控制系统的频域分析

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为 (s)(t)e st X x dt +∞ --∞ = ? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ -∞ =? (2) MATLAB 中相应函数如下: (F) L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 () F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 (,) F ilaplace L x =用x 替换结果中的变量t 。

的连续时间系统,其系统函数为s 的有理函数 110 110 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++= +++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下: r=roots(c),c 为多项式的系数向量,返回值r 为多项式的根向量。 求取零极点以及绘制系统函数的零极点分布图可以采用pzmap 函数,调用格式如下: pzmap(sys)绘出由系统模型sys 描述的系统的零极点分布图。 [p,z]=pzmap(sys)这种调用方式返回极点与零点,不绘出零极点分布图。 还有两个专用函数tf2zp 和zp2tf 可实现系统的传递函数模型和零极点增益模型的转换。调用格

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

连续时间LTI系统的频率特性及频域分析

实验报告 实验项目名称:运用Matlab进行连续时间信号卷积运算 (所属课程:信号与系统) 学院:电子信息与电气工程学院 专业: 10电气工程及其自动化 姓名: xx 学号: 201002040077 指导老师: xxx

一、实验目的 1、学会运用MATLAB 分析连续系统的频率特性。 2、掌握相关函数的调用。 二、实验原理 1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即 )()()()()()(01 )(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得: )(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++ 101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为: )()()(ω?ωωj e j H j H = 其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。 MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。 H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

2018年自动控制原理期末考试题[附答案解析]

. 2017 年自动控制原理期末考试

卷与答案 一、填空题(每空1分,共20分) 1、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 2、控制系统的输出拉氏变换与输入拉氏变换在零初始条件下的比值称为传递函数。 3、在经典控制理论中,可采用劳斯判据(或:时域分析法)、根轨迹法或奈奎斯特判据( 或:频域分析 法) 等方法判断线性控制系统稳定性。 4、控制系统的数学模型,取决于系统参数, 与外作用及初始条件无关。和结构 A( )L( )lg) 或:,横坐标为( 、线性系统的对数幅频特性,纵坐标取值为5。20lg

,其中P 是指开环传函中具有正实部的极点的个数,6、奈奎斯特稳定判据中,Z = P - RZ是指闭环 传函中具有正实部的极点的个数,R 指奈氏曲线逆时针方向包围(-1, j0 )整圈数。 定义为调整时间。%是超调量。、在二阶系统的单位阶跃响应图中,7t s K)A(22 (T)1K),则其开环幅频特性为(T8、设系统的开环传递函数为1,相12 s(Ts 1)(T s 1)21110) (T ) tg (Ttg 。频特性为()9021 9、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。 0.5t0.2 t,则该系统的传递函数G(s) 为、若某系统的单位脉冲响应为10。5e g (t) 10e 510 0.2 sss 0.5s

11、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称 为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系 统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。 、根轨迹起始于开环极点,终止于开环零点。12 、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统13稳定。判断 页脚

自动控制原理-线性系统的频域分析实验报告

自动调节系统频域分析 班级11081801 学号1108180135 姓名王佳炜 日期2014.1.5

线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2 +-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的 复频域分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞ --∞ =? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ - ∞ = ? (2) MATLAB 中相应函数如下: (F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 ()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量 为t 的结果表达式。 (,)F ilaplace L x =用x 替换结果中的变量t 。 拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比: 110 1 10 ...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式 1212(s)...N N r r r X s p s p s p = +++--- (4) 再通过查找常用拉氏变换对易得反变换。 利用residue 函数可将X(s)展成(4)式形式,调用格式为: [r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分 别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数 连续时间系统的系统函数是指系统单位冲激响应的拉氏变换 (s)(t)e st H h dt +∞ --∞ = ? (5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。 (s)(s)/X(s)H Y = (6) 单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数 110 1 10 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

实验4:连续系统的频域分析

实验4:连续系统的频域分析 一、实验目的 (1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。 (2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。 二、实验原理 1.周期信号的分解 根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为 ()f t 的傅里叶级数。在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。 例如一个方波信号可以分解为: 11114111 ()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ?? = ++++ ??? 合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布 斯现象(Gibbs )。 2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式: ()()lim ()j t j n n F j f t e dt f n e ωωττωττ∞ ∞ ---∞ →=-∞ ==∑ ? 当 ()f t 为时限信号时,上式中的n 取值可以认为是有限项N ,则有: ()(),0k N j n n F k f n e k N ωτττ-==≤≤∑,其中2k k N π ωτ = 3.系统的频率特性 连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为 () ()() Y H X ωωω= 三、实验内容与方法 1.周期信号的分解 【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。 MATLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9 plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; end title(‘信号叠加前’); subplot(212) for n=1:2:9;

连续系统的时域、频域分析

学生实验报告实验课程:信号与 系统E D A 实验地点:东1教 414 学院: 专业: 学号 : 姓名 :

