高级植物生理学02水分胁迫

高级植物生理学02水分胁迫
高级植物生理学02水分胁迫

干旱胁迫

一、逆境概述

抗逆性的研究是目前农业和植物学学科研究的一个热点。

外界胁迫包括两类:生物胁迫(如病虫草害)和非生物胁迫如(温度、水分、营养、重金属、风等)。形成原因有自然界所形成的(如干旱、盐碱、热害、冷害、病虫害等)和人为因素(如重金属污染, 大气污染, 酸雨等)。

植物对胁迫因子的抗性可以分为两种形式:逃避和抵抗。植物细胞可以在一定限度的胁迫条件下,采用适当的防卫机制来抵抗胁迫,使得它能够在不利的环境下生存下来。这种机制表现为细胞代谢的改变,这是以通过信号传导系统调控的抗逆基因的表达为基础的。

共性和个性:不同逆境对植物伤害的机制在很多方面是相同的。植物对不同逆境的抵抗有很多方面也是相同的。讨论:比较逆境生理学,如自由基、活性氧、保护酶、抗氧化剂、脯氨酸……

交叉适应是自然界广泛存在的现象,人们往往用一种胁迫去处理植物细胞,它就可以得到对其他胁迫因子的抗性,这种现象是以共同的生理反应为基础的。

胁迫条件同样诱导了很多的胁迫蛋白的出现,在细胞内出现最多的是热激蛋白, 已有一些直接或间接的证据表明Ca2+ 及CaM参与了植物HSR的信号转导。

ABA、乙烯、生长素、烟草花叶病毒(TMV) 的感染、盐、干旱、冷害、紫外光、机械伤害及真菌感染等至少可以有10 余种信号可以诱导渗调素的产生。渗透胁迫=干旱?。

信号转导:抗性基因的诱导与ABA 密切相关, 外加的ABA 可以诱导抗性基因的表达。NO是一种植物细胞内广泛存在的信号物质,调控着很多植物生命活动,在植物抗性反应中,它的作用往往是和活性氧和ABA相互交联的。当病原菌侵害时,NO可以和活性氧共同作用诱导细胞的抗病反应。

二、胁迫对植物的伤害

干旱对植物生长和繁殖、农业生产和社会生活有着极其重要的影响。干旱对世界作物产量的影响,在诸自然逆境中占首位,其危害程度相当于其他自然灾害之和。植物旱害是由自然条件和植物本身的生理条件所引起。包括自然条件引起的大气干旱、土壤干旱和植物本身原因引起的生理干旱。

水分胁迫的标准。采用土的含水量表示比较方便,采用植物本身的水分指标来表示比较正确。水势,相对含水量,叶片气孔阻力和蒸腾速率也是常用的衡量水分胁迫程度的表征指标。

植物生长受抑制是干旱胁迫所产生的最明显的生理效应

干旱胁迫抑制光合作用光反应中原初光能转换、电子传递、光合磷酸化和光合作用暗反应过程最终导致光合作用下降。

呼吸作用减慢,

蛋白质分解

核酸代谢受阻,激素代谢途径改变等

活性氧的产生和抗氧化系统之间的平衡体系破坏。而损伤膜的结构和抑制酶

的活性,导致细胞因受氧化胁迫而伤害细胞。旱胁迫使植物不同程度的面临由超氧阴离子、过氧化氢、单线态氧和羟自由基等活性氧引发的氧化胁迫。叶绿素吸收过量光能后叶绿体内活性氧的增加对光合机构产生破坏作用成为植物发生光抑制的主要原因

三、耐旱性的生物学机理

气孔行为。植物对干旱胁迫的最初反应是通过气孔口来调整气孔开度,防止植物体内水分的散失和维持一定的光合作用。气孔开度的减小一方面可降低蒸腾速率,防止叶片水分的过度散失;另一方面又阻碍CO2的进入,植物以以CAM型、以及C4植物型方式进行CO2固定的光合作用等

加快吸水。根的适应性生长、根形态和根构型改变。如较大的输导组织和非输导组织之比、高的根冠比及低渗透势的根系等。一些研究认为,根系大、深、密是抗旱作物的基本特征持续干旱条件下,根冠比比值越大,小麦品种抗旱性越强。以肥调水”(在植物的渗透调节中起作用即在高营养状况下渗透调节能力增强,因而保持了较好的水分状况)。

渗透调节。耐旱植物在干旱条件下积累有机物和无机物质,以提高细胞液浓度,降低其渗透势,使细胞维持一定的膨压。通常积累的物质包括无机离子(K+ , Ca2+)脯氨酸、甜菜碱、甘露糖醇、海藻糖、果聚糖等。干旱条件下游离脯氨酸可成十倍地增加,干旱诱发的脯氨酸积累有如下三条途径(汤章诚,1983):(1) 失去了脯氨酸合成的反馈抑制作用,(2)氧化受到抑制,(3)蛋白质合成受到抑制。通过渗透调节作用完成的耐旱性也有一定的局限性。表现在:(1)渗透调节的暂时性。如果在干旱土壤中充分灌水,植物本来具有的渗透调节能力在随即而来的又一次干旱中会消失,渗透调节能力是可逆转的,已建立的渗透调节作用复水后能消失而再受胁迫时仍能建立。(2) 渗透调节的有限性。如果干旱胁迫非常严重,膨压就不能维持下去(3) 渗透调节并不能完全维持生理过程。即使在能进行渗透调节的水势变化范围内,干旱的影响仍是存在的,如生长速度下降,气孔扩散阻力

增加等。

抗氧化防御系统

脱落酸作用。水分缺失时植物叶肉细胞合成高水平的脱落酸,脱落酸使保卫细胞气孔关闭,有效地防止水分泄漏(宋纯鹏:分根试验抗旱的机理研究)。干旱下根系脱水产生ABA并随水流传递到叶片控制了植物的气孔导度, 根系ABA含量

大幅度增加,并同时伴随气孔导度的下降。根系是ABA 的主要产生位点,

Lea 蛋白的保护作用。目前推测Lea 蛋白可能有以下三方面的作用: (1) 作为脱水保护剂。由于Lea 蛋白在结构上富含不带电荷的亲水氨基酸,一方面,它们可能象脯氨酸作用一样,通过与细胞内的其它蛋白发生相互作用,使它们的结构保持稳定;另一方面,它们可能给细胞内的束缚水提供了一个结合衬质,从而使细胞结构在脱水中不致遭受更大的破坏。(2) 作为一种调节蛋白而参与植物渗透调节。(3) 通过与核酸结合而调节细胞内其他基因的表达。有些Lea 蛋白含有一些带正电荷的保守区域,有人推测这些区域可以同核酸类物质发生结合。

四、植物耐旱性的途径

利用常规和现代的育种技术选育培育抗旱品种

科学合理的耕作栽培措施:地表覆盖,土壤表面填加高聚物,土壤合理施肥(种子处理CaCl2 和赤霉素混合拌种),利用微生物提高植物抵御干旱能力(内生真菌)

化学调控:在干旱胁迫条件下,经20-100 mg/L 乙烯利提高玉米幼苗抗旱性。玉米幼苗的存活率增加,同时处理后叶片中的叶绿素含量和水势均增加,脯氨酸含量上升,SOD、POD活性增高,细胞的相对电导率降低。

基因工程:近几年来,利用基因工程技术改良植物耐旱性的研究主要有三个方面:(1)导入编码催化产生渗压剂的酶基因。植物中P5cs 基因对非生物胁迫下脯氨酸合成起着主要作用,Kishor 等(1995) 使用CaMV35S 启动子启动P5cs 基因并导入烟草中,发现转基因烟草中脯氨酸含量比对照高10~18倍。梁峥等将菠菜中的甜菜碱醛脱氢酶(BADH) 基因转入到烟草中,结果发现获得转基因植株中甜菜碱积累量显著增加,植株的抗旱性均获得提高。通过基因工程技术把海藻糖合酶基因导入植物以改良植物的抗旱性已有一些成功的报道. 如Holmstrom

