、等比数列的应用 (1)基本量的思想:常设首项、公差及首项,公比为基本量,借助于消元思想及解方程组思想等; (2)灵活运用等差数列、等比数列的定义及性质,简化计算; (3)若{a n }为等差数列,则{n a a }为等比数列(a>0且a ≠1); 若{a n }为正数等比数列,则{log a a n }为等差数列(a>0且a ≠1)。 典型例题 例1、已知数列{a n }为等差数列,公差d ≠0,其中1k a ,2k a ,…,n k a 恰为等比数列,若k 1=1,k 2=5,k 3=17,求k 1+k 2+…+k n 。 例2、设数列{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{ n S n }的前n 项和,求T n 。 例3、正数数列{a n }的前n 项和为S n ,且1a S 2n n +=,求: (1) 数列{a n }的通项公式; (2) 设1n n n a a 1b += ,数列{b n }的前n 项的和为B n ,求证:B n 2 1 <. 例4、等差数列{a n }中,前m 项的和为77(m 为奇数),其中偶数项的和为33, 且a 1-a m =18,求这个数列的通项公式。 例5、设{a n }是等差数列,n a n )21(b =,已知b 1+b 2+b 3=821,b 1b 2b 3=8 1 ,求等差数列的通项a n 。 4 练习 1 已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n(n+1)(n+2),则它的前n 项和 S n =______。 2 设等差数列{a n }共有3n 项,它的前2n 项之和为100,后2n 项之和为200,则该等差数列的中间n 项的和等于________。 3 若不等于1的三个正数a ,b ,c 成等比数列,则(2-log b a)(1+log c a)=________。 4 已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,求这个数列的公比和项数。 5 已知等比数列{a n }的首项为a 1>0,公比q>-1(q ≠1),设数列{b n }的通项

数学必修五第三章不等式知识点总结

数学必修五 第三章 不等式 一、知识点总结: 1、 比较实数大小的依据:①作差:0a b a b ->?>;0a b a b -=?=;0a b a b ->>?>时,1a a b b =?=,1a a b b ?<时,,1a a b b =?=,1a a b b 2、 不等式的性质 3、一元二次不等式的解法步骤:①将不等式变形,使一端为0且二次项的系数大于0;②计算相应的判别式;③当0?≥时,求出相应的一元二次方程的根;④根据对应二次函数的图象,写出不等式的解集。(大于0取两边,小于0取中间).含参数的不等式如20(0)ax bx c a ++>≠解题时需根据参数的取值范围依次进行分类讨论:①二次项系数的正负;②方程20(0)ax bx c a ++=≠中?与0的关系;③方程20(0)ax bx c a ++=≠两根的大小。 4、一元二次方程根的分布:一般借助二次函数的图象加以分析,准确找到限制根的分布的等价条件,常常用以下几个关键点去限制:(1)判别式;(2)对称轴;(3)根所在区间端点函数值的符号。设12,x x 是实系数一元二次方程20(0)ax bx c a ++=>的两个实根,则12,x x 的分布情况列表如下:(画出函数图象并在理解的基础上记忆)

5、一元高次不等式()0f x >常用数轴穿根法(或称根轴法、区间法)求解,其步骤如下:①将()f x 最高次项的系数化为正数;②将()f x 分解为若干一次因式或二次不可分解因式的积;③将每一个根标在数轴上,从右上方向下依次通过每一点画曲线(注意重根情况,偶重根穿而不过,奇重根既穿 又过);④根据曲线显现出的符号变化规律,写出不等式的解集。 6、简单的线性规划问题的几个概念:①线性约束条件:由关于,x y 的二元一次不等式组成的不等式组是对,x y 的线性约束条件;②目标函数:要求最值的关于,x y 的解析式,如:22z x y =+,

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

相关文档
最新文档