2.信号卷积,根据PPT 中的实验2、2与2、3内容完成课堂练习,写出程序及运行结果。 用Matlab 实现卷积运算)(*)(t h t f ,其中 )()()],2()([2)(t e t h t t t f t εεε-=--=,)2 ()(2t h t h =;对比说明信号)( t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。 >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-nh)、*(nh>0); y=conv(f,h);

t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1、1]); subplot(3,1,3),plot(0、01*t,y); title('y(t)=f(t)*h(t)'); >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-2*nh)、*(2*nh>0); y=conv(f,h); t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]);

自动控制原理线性系统的频域分析实验四

武汉工程大学实验报告专业电气自动化班号指导教师 姓名同组者无

M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Frequency (rad/sec) 当3.0=ζ时,程序如下: num=[0 0 36];den=[1 3.6 36];w=logspace(-2,3,100);bode(num,den,w) grid M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Bode Diagram Frequency (rad/sec) 当5.0=ζ时,程序如下: num=[0 0 36];den=[1 6 36];w=logspace(-2,3,100);bode(num,den,w) grid

M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Frequency (rad/sec) 当8.0=ζ时,程序如下: num=[0 0 36];den=[1 9.6 36];w=logspace(-2,3,100);bode(num,den,w) grid M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 当2=ζ时,程序如下: num=[0 0 36];den=[1 24 36];w=logspace(-2,3,100);bode(num,den,w) grid

自动控制原理实验六线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MA TLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

连续系统的频域分析

第三章傅立叶变换 时域分析:f(t) y f(t)=h(t)*f(t) ↓分解↑ 基本信号δ(t)→LTI →h(t) 频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt ↓分解↑ 基本信号 sinωt →LTI →H(jω)e jωt e jωt H(jω):系统的频域响应函数,是信号角频率ω的函数,与t无关. 主要内容: 一、信号的分解为正交函数。 二、周期信号的频域分析?付里叶级数(求和),频谱的特点。信号 三、非周期信号的频域分析?付里叶变换(积分),性质。分析 四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析) 五、抽样定理:连续信号→离散信号.

§3.1 信号分解为正交函数 一、正交: 两个函数满足φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。 二、正交函数集:几个函数φi(t)φi(t)dt= 0 当i≠j; K i 当i=j. 三、完备正交函数集:在{φ1(t)…φn(t)}之外, 不存在ψ(t)满足ψ (t)φi(t)dt= 0 (i=1,2,…n). 例、三角函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt, sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期. 满足: cosmΩtcosnΩtdt= 0 m≠n T/2 m=n≠0 T m=n=0 sin(mΩt)sin(nΩt)dt= 0 m≠n T/2 m=n≠0 sin(mΩt)cos(nΩt)dt= 0. 所有的m和n. 结论:三角函数集是完备正交集。 推导: cosmΩtcosnΩtdt =(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt =(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt =(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0] +(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0] =0 当m≠n时.

线性系统的频域分析-自动控制

实验三·线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 22 ()2n n n G s s s ωζωω=++ 绘制出6n ω=,0.1ζ =,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 2.系统的开环传递函数为 210 ()(51)(5)G s s s s =-+ 228(1) ()(15)(610) s G s s s s s += +++ 4(/31) ()(0.021)(0.051)(0.11) s G s s s s s += +++ 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 3.已知系统的开环传递函数为21()(0.11) s G s s s += +。求系统的开环截止频率 穿越频率、幅值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。 三、实验内容及分析 1. 系统1:2 22 ()2n n n G s s s ωζωω=++中6n ω=,(1)0.1ζ=时 Matlab 文本如下: num=[36 0 0]; den=[1 1.2 36]; w=logspace(-2,3,100); bode(num,den,w) Grid 得到图像:

同理,得到其他值情况下的波特图:ξ=0.3时 ξ=0.5时 ξ=0.8时

ξ=2时 从上面的图像中可以看出:随着ξ的不断增大,波特图中震荡的部分变得越来越平滑。而且,对幅频特性曲线来说,其上升的斜率越来越慢;对相频特性曲线来说,下降的幅度也在变缓。 2. 开环传递函数1:210 ()(51)(5) G s s s s = -+ 奈奎斯特图函数及图像如下: num=[0 10]; den=[conv([5,-1],[1,5]),0,0]; [z,p,k]=tf2zp(num,den); p

实验三连续时间LTI系统的频域分析报告

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MATLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) ()()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即

?∞ ∞--= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。在研究系统的频率响应时,更多的是把它表示成极坐标形式: )()()(ω?ωωj e j H j H = 3.4 上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ω?称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。)(ωj H 和)(ω?都是频率ω的函数。 对于一个系统,其频率响应为H(j ω),其幅度响应和相位响应分别为)(ωj H 和)(ω?,如果作用于系统的信号为t j e t x 0 )(ω=,则其响应信号为 t j e j H t y 0)()(0ωω= t j j e e j H 00)(0)(ωω?ω=))((000)(ω?ωω+=t j e j H 3.5 若输入信号为正弦信号,即x(t) = sin(ω0t),则系统响应为 ))(sin(|)(|)sin()()(00000ω?ωωωω+==t j H t j H t y 3.6 可见,系统对某一频率分量的影响表现为两个方面,一是信号的幅度要被)(ωj H 加权,二是信号的相位要被)(ω?移相。 由于)(ωj H 和)(ω?都是频率ω的函数,所以,系统对不同频率的频率分量造成的幅度和相位上的影响是不同的。