等把来自大肠杆菌的海藻糖合酶基因OtsBA导入甜菜、马铃薯中,使转基因植物的抗旱性和耐寒性得到了增强。(2)导入清除活性氧的酶基因,表达拟南芥Fe-SOD 的转基因烟草、表达番茄Cu/Zn-SOD 的转基因烟草、过量表达豌豆Cu/Zn -SOD 的转基因烟草均能增强抵抗干旱引起的氧化胁迫能力。和(3)导入胁迫诱导的蛋白(如Lea 蛋白) 基因,大麦的Lea 蛋白基因HVA1 导入水稻后使水稻叶片中Lea 蛋白的表达量很高,占总可溶蛋白的0.5 %-2.5%,其耐旱能力提高了。

脯氨酸(Proline)

Pro的作用表现为细胞内的渗透调节剂、还原剂或能量来源、N素储藏物质、羟基自由基清除剂、细胞内酶的保护剂以及降低细胞内酸度和调节氧化还原电势等,鉴于Pro上述作用,有关其代谢和调节的研究一直是逆境生理中的热点研究课题。人们试图通过控制代谢反应,提高细胞内Pro含量,以增强植物抗逆性。近年来随着分子生物学技术的发展,参与Pro代谢的部分酶基因已从各种植物中分离出来,并对它们的表达及基因产物进行了鉴定。

已证明植物体内存在两条Pro合成途径,根据起始氨基酸命名为Glu途径和Orn途径。胁迫导致水分亏缺时植物体内Pro积累主要依靠Glu途径。Pro合成以依赖于ATP的r-谷氨酰激酶(GK)催化反应开始,产物被谷氨酰半醛脱氢酶(GSADH)还原生成谷氨酰半醛(GSA) ,后者自发环化生成吡咯啉-5-羧酸(p5c) , 最终在p5c还原酶(p5cR)的作用下生成Pro。

五、营养与抗性互作

1 氮素营养对作物抗旱性的影响

渗透调节能力:干旱条件下增施氮素能够降低叶片渗透势增大膨压,增强其渗透调节能力,而渗透调节能力的增加必然依靠渗透调节物质的积累。研究表明在干旱条件下,施氮菜豆叶片蔗糖含量增加是对照的2.3倍,冬小麦叶片脯氨酸含量是对照的3倍,可溶性糖特别是还原性糖的大量积累,对提高作物渗透调节能力都具有重要的意义

光合作用:土壤水分正常供应条件下,缺氮造成植物光合效率、光合量子效率和有关碳代谢酶类的活性降低,在干旱条件下,特别是严重干旱条件下氮素营养明显降低叶片气孔导度有利于气孔关闭,减少单位面积的水分散失,增加作物抗旱性;同时施用氮肥还能够提高叶肉细胞光合活性,从而提高单叶片净光合速率,促进同化物的积累。另外,干旱条件下施用氮素提高光合效率除与叶片本身光合能力有关外,还与施氮提高作物叶片数和叶面积指数有关。

根/冠比建立强大的根系是植物抵御干旱的一种主要方式,根/冠比则在调节植物水分平衡方面起着主要作用。无论在哪种水分水平上,施氮处理的根干重都大于对照,且随着施氮量的增加而增大,但地上部分增加的幅度更为显著,因此施氮处理的根/冠比反而小于对照,且随施氮量的增加而增加,说明施氮处理增加了叶面积,增大了光合作用的场所,但根/冠比的下降又在某种程度上增加了叶片蒸腾失水,不利于作物维持水分平衡

2 磷素对植物抗旱性的影响

水分状况和渗透调节能力。在干旱条件下,磷素营养一方面降低棉花叶片ABA含量,增大作物的气孔导度,导致单位叶面积水分散失增多,同时还促进叶片细胞分裂,使叶面积增大,提高了植物的耗水量,从而使水分利用效率降低。另一方面又能提高作物叶片的水势及其相对含水量,提高玉米幼苗叶片过氧化物酶和超氧化物歧化酶活性,而较高的过氧化物酶和超氧化物歧化酶活性能够降低细胞内活性氧自由基的含量,抑制膜内不饱和脂肪酸分解产物丙二醛含量的积累,增强细胞膜的稳定性,提高细胞内胶体水合程度和束缚水含量,增强组织和细胞的保水能力使细胞膜透性降低,另外磷素营养还能促进作物的根系生长,提高根系比表面积,降低根系呼吸强度,提高根水势,促进根系的延伸生长,扩大对土壤深层水分的吸收和利用,从而维持地上部生长的平衡和吸水、失水间的平衡。

光合速率。干旱条件下,磷素营养能够提高叶片净光合速率,提高同化物质的积累,主要原因有以下四方面:①磷素营养能够调节棉花叶片ABA和CTK之间的平衡,增加叶片气孔导度,降低气孔阻力②磷素营养能够减缓干旱造成的叶绿素和类胡萝卜素的下降,提高叶绿素a和叶绿素b、叶绿素和类胡萝卜素之间的比值,另外复水后,磷素营养能使叶绿素和类胡萝卜素较好地恢复③磷素营养能够提高干旱条件下春小麦叶片细胞间隙CO2 浓度,降低CO2补偿点,增强叶片细胞的CO2消耗能力;④磷素营养促进细胞分裂,叶片伸长,叶面积增大,从而提供更多的光合作用的场所。

3 钾素对植物抗旱性的影响

水分状况和渗透调节能力。钾素营养能够促进K+在细胞内的积累,使细胞膨压升高,耐脱水能力增强;同时, K+作为渗透调节中最重要的一种渗透调节物质,能够提高作物的渗透调节能力,在提高作物抗旱性上具有重要的作用。干旱引起植株

体内K+重新分配,上部器官从下部器官夺取K+,并且首先从邻近部位夺取K+,下部器官则从土壤中吸收K+。在干旱条件下,钾素营养能够促进植物体对K+的吸收,提高体内K+含量,而K+作为渗透调节物质,其含量的升高能够降低细胞的渗透势,提高细胞膨压,增强作物渗透调节能力和抗脱水能力,保证各种代谢活动的正常进行,K+提高干旱条件下作物叶片的渗透调节能力可能与K+促进干旱条件下高粱幼苗体内脯氨酸积累有关;同时钾素营养也能促进植物根系对K+的吸收和植物对土壤水分的利用效率,降低作物叶片的水势,提高相对含水量。K+在保卫细胞中的积累是气孔张开的动力。在干旱条件下,钾素营养使作物对气孔的调节作用明显增强,表现在气孔密度降低,形状发生改变,减少气孔阻力,增强水分和CO2通过气孔的交换,从而使蒸腾速率提高,从而提高作物对干旱的敏感性,有利于作物保水;而大的蒸腾效率一方面可以提高作物对干旱的敏感性,另一方面促进作物根系从土壤中吸收水分。这可能是施钾提高作物抗旱性的原因之一。干旱条件下,钾素提高作物抗旱性还表现在K+能够提高细胞原生质的保水能力,增强细胞膜的稳定性,促进游离脯氨酸的积累,提高作物体内硝酸还原酶的活力和改善作物对其它营养的吸收和利用等。

光合作用在干旱条件下,钾素营养能够提高叶片的光合速率,其中最主要的原因是钾素在气孔调节中的作用。

六、涝渍胁迫

农业生产中,植物涝害不如旱害普遍,但在某些地区或某个时期,涝害的危害可能更大. 如在某些排水不良或地下水位过高的土壤和低洼、沼泽地带,发生洪水或暴雨之后,常会出现水分过多造成对植物的危害. 涝害对作物危害很大,轻则减产,重则颗粒无收。土壤缺氧是涝害发生的重要原因.

植物的耐缺氧特性

避缺氧性是指植物通过增强对氧的吸收和在体内的扩散或减少向外的逸失,维持组织中适宜的氧水平,以保障其正常的生理功能,这是一种主动的、积极的抗性方式; 通气组织和不定根的形成、皮孔增生、叶柄偏上生长以及根的向氧性生长可增强氧的吸收与扩散,质外体障碍( apoplastic barrier)的形成能够减少体内氧的逸失;植物激素如乙烯、生长素、脱落酸和赤霉素及其调节作用、ACC合成酶、木葡聚糖内转葡糖基酶(XET)和纤维素酶等为植物避缺氧性的形态解剖变化提

供了一定的生理生化基础。

耐缺氧性则指组织中氧水平已经降低到正常生理要求以下时,植物通过某些生理生化机制减轻缺氧对细胞和组织的伤害,以维持生存,这是一种被动的抗性方式,但对于在严重缺氧条件下保证种的延续是有利的. 氧化磷酸化、发酵途径、磷酸戊糖途径、硝酸盐还原作用、胞质pH的维持与加强可提供维持植物在低氧环境下各项正常生理功能必要的能量与内部环境;厌氧多肽如乙醇脱氢酶、丙酮酸脱羧酶等糖酵解和发酵途径酶类诱导与活化机制的研究,可揭示代谢调控作用的分子基础;活性氧产生的抑制与清除、非酶清除剂(如抗坏血酸、谷胱甘肽、维生素E等)和活性氧清除酶类(SOD、POD、CAT等)以及使还原态抗氧化剂再生的酶的活化等,可减轻淹水胁迫下活性氧积累对植物的伤害.

质外体障碍的形成和根系的向氧性生长

氧从根内向外的释放不利于植物在淹水条件下的存活,使其耐涝能力降低。凯

氏带的栓质化外皮层木栓化和木质化的外皮层障碍及其它的纤维组织可有效阻止氧从通气组织向根外的扩散,减小径向氧损失有利于氧向根尖的长距离扩散,是一种适应性反应

植物根系在淹水条件下具有向氧性生长反应,如有的木本植物受到淹水后,会长出许许多多漂在水中并伸向水面的细小根.

发酵途径:低氧下发酵作用快速诱导,耐淹植物有高水平的乙醇发酵作用,醇脱氢酶(ADH)缺乏型突变体对淹水很敏感。作用是维持正常的或最低的能量供应。

厌氧多肽:淹涝使植物的基因表达发生一系列变化,原来(有氧)的蛋白质合成受到抑制,而同时形成了某些新的多肽,称之为厌氧多肽(ANPs)。厌氧多肽中有一些就是糖酵解和乙醇发酵的酶类,如ADH、丙酮酸脱羧酶,葡萄糖-6-磷酸异构酶,果糖-1,6-二磷酸醛缩酶和蔗糖合成酶。

植物激素:淹水可引起许多植物体内乙烯(C2H4 )水平的显著提高. C2H4大量合成后其主要生理作用有: (1)刺激通气组织的发生和发展.(2)刺激不定根生成和皮孔增生. 3)诱导叶柄偏上生长. (4)淹涝胁迫还可促进根系木质化和栓质化,使根中氧径向泄漏减少,根尖氧浓度相应提高。

《植物生理学(第七版)》课后习题答案

第一章植物的水分生理 ●水势:水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。 ●渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。 ●压力势:指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁 产生一种限制原生质体膨胀的反作用力。 ●质外体途径:指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。 ●共质体途径:指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连 续体,移动速度较慢。 ●渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 ●根压:由于水势梯度引起水分进入中柱后产生的压力。 ●蒸腾作用:指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。 ●蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。 ●蒸腾比率:光合作用同化每摩尔CO2所需蒸腾散失的水的摩尔数。 ●水分利用率:指光合作用同化CO2的速率与同时蒸腾丢失水分的速率的比值。 ●内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。 ●水分临界期:植物对水分不足特别敏感的时期。 1.将植物细胞分别放在纯水和1mol/L 蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?答:在纯水中,各项指标都增大;在蔗糖中,各项指标都降低。 2.从植物生理学角度,分析农谚“有收无收在于水”的道理。答:水,孕育了生命。陆生植物是由水生植物进化而来的,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下才能进行,否则,植物的正常生命活动就会受阻,甚至停止。可以说,没有水就没有生命。在农业生产上,水是决定收成有无的重要因素之一。水分在植物生命活动中的作用很大,主要表现在4个方面:水分是细胞质的主要成分。细胞质的含水量一般在70~90%使细胞质呈溶胶状态,保证了旺盛的代谢作用正常进行,如根尖、茎尖。如果含水量减少,细胞质便变成凝胶状态,生命活动就大大减弱,如休眠种子。水分是代谢作用过程的反应物质。在光合作用、呼吸作用、有机物质合成和分解的过程中,都有水分子参与。水分是植物对物质吸收和运输的溶剂。一般来说,植物不能直接吸收固态的无机物质和有机物质,这些物质只有在溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输,也要溶解在水中才能进行。水分能保持植物的固有姿态。由于细胞含有大量水分,维持细胞的紧张度(即膨胀),使植物枝叶挺立,便于充分接受光照和交换气体。同时,也使花朵张开,有利于传粉。 3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的?答:通过膜脂双分子层的间隙进入细胞。膜上的水孔蛋白形成水通道,造成植物细胞的水分集流。植物的水孔蛋白有三种类型:质膜上的质膜内在蛋白、液泡膜上的液泡膜内在蛋白和根瘤共生膜上的内在蛋白,其中液泡膜的水孔蛋白在植物体中分布最丰富、水分透过性最大。 4.水分是如何进入根部导管的?水分又是如何运输到叶片的?答:进入根部导管有三种途径:质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。这三条途径共同作用,使根部吸收水分。根系吸水的动力是根压和蒸腾拉力。运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。 5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?答:保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。保卫细胞细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于是吸水膨胀,气孔张开;在黑暗条件下,进行呼吸作用,消耗有机物,升高了渗透势,于是失水,气孔关闭。 6.气孔的张开与保卫细胞的什么结构有关?答:细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。 第二章植物的矿质营养 ●矿质营养:植物对矿物质的吸收、转运和同化。

植物对干旱胁迫的响应及其研究进展

植物对干旱胁迫的响应及其研究进展 学院:班级: 姓名:学号: 摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化. 关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 一、植物抗旱基因工程研究新进展 (一)与干旱胁迫相关的转录因子研究 通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴

植物生理学之 第一章 植物的水分代谢

第一章植物的水分代谢 一、名词解释 1.水分代谢2.水势3.压力势4.渗透势5.根压6.自由水7.渗透作用8.束缚水9.衬质势10.吐水11.伤流12.蒸腾拉力13.蒸腾作用14.蒸腾效率15.蒸腾系数16.生态需水17.吸胀作用18.永久萎蔫系数19.水分临界期20.内聚力学说2l.植物的最大需水期22.小孔扩散律23. 重力势24. 水通道蛋白25. 节水农业 二、写出下列符号的中文名称 1. RWC 2.Ψw 3.Ψs 4.Ψm 5. Vw 6.Ψp 7. SPAC 8. RH 9.Mpa 10.AQP 三、填空题 1. 水分在植物体内以______ 和______ 两种形式存在。 2. 将一个充分饱和的细胞放入比其细胞液低10倍的溶液中,其体积______。 3. 植物细胞的水势是由______ 、______ 、______ 等组成的。 4. 细胞间水分子移动的方向决定于______,即水分从水势______的细胞流向______的细胞。 5. 水分通过叶片的蒸腾方式有两种,即______ 和______ 。 6. ______和______现象可以证明根压的存在。 7. 无机离子泵学说认为,气孔在光照下张开时,保卫细胞内______离子浓度升高,这是因为保卫细胞内含______,在光照下可以产生______,供给质膜上的______作功而主动吸收______离子,降低保卫细胞的水势而使气孔______。 8. 影响蒸腾作用最主要的外界条件是______ 。 9. 细胞中自由水越多,原生质粘性______,代谢______,抗性______。 10. 灌溉的生理指标有______ ,细胞汁液浓度,渗透势和______ 。 11. 植物细胞吸水有三种方式,未形成液泡的细胞靠______吸水,液泡形成以后,主要靠______吸水,另外还有______吸水,这三种方式中以______吸水为主。 12. 相邻的两个植物细胞,水分移动方向决定于两端细胞的______。 13. 干燥种子吸收水分的动力是______ 。 14. 植物对蒸腾的调节方式有______、______和______。 15. 某种植物每制造一克干物质需要消耗水分500克,其蒸腾系数为______,蒸腾效率为______。 16. 水滴呈球形,水在毛细管中自发上升。这两种现象的原因是由于水有______。 17. 影响气孔开闭的最主要环境因素有四个,它们是______,______,______和______。 18. 植物被动吸水的能量来自于______,主动吸水的能量来自于______。 19. 影响植物气孔开闭的激素是______、______。 20. 将已发生质壁分离的细胞放入清水中,细胞的水势变化趋势是______,细胞的渗透势______ ,压力势______ 。 四、问答题 1. 温度过高或过低为什么不利于根系吸水? 2. 试述气孔运动的机理。 3. 试述水对植物生长发育的影响。 4. 蒸腾拉力能将水分提升至植物体的各个部位,其途径和机理是什么? 5. 解释“烧苗”现象的原因。 6.土壤通气不良造成根系吸水困难的原因是什么?

水分胁迫与活性氧代谢

水分胁迫与活性氧代谢

摘要:水分胁迫使植物细胞产生大量的活性氧,而植物体内的酶促和非酶促清除系统不能及时地将其清除,使活性氧的产生能力大于清除能力,从而使体内的活性氧代谢失调,对植物造成伤害。文中综述了水分胁迫下活性氧代谢:(1)水分胁迫会通过多条途径来增加活性氧自由基的产生, 从而造成对植物的伤害;(2)活性氧的清除系统在活性氧自由基的清除中发挥着重要的作用,水分胁迫对各种保护酶的影响是不同的;(3)活性氧代谢与植物的抗旱能力有着密切的关系,它们可以作为抗旱性品种鉴定和选育的参考指标。文中还就活性氧代谢的进一步研究提出了建议。 目前,全球有近三分之一的可耕地处于干旱或半干旱状态,由于干旱所造成的作物品质下降,产量降低是十分惊人的,其减产程度超过其它逆境因素所造成的减产的总和[1]。当植物遭受到水分胁迫(干旱)时,都会使植物体内产生大量的活性氧自由基,造成氧化损伤,从而对植物产生严重的危害。这些活性氧自由基是通过植物体自身的代谢产生的一类自由基。主要包括:氢氧根负离子(OH-)、氢氧自由基(·OH) 、过氧化氢(H2O2)、超氧物阴离子自由基(O2·-) 、单线态氧(1O2) 等。这些活性氧自由基可以损伤蛋白质、质膜、叶绿素及其它细胞组分。当这些活性氧对细胞产生伤害时,细胞内还存在一些物质来清除活性氧自由基, 以减弱对细胞的损伤。活性氧清除剂主要包括:超氧化物歧化酶(SOD)、过氧化氢酶

(CAT)、过氧化物酶(POD)、谷胱甘肽还原酶(GR)、抗坏血酸过氧化物酶(ASP)、以及维生素C(ASA )、维生素E(Vte)、还原型谷胱甘肽(GSH)、类胡萝卜素(Car)、类黄酮、甘露醇等。 在正常情况下,细胞内活性氧的产生与清除总是处于动态平衡状态,即体内产生的活性氧可以及时地被活性氧清除剂清除掉,不会对植物产生伤害。而在水分胁迫条件下,植物细胞膜系统会受到破坏,Fridovich[2]提出生物自由基伤害学说,认为植物体内自由基大量产生(毒害)会引发膜脂过氧化作用,造成细胞膜系统的破坏,直到植物细胞的死亡。干旱胁迫下造成对植物的伤害就是细胞内O2·-自由基的产生与清除的不平衡所致,从而使膜脂发生过氧化作用或膜脂脱脂作用(形成丙二醛),破坏膜结构,使植物受到伤害[3]。 1 水分胁迫中活性氧的产生及对植物的损伤 在高等植物的正常代谢过程中,活性氧可通过多条途径产生。例如,在电子传递的过程中,当电子传递到分子氧上时,随之产生活跃且具有毒性的活性氧。叶绿体、线粒体、过氧化物体等均可产生活性氧。其中对叶绿体活性氧的产生机制了解得最为清楚。叶绿体是光合作用的细胞器,在PSI 的电子传递过程中,光合电子可通过末端氧化酶将O2光氧化还原为超氧化物,并通过PSI的电子循环或类囊体扩散至基质表面,在这里发生酶促歧化反应生成H2O2和O2或者在Fe或Cu 的存在下通过Fenten或Haber-Weiss反应生成OH-和O2[4]。最近

植物生理学名词解释(全)

一、绪论 1、植物生理学就是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢与物质代谢。 二、植物的水分生理 1、水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则就是负值。水分代谢:植物对水分的吸收、运输、利用与散失的过程。 2.衬质势: 由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 3、压力势:植物细胞中由于静水质的存在而引起的水势增加的值。 4、渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。 5、渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,就是指水分子从水势高处通过半透膜向水势低处扩散的现象。 6、质壁分离:植物细胞由于液泡失水而使原生质体与细胞壁分离的现象。 7、吸胀作用: 亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀。 8、根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流与吐水现象就是根压存在的证据。 9、蒸腾作用:水分通过植物体表面(主要就是叶片)以气体状态从体内散失到体外的现象。 10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。 11、蒸腾系数:植物每制造1g干物质所消耗水分的g数,它就是蒸腾效率的倒数,又称需水量。12、气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。 13、气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。 14、保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体与水分的量。形成气孔与水孔的一对细胞。双子叶植物的保卫细胞通常就是肾形的细胞,但禾本科的气孔则呈哑铃形。气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。 15、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。 16、水孔蛋白: 存在在生物膜上的具有通透水分功能的内在蛋白。水通道蛋白亦称水通道蛋白。 17、内聚力(the cohesion value)又叫粘聚力,就是在同种物质内部相邻各部分之间的相互吸引力,这种相互吸引力就是同种物质分子之间存在分子力的表现。 18、蒸腾拉力-内聚力-张力学说 19、萎焉:水分亏缺严重时,植物细胞因失水而松弛,靠膨压维持挺立状态的叶片与茎的幼嫩部分下垂,这种现象叫萎焉。 20、暂时萎焉:当蒸腾作用强烈,根系吸水及转运水分的速度较慢,不足以弥补蒸腾失水时, 发生暂时萎焉,当蒸腾速率降低时,根系吸水的水分足以弥补失水,消除水分亏缺,即使不浇水或者通过荫蔽能恢复,这种靠降低蒸腾就能消除的萎焉。

植物水分胁迫诱导蛋白研究进展

植物水分胁迫诱导蛋白研究进展 施俊凤1,孙常青2  (1.山西省农业科学院农产品贮藏保鲜研究所,山西太原030031;2.山西省农业科学院作物遗传研究所,山西太原030031) 摘要 干旱是影响植物正常生长发育的一种最主要的逆境因子,研究发现了大量的植物应答水分胁迫的蛋白。笔者综述了这些蛋白的特性和功能,以提高人们对于植物抗旱机理的认识。关键词 水分胁迫;功能蛋白;调节蛋白;植物中图分类号 S311 文献标识码 A 文章编号 0517-6611(2009)12-05355-03P rogress in P roteins R esponding to W ater Stress in P lants SHI Jun 2feng et al (Institute of Farm Products S torage ,Shanxi Academ y of Agricultural Sciences ,T aiyuan ,Shanxi 030031)Abstract Drought is an im portant stress factor ,which im pacts the grow th and developm ent of plants.At present ,a series of proteins responding to water -stress in plants have been reported.T he study summ arizes the characters and functions of these proteins for enhancing integrated understanding to the m echanism of proteins inv olved in the tolerance to water stress in plants.K ey w ords W ater stress ;Functional protein ;Regulatory protein ;Plant 作者简介 施俊凤(1977-),女,山西代县人,助理研究员,从事抗旱 分子研究。 收稿日期 2009202206 干旱在我国是影响区域最广、发生最频繁的气象灾害。植物在遭受干旱胁迫时,会做出各种反应来避免或减轻缺水对其细胞的伤害。随着分子生物学技术和理论的发展,抗旱相关基因不断被克隆,现已证明一些基因表达产物可增强植物的抗逆性。根据其功能,可分为调节蛋白和功能蛋白两大类。 1 调节蛋白 调节蛋白在逆境胁迫信号转导和功能基因表达过程中起调节作用。目前,已发现的主要有转录因子、蛋白激酶、磷脂酶C 、磷脂酶D 、G 蛋白、钙调素和一些信号因子等。 1.1 转录因子 转录因子对水分胁迫的响应非常迅速,一 般数分种即可达最高水平,转录因子C BF1、C BF2、C BF3、C BF4和DRE B1a 、DRE B1b 、DRE B1c 、DRE B2通过与顺式作用元件 CRT/DRE 结合,引起一组含顺式作用元件CRT/DRE 的抗旱 功能基因表达。在拟南芥等多种植物中,DRE 顺式作用元件普遍存在于干旱胁迫应答基因的启动子中,对干旱胁迫诱导基因的表达起调控作用。 转录因子A BF 和bZIP 可与顺式作用元件A BRE 特异结合,通过依赖A BA 的信号转导途径调控植物对冷害、干旱和高盐碱等环境胁迫的反应 [1] ;MY B 和MY C 可与MY BR 和 MY CR 特异结合,引起相应抗旱功能基因的表达;WRKY 调控 的目标基因启动子是具有W 框的顺式元件,在拟南芥中约有100个WRKY 成员,存在于根、叶、花序、脱落层、种子和维管组织中,参与植物胁迫反应的很多生理过程 [2] 。 1.2 蛋白激酶 目前已知的植物干旱应答有关的蛋白激酶 主要有受体蛋白激酶(RPK )、促分裂原活化蛋白激酶 (M APK )、转录调控蛋白激酶(TRPK )等。RPK 与感受发育和 环境胁迫信号相关;M APK 与植物对干旱、高盐、低温等反应的信号传递有关;TRPK 主要参与细胞周期、染色体正常结构维持等的基因表达[3]。 M AP 激酶级联信号转导途径由M AP 激酶(M APK )与M AP 激酶激酶(M APKK )和M AP 激酶激酶激酶(M APKKK )组 成。植物细胞感受环境胁迫(如损伤、干旱、低温等)后,通过受体蛋白激酶、M APK 4、蛋白激酶C 和G 蛋白等上游激活子顺次激活M APKKK 、M APKK 和M APK 。M APK 被激活后进入细胞核,通过激活特定转录因子引起功能基因的表达或停留在胞质中激活其他酶类如蛋白激酶磷酸酶、脂酶等,最终引起植物细胞对内外刺激的生理生化反应。目前已经在植物中鉴定出多个由干旱胁迫所诱导的与M APK 信号通路有关的蛋白激酶,如A T MPK3、A T MEKK1和RSK 等。利用酵母双杂交系统,M iz oguchi 等证明A T MEKK1参与拟南芥对干旱、高盐、低温和触伤胁迫信号传递的M APK 级联途径[4]。 最近,T aishi 等报道,在拟南芥中有一种蛋白激酶SRK 2C 可响应干旱胁迫诱导,将该基因敲除后的突变体srk2c 对干旱极敏感[5]。另外,用花椰菜病毒的35S 强启动子构建超表达SRK 2C 的转基因植株,其抗旱性也明显增强。 1.3 与第二信使生成有关的蛋白酶 P LC 是主要的磷酸二 酯酶,水解磷酸二酯键,根据水解的磷脂不同,可产生IP3、 DAG 、PA 等。IP3可提高细胞质溶质中的C a 2+浓度,诱导抗 性相关基因的表达[6]。DAG 和PA 可通过诱导活性氧(ROS )的产生,引起相关抗性基因的表达,从而增强植物抗旱性。 C a 2+是最受关注的第二信使,在保卫细胞中,干旱信号 导致C a 2+浓度增加,引起气孔关闭。C a 2+与其受体蛋白钙调素结合发生构象变化,通过C a 2+/C aM 依赖性蛋白激酶 (C DPK )起作用,使蛋白质的S er 或Thr 磷酸化,引起下游信号 传递,使抗旱相关基因表达。 2 功能蛋白 功能蛋白往往是整个水分胁迫调控通路的终 端产物,直接在植物的各种抗旱机制中起作用。当植物遭受水分胁迫时,其本身作为一个有机整体能从各方面进行防御。K azuk o 等将植物水分胁迫功能蛋白分为渗透调节相关蛋白、膜蛋白、毒性降解酶、大分子保护因子和蛋白酶5大类[7]。 2.1 渗透调节相关蛋白 当植物遭受渗透胁迫时,会积累 大量渗透调节物质,如脯氨酸、甘露醇、甜菜碱、可溶性糖和一些无机离子等。这些物质可使植物在胁迫条件下保持吸收水分或降低水分散失,维持一定的细胞膨压,保持细胞生长、气孔开放和光合作用等正常生理过程。现已发现很多渗 安徽农业科学,Journal of Anhui Agri.Sci.2009,37(12):5355-5357,5385 责任编辑 胡剑胜 责任校对 况玲玲

植物生理学第一章 植物的水分生理讲课讲稿

植物生理学第一章植物的水分生理

第一章植物的水分生理 一、名词解释 1.水分代谢 2.自由水 3.束缚水 4.扩散 5.集流 6.渗透作用 7.水势 8.渗透势 9.压力势 10.衬质势 11.质外体途径 12.共质体途径 13.根压 14.蒸腾拉力 15.内聚力学说 16.蒸腾作用 17.蒸腾速率 18.蒸腾系数 19.蒸腾比率 20.水分临界期 21.跨膜途径 二、缩写符号翻译 1. ψw 2. ψp 3. ψm 4. ψs 5. ψπ 6. MPa 7. WUE 三、填空题 1.植物细胞吸水方式有、和。 2.简单扩散是物质依而移动,集流是物质依而移动,而渗透作用是物质依而移动。 3.植物散失水分的方式有和。 4.植物细胞内水分存在的状态有和。 5.细胞质含水较多呈状态,含水较少呈状态。 6.自由水/束缚水比值越大,则代谢;其比值越小,则植物的抗逆性。7.一个典型细胞的水势等于;具有液泡的细胞的水势等于;干种子细胞的水势等于。 8.形成液泡后,细胞主要靠吸水。 9.风干种子的萌发吸水主要靠。 10.溶液的水势就是溶液的。 11.溶液的渗透势决定于溶液中。 12.在细胞初始质壁分离时,细胞的水势等于,压力势等于。 13.当细胞吸水达到饱和时,细胞的水势等于,渗透势与压力势绝对 值。 14.相邻两细胞间水分的移动方向,决定于两细胞间的。 15.植物根系吸水方式有:和。 16.证明根压存在的证据有和。 17.叶片的蒸腾作用有两种方式:和。 18.某植物制造10克干物质需消耗5公斤水,其蒸腾系数。 19.小麦的第一个水分临界期是,第二个水分临界期是。 20.常用的蒸腾作用的指标有、和。 21.影响气孔开闭的因子主要有、和。 22.影响蒸腾作用的环境因子主要是、、和。

干旱胁迫及植物抗旱性的研究进展

新疆农业大学 专业文献综述 题目: 干旱胁迫及植物抗旱性的研究进展 姓名: 库热·巴吐尔 学院: 林学与园艺学院 专业: 园艺(特色经济林) 班级: 041班 学号: 043231142 指导教师: 海利力·库尔班职称: 教授 2008年12月19日

干旱胁迫及植物抗旱性的研究进展 摘要:干旱(水分亏缺)是我国北方沙漠化地区植物生长季的主要环境胁迫因子。本文从植物干旱的种类,植物对水分胁迫的生理反应,抗旱机理,植物水分胁迫的研究方法等几个方面,探讨植物抗旱研究的进展,存在问题及发展趋势,和干旱和高温在生理水平对植物光合作用影响机制的最新研究进展进行了综述,并对以后的相关研究进行了一些分析。 关键词:干旱胁迫;植物抗旱性,干旱机制 干早(Drought)是限制植物生长发育,基因表达和产量的重要因子[1-4],是气象与环境质量的指标,是指在无灌溉条件下,长期无雨或少雨,气温高,湿度小,土壤水分不能满足农作物的需要,使作物的正常生长受到抑制,甚至枯死,造成减产或无收的一种自然现象,一般分为大气干旱和土壤干早[5-6]。全球干旱半干旱地区约占陆地面积的35%遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52.5%,其中干旱地区占30.8%,半干旱地区占21.7%[7]。植物的抗旱性是指植物在大气或土壤干旱条件下生存和形成产量的能力,抗旱性鉴定就是按植物抗旱能力大小进行鉴定,评价的过程[8-10]。前人对于植物抗旱性的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。但这些研究都具有一定的局限性,主要表现为现有研究结果多数是针对植物某个或几个方面进行研究,如某些生理或生化指标,而这些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径,方式和机理,或进行耐旱性评价都难以反映植物的真实情况,甚至会使某些最关键的问题被忽略。因此,本文对植物干旱胁迫及抗旱性方面的一些研究成果及存在的问题进行了探讨。 1 干旱胁迫 干旱是一个长期存在的世界性难题,中国水的问题始终是个大问题,水的安全供给问题引起了世界各国的关注。中国的干旱缺水问题目前已引起党中央,国务院和全社会的关注,中国的水危机不是危言耸听,而是既成事实。干旱缺水将成为我国农业和经济社会可持续发展的首要制约因素。 1.1 干旱胁迫的类型及特点 干旱形成有两种主要原因,并形成两类干旱。一是土壤干旱。由于连年干旱,雨量过少,每年降雨量约在200~300mm,地下水位又较低,土壤中水分根本不能满足植物生长,如无灌溉,作物将受干旱之害。二是大气干旱。植物的水分亏缺是由于蒸腾失水超过吸水而产生的,即使在土壤水分充足的情况下,晴天的中午也常常产生干旱。气温高,强烈的太阳辐射显著促进蒸腾;由于土壤干燥,地温低,根的机能低下,使吸水受到抑制。都能使植物产生水分亏缺,特别是二者同时产

水分胁迫

科技名词定义 中文名称:水分胁迫 英文名称:water stress 定义1:因土壤水分不足或外液的渗透压高,植物可利用水分缺乏而生长明显受到抑制的现象。 所属学科:生态学(一级学科);生理生态学(二级学科) 定义2:因土壤水分不足而明显抑制植物生长的现象。 所属学科:土壤学(一级学科);土壤物理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 1水分胁迫 water stress 水分胁迫(water stress)植物水分散失超过水分吸收,使植物组织含水量下降,膨压降低.正常代谢失调的现象。 植物除因土壤中缺水引起水分胁迫外,干旱、淹水、冰冻、高温或盐演条件等不良环境作用于植物体时,都可能引起水分胁迫。不同植物及品种对水分胁迫的敏感性不同,影响不一。在淹水条件下,有氧呼吸受抑制,影响水分吸收,也会导致细胞缺水失去膨压,冰冻引起细胞间隙结冰,特别是在严重冰冻后遇晴天,细胞间隙的冰晶体融化后又因燕腾大量失水,易引起水分失去平衡而姜蔫。高温及盐演条件下亦易引起植物水分代谢失去平衡,发生水分胁迫。干旱缺水引起的水分胁迫是最常见的,也是对植物产量影响最大的。水分胁迫对植物祝谢的影响在植物水分亏缺时,反应最快的是细胞伸长生长受抑制,因为细胞膨压降低就使细胞伸长生长受阻,因而叶片较小,光合面积减小;随着胁迫程度的增高,水势明显降低,且细胞内脱落酸(ABA)含量增高,使净光合率亦随之下降,另一方面,水分亏缺时细胞合成过程减弱而水解过程加强,淀粉水解为糖,蛋白质水解形成氨基酸,水解产物又在呼吸中消耗;水分亏缺初期由于细胞内淀粉、蛋白质等水解产物增亥,吸呼底物增加,促进了呼吸,时间稍长,呼吸底物减少,呼吸速度即降低,且因氧化碑酸化解联,形成无效呼吸,导致正常代谢进程紊乱,代谢失调。水分胁迫对植物的严重影:由于水分胁迫引起植物脱水,导致细胞膜结构破坏。在正常情况下,由于细胞膜结构的存在,植物细胞内有一定的区域化(compartmentation),不同的代谢过程在

干旱胁迫对植物的影响

干旱胁迫对植物影响 摘要:胁迫严重影响着植物的生长发育,如干旱胁迫,可造成经济作物产量的逐年大幅下降[1],它们不能逃避不利的环境变化, 它 们需要快速的感应胁迫刺激进而适应各种环境胁迫。大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。我们都知道 ,水分在植物的生命活动中起着重要的作用,不仅是光合作用的原料之一,而且还维持着植物的正常体态。因此,我们要用各种预防途径来减少干旱对植物的影响。 关键词:干旱胁迫植物影响 Drought stress impact on plants Abstract : stress seriously influence the plant growth and development, such as drought stress, which can cause economic crop production has fallen dramatically year by year [1], they cannot escape from adverse environmental change, they need fast induction stress stimulation and adapt to various environmental stresses. Most plants by drought adversity after various physiological processes are subject to the influence of different level. As we all know, water in the plant life activities play an important role, not only is one of the raw material of photosynthesis, but also maintains the normal posture of plants. Therefore, we want to use a variety of preventive ways to minimize the effects of drought on plant.

植物生理学

第1章植物的水分生理 1. 植物组织中的水分,依据其存在状态可分为自由水和束缚水。两者的含量及比值常与植物的生长和抗性有 密切关系。当自由水/束缚水比值高时,细胞原生质呈溶胶状态,植物的代谢活性旺盛,生长较快,抗逆性弱; 反之,细胞原生质呈凝胶状态,代谢活性低,生长迟缓,但抗逆性强。 2. 水分运动方式包括扩散和集流;植物细胞的三种吸水方式是渗透吸水、吸胀吸水和降压吸水,;有液泡细 胞的主要吸水方式是渗透吸水;无液泡的分生组织和干燥种子细胞的主要吸水方式是吸胀吸水。 3. 一个典型的植物细胞的水势等于Ψw =Ψπ+Ψp+Ψm ;细胞水势不是固定不变的,ψp及ψs随含水量增 加而增加,细胞吸水能力则相应下降。当细胞吸水达紧张状态,ψw=0时,即使细胞在纯水中亦不能吸水。 细胞失水时,随着含水量减少,其水势亦下降,吸水能力又上升。 4. 一个充分吸水的细胞,其ψS=—0.5MPa,将该细胞放入ψS为-0.01 MPa的溶液中,该细胞的体积会增大, ψP会增大,ψS会增大。达到平衡时,细胞的ψW为-0.01 MPa。 5. 写出当植物细胞水势取下列不同值时的细胞水分状态 (1)ψW=0,|ψP|=|ψS|,细胞水分饱和状态; (2)ψP=0,ψW=ψS,初始质壁分离; (3)ψP>0,ψW>ψS,细胞吸水; (4)ψP<0,ψW<ψS细胞失水状态。 6. 测定植物水势的方法有液相平衡法(包括小液流法,质壁分离法测渗透势)、压力平衡法(压力室法测水势)、 气相平衡(热电偶湿度计,露点法)等。 7. 蛋白质、淀粉和纤维素三者与水分子间相互作用的力量不同,其吸胀能力亦有差异,其中纤维素较小,蛋 白质最大,淀粉次之。 8. 吐水和伤流是植物根压存在的两种表现。根系吸水动力有根压和蒸腾拉力两种。前者与根系的生理活动有 关,后者则与叶片蒸腾作用有关。 9. 植物体内水分运输阻力最大的部位是内皮层,阻力最小的部位是导管。 10.径向传输过程中有三种并列的途径:.质外体途径、共质体途径和跨细胞途径途径。 11.水在植物体内移动有扩散和集流两种形式,水的共质体运输以及叶片的蒸腾作用都是扩散现象,而植物维 管束中水的流动主要是集流现象。 12. 土壤永久萎蔫系数用来表明植物可利用土壤水的下限,田间持水量是大多数植物可利用的土壤水限。 13.土壤中可溶性盐类过多而使根系吸水困难,造成植物体内缺水,这种现象称为生理性干旱。 14.农业生产上造成盐害的原因是大量灌溉后,随着蒸发和植物的蒸腾,带走了土中的纯水,留下大量的盐分 在土壤中,尤其在气候干旱地区,盐溃化日趋严重。 15.植物叶片的蒸腾方式可分为气孔蒸腾和角质层蒸腾。 16.蒸腾作用常用的指标有蒸腾速率、蒸腾效率和蒸腾系数。 17.蒸腾速度大小决定于植物叶肉内的气室和外界空气间的蒸汽压差。蒸汽压差大时,蒸腾即强,反之则弱。 18. 保卫细胞的pH升高,K+增加,淀粉含量下降,蔗糖含量增加,苹果酸含量增加等,都可导致细胞的Ψs 下降,细胞吸水,膨压发生变化,从而使气孔张开。 19. 与气孔开闭密切相关的激素是ABA和CTK,相关的金属离子是K+和Ca++。参与气孔运动渗透调节的金属 离子是K+,作为第二信使参与气孔运动调节的金属离子是Ca++。 20.某一植物每制造一克干物质需耗水500克,其蒸腾效率与蒸腾系数分别应为2g/kg水和500。 21.土壤中的水分按其存在形态,可分为三种固态水、汽态水、束缚水和自由水。 22.越干旱的土壤其土壤水势越低;一般植物正常生长的土壤,其水势比植物的水势高。 23.水通道蛋白位于植物的质膜和液泡膜上,水通道蛋白的活化和抑制是依靠磷酸化/脱磷酸化作用调节。水 通过水通道蛋白的运动是一种微集流运动。 24.水分的跨膜运输,既包括依赖于依赖于浓度梯度的跨膜扩散,也包括通过膜上水通道蛋白的微集流运动。 第2章植物的矿质营养 1. 大量元素包括C、H、O、N、P、K、Ca、Mg、S共9种,微量元素包括Fe、Mn、B、Zn、Cu、Mo、Cl共7种。 2. 在16种植物面必需元素中,只有C、H、O、N 4种不存在于灰分中。 3. N、P、K这所以被称为肥料三要素,这是因为植物对其需量较大,而土壤中往往又供应不足。 4. 缺N和缺K的植物病症相同之处是老叶失绿;不同之处是缺N全叶失绿,缺K叶尖叶缘失绿。

植物抗逆性研究进展

植物抗逆性研究进展 V A菌根真菌对植物吸收能力及抗逆性的影响研究进展 接种菌根真菌是一种提高农作物产量和质量的比较经济有效的新方法。V A菌根侵染能扩大寄主植物根系的吸收面积;能够改善水分运输,抵抗水分胁迫,提高植物抗旱性能;能够增强植物对矿物元素和水分的吸收能力,改变菌根根际土壤环境,并在根际生态系统中起重要作用。V A菌根真菌也可通过植物根系获得碳水化合物及其他营养物质,从而形成营养上的共生关系为植物提供生长所必需的氮等矿物营养;增强寄主植物光合作用及水分循环运转;提高植物对各种病虫害的抗性。可见,V A菌根真菌对植物的生长具有极其重要的生态价值和经济价值。 电场处理对毛乌素沙地沙生植物抗逆性影响的研究进展 自2002年以来,将电场技术应用于毛乌素沙地沙生植物抗逆性研究中,结果表明,恰当的电场处理更有利于种子的萌发及苗的生长,增强了其抗旱抗寒能力。 多胺与植物抗逆性关系研究进展 在逆境条件下,植物会改变生长和发育类型以适应环境。许多研究表明,在各种逆境协迫下,植物体中多胺水平及其合成酶活力会大量增加,以调节植物生长、发育和提高其抗逆能力,这种反应对逆境条件下的植物可能有意义。就目前的资料来看,多胺之所以能提高植物的抗逆性其机制可能是:①通过气孔调节和部分渗透调节控制逆境条件下水分的丢失。Liu等的研究表明,多胺以保卫细胞中向内的K+-通道作为靶点,调节气孔的运动[10]。多胺还可作为渗透调节剂,其积累可增加细胞间渗透,部分调节水分丢失。②调节膜的物理化学性质。多胺可与膜上带负电荷的磷脂分子头部及其他带负电的基团结合,影响了膜的流动性,同时也间接地调节膜结合酶的活性。③多胺可影响核酸酶和蛋白质酶特别是与植物抗逆性有关的保护酶活性,保护质膜和原生质不受伤害。④清除体内活性氧自由基和降低膜脂过氧化。⑤调节复制、转录、翻译过程。 尽管多胺对植物抗逆性起积极作用,但植物的各种抗性性状是由多个基因控制的数量性状,很难用转基因的方法将如此众多的外源基因同时转入一种植物中并进行表达调控,更何况还有很多与抗性有关的基因尚未发现,这说明植物抗性机制是复杂的。迄今,多胺合成代谢中的3个关键酶ADC、ODC、SAMDC已在许多植物中得到了纯化和鉴定,它们的基因也从多种植物中克隆,并采用转基因技术获得了一些认为多胺可提高植物抗性的证据,但多胺在植物中的载体是什么,植物对多胺的信号感受和传递途径怎样,多胺通过怎样的信号转导通路作用于植物的抗性基因,作用于哪些抗性基因,进而在转录和翻译水平上调控这些基因的表达,控制胁迫蛋白的水平,都还不清楚。因此,采用各种手段,特别是分子生物学的方法研究多胺对植物作用的多样性和提高植物抗胁迫的分子机制、多胺作用的信号转导是值得考虑的 多效唑提高植物抗逆性的研究进展 多效唑是英国ICI有限公司在20世纪70年代末推出的一种高效低毒的植物生长延缓剂和广谱性的杀菌剂[1],因此它对多种植物都有调节生长的效应。多效唑还能引起植物体内一系列的代谢和结构变化,增强植物的抗逆性[2],并兼有杀菌作用。本文仅就多效唑提高植物的抗逆性方面作一简要综述,以期为该领域的研究提供借鉴。 钙与植物抗逆性研究进展 钙是植物必需的营养元素,具有极其重要的生理功能。植物在缺钙条件下,出现与缺钙有关的生理性病害,如苹果果实缺钙可导致苦痘病、水心病和痘斑病等在采前或贮藏期间的生理病害[1]。早在19世纪,钙就被列为植物必需营养元素,并与氮、磷、钾一起称为“肥料的四要素”。钙有“植物细胞代谢的总调节者”之称,它的重要性主要体现在钙能与作为胞内信使的钙调蛋白结合,调节植物体的许多生理代谢过程[2,3],尤其在环境胁迫下,钙和钙调素参与胁迫信号的感受、传递、响应与表达,提高植物的抗逆性[4]。近十几年来,有关钙素营养生理及钙提高植物抗逆性的研究已取得许多进展,现综述如下。 目前,国内外对钙生理及抗逆性研究已经取得了很大进展,但是前人的工作主要侧重于外源钙对植物的影响,对细胞内钙的作用的细节研究得不够深入细致。以下几个方面的问题亟待深入研究:(1)植物是如何感受到逆境信号以及这些信号是如何由激素传导的;(2)激素是如何把逆境信号通过细胞膜传递给钙信使系统的;(3)钙信使系统如何一步步激活靶酶将逆境信号转变为植物体内的生理生化反应从而使植物适应环境胁迫的;(4)钙信使系统与其它胞内信使是如何一起协调调节植物激素的生理反应的。相信随着植物生理学和分子生物学的发展及研究的一步步深入,人们对以上这些问题一定会有日益透彻的认识。这些问题的解决,将使钙生理及抗逆性的研究更加深入,使钙素营养的研究和应用走向新的辉煌 硅与植物抗逆性研究进展 果聚糖对植物抗逆性的影响及相应基因工程研究进展 果聚糖是一类重要的可溶性碳水化合物,其在植物中的积累可提高植物的抗逆性。本文除了介绍果聚糖的有关知识外,重点综述了果聚糖对植物抗逆性的影响,并从果聚糖对渗透的调节,对膜的保护,在低温、干旱条件下果聚糖相关酶活性变化方面阐述了果聚糖抗旱、抗寒机制。此外,综述了提高果聚糖积累方面的基因工程研究进展及存在的相关问题。

水分胁迫对杂草种子萌发的影响

水分胁迫对杂草种子萌发的影响 种子萌发作为植物生命周期中的重要阶段,易受到光照、温度、水分和氧气等环境因子的影响。水分是种子萌发起始的重要条件之一,能够保障种子启动一系列的生物化学反应进行萌发[4-5]。褚世海等[6]发现,黄顶菊在土壤含水量达15%~60%的条件下能萌发、出苗和生长。不同种类杂草种子萌发所需的含水量范围和最适含水量各有差异[6-8]。水分过多时,会形成淹涝胁迫,对种子构成不同程度的危害,如造成缺氧,从而使种子发芽延迟和发芽率下降,还可能导致幼苗形态异常[9]。MallorySmith等[10]对淹水条件下粗茎早熟禾和高羊茅种子萌发的研究表明,淹水造成的缺氧环境使二者发芽延迟,但未影响幼苗存活,淹水28d后幼苗地上生物量分别减少了58%和46%。水分不足时,会形成干旱胁迫,直接造成种子吸水速度降低,最大吸水量减少,对种子胚芽及根生长产生一定的抑制作用,从而使种子发芽延迟,发芽速度减慢,进而导致发芽率下降[9,11]。王晓阳等[12]的研究表明,节节麦萌发受水分胁迫显著影响,且对水势敏感,随着渗透势的下降,节节麦发芽率降低,当渗透势小于 -1.0MPa时,种子萌发被完全抑制。王立峰等[13]的研究结果表明,棒头草种子的萌发对水分胁迫高度敏感,在渗透势为-0.4MPa时萌发被完全抑制。唐伟等[14]对甜茅萌发的研究表明,甜茅对水分胁迫具有中等耐受性,在渗透势为-0.6MPa时萌发率为53%,在渗透势为-1.0MPa 时不发生萌发。Chauhan等[15]的研究结果表明,含羞草种子的萌发对水分胁迫具有耐受性,随着渗透势的下降发芽率降低,在-0.8MPa的渗透势下也会发芽,但发芽率仅为5%。

水分胁迫对小麦生长发育的影响

水分胁迫对小麦生长发育的影响 近年来,水资源缺乏已成为农业生产的严重障碍,当今全球水资源危机逐渐加重。据统计,世界上约有三分之一的可耕地处于供水不足状态下,而且其它耕地也常因周期性干旱或难以预计的干旱而减产。我国在作物生长季节也经常发生季节性干旱,在我国尤其是干旱和半干旱地区,缺水问题一直是限制农业生产的最主要因了之一。因干旱造成的减产超过其它因素造成减产的总和。 根据前人研究说明:一、水分胁迫对小麦生理生态的影响是多方面的,株高、叶面积可以作为水分胁迫对小麦影响的直观指标,水分胁迫下小麦地上部生长受到抑制,株高降低、叶面积减小、叶片变得小而挺立、叶表面蜡质层加厚,程度随水分胁迫的加剧而加剧,此为植物适应逆境的一个自我调控的反应,在水分缺失的条件下,植物要尽可能减少蒸腾蒸发表面积来维持自身生长所需水分。株高、叶面积减少的直接结果是总生物量的减少,同时水分胁迫又促使了干物质向鞘部的运移,可见水分的缺失影响了干物质向“库”的运移,在成熟期之前,鞘部截获了向生殖器官运送的干物质;成熟期时另有一部分干物质向叶部、根部输送,水分胁迫促进了根系的生长,中度水分胁迫条件对根部的生长起到更好的促进作用。 二、从叶绿素相对含量的多少表映了作物抗逆性的大小,小麦从拔节期到开花期,倒三叶的抗逆性表现为重度胁迫>中度胁迫>对照,说明水分胁迫增强了倒三叶在开花期之前的抗逆能力,并且这种对胁迫环境的适应、抵御能力随着胁迫程度的加强而增强。叶绿素荧光动

力学参数与旗叶叶绿素值高度相关,从拔节期到灌浆期在此期间PS II没有遭到水分胁迫的破坏。光合速率和气孔导度变化趋势基本相同,呈显著相关,水分胁迫没有破坏光合器官、光合进程,水分匾缺对作物的影响表现在所引起的气孔的关闭,气孔导度的下降,蒸腾速率下降,从而导致光合能力的下降。 三、水分胁迫增加了小麦开花期叶部、秆部、穗部、根部的绝对含水量。叶部是作物进行蒸腾蒸发的主要器官,因此叶部绝对含水量要高与于其他器官。开花期此时叶片的保水能力增强,作物的奢侈蒸腾相对减少,水分利用利用效率相对提高。而此时根部绝对含水量的较大幅度的提高则可能是因为随着作物的奢侈蒸腾的减少,根系吸收的水分向地上部运移的能力相对减少,从而较多的水分积累在根部。 水分既影响土壤养分的有效性,也影响作物生长及养分吸收、转运、转化和同化,水肥之间有明显的交互作用。在土壤环境因子中,影响养分向根表流动的主要因子是土壤水势。缺水使土壤水势下降,土壤孔隙被空气充满,由于养分扩散路径的曲折度增加,养分向根表移动缓慢;就植物本身而言,水分胁迫延长苗期作物的封垄时间而增加地表蒸发损耗,在后期则加速作物早衰。而植物对养分的要求被认为是现阶段植物组织中养分的浓度和可能的组织中最高养分浓度之间的差别,植物中最大养分浓度在不同器官中不一样,对每一器官来说,它是植物组织生长发展的函数,因此,植物的早衰必然会影响植物组织吸收养分;同时,水分胁迫抑制根系生长,降低了根系的吸收面积和吸收能力。木质部液流粘滞性增大,降低了对养分的吸收和运

相关文档
最新文档