自动控制原理线性系统的频域分析实验报告

实验四 专业 自动化 班号 03班 指导教师 陈艳飞 姓名 胡波 实验名称 线性系统的频域分析 实验日期 第 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

连续时间信号与系统的频域分析

第3章连续时间信号与系统的频域分析3.1 学习要求 1、掌握周期信号的频谱及其特点; 2、了解周期信号的响应问题; 3、掌握非周期信号的频域描述——傅立叶变换; 4、熟练掌握傅立叶变换的性质与应用; 5、掌握系统的频域特性及响应问题; 6、了解系统的无失真传输和理想滤波。 3.2 本章重点 1、频谱的概念及其特性; 2、傅里叶变换及其基本性质; 3、响应的频域分析方法; 4、系统频率响应的概念。 3.3 知识结构

3.4内容摘要 3.4.1信号的正交分解 两个矢量1V 和2V 正交的条件是这两个矢量的点乘为零,即: o 1212cos900?=?=V V V V 若有一个定义在区间()12,t t 的实函数集{}()(1,2,,)i g t i n =L ,在该集合中所有的函数满足 ?????=≠===??2 1 21,,2,1,0)()(,,2,1)(2t t j i t t i i n j j i dt t g t g n i k dt t g ΛΛ 则称这个函数集为区间()12,t t 上的正交函数集。式中i k 为常数,当1i k =时,称此函数集为归一化正交函数集。 若实函数集{}(),1,2,,i g t i n =L 是区间()12,t t 内的正交函数集,且除()i g t 之外 {}(),1,2,,i g t i n =L 中不存在()x t 满足下式 2 1 20()t t x t dt <<∞?且2 1 ()()0t i t x t g t dt =? 则称函数集{}(),1,2,,i g t i n =L 为完备正交函数集。 若在区间()12,t t 上找到了一个完备正交函数集{}(),1,2,,i g t i n =L ,那么,在此区间的信号()x t 可以精确地用它们的线性组合来表示 11221 ()()()()()n n i i i x t C g t C g t C g t C g t ∞ ==++++=∑L L 各分量的标量系数为 2 1 21 2 ()()d ()d t i t i t i t x t g t t C g t t = ?? 系数i C 只与()x t 和()i g t 有关,而且可以互相独立求取。 3.4.2周期信号的傅里叶级数 1、三角形式的傅里叶级数 0001 ()(cos sin )n n n x t a a n t b n t ωω∞ ===++∑

自动控制原理实验报告线性系统的频域分析讲述

武汉工程大学实验报告 专业 自动化 班号 组别 指导教师 姓名 同组者 实验名称 线性系统的频域分析 实验日期 2016/4/4 第 5 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w)

bode(num,den3,w) bode(num,den4,w) bode(num,den5,w) -100-80-60-40-200 20M a g n i t u d e (d B )10 10 10 10 10 10 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(2 2++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100);

信号与系统报告 实验5 连续系统的复频域分析实验

信号与系统 实验报告 实验五连续系统的复频域分析 实验五连续系统的复频域分析 一、实验目的 1. 深刻理解拉普拉斯变换、逆变换的定义,掌握用MATLAB实现拉普拉斯变换、逆变换的方法。 2会求几种基本信号的拉氏变换。 3 掌握用MATLAB绘制连续系统零、极点的方法。 4 求解系统函数H(s)。 二

1已知连续时间信号f(t)=sin(t)u(t)、求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。 syms t; ft=sin(t)*heaviside(t); Fs=Laplace(ft); a=-0.5:0.08:0.5; b=-2:0.08:2; [a,b]=meshgrid(a,b); c=a+i*b; d=ones(size(a)); c=c.*c; c=c+d; c=1./c; c=abs(c); mesh(a,b,c); surf(a,b,c) axis([-0.5,0.5,-2,2,0,10]) colormap(hsv

) 2求[(1-e^(-at))]/t的拉氏变换。 syms t s a f1=(1-exp(-a*t))/t; F=laplace(f1,t,s) F = log(s+a)-log(s) 3求F(s)=-log(s)+ log(s+a)的拉氏逆变换syms t s a F =log(s+a)-log(s); f1=ilaplace(F,s,t) f1 = (1-exp(-a*t))/t

4已知某连续系统的系统函数为: H(s)=(s^2+3s+2)/(8s^4+2s^3+3s^2+5)试用MATLAB求出该系统的零极点,画出零极点分布图。 b=[1 3 2]; a=[8 2 3 0 5]; zs=roots(b); ps=roots(a); hold on plot(real(zs),imag(zs),'o'); plot(real(ps),imag(ps),'x'); grid axis([-2.5,1,-1,1]) 5已知H(s)=(s+1)/(s^2+s+1),绘制阶跃响应图形,冲激响应图形,频率激响应图形。 syms t s H=(s+1)/(s^2+s+1); f1=ilaplace(H,s,t); f2=heaviside(t);

第三章连续时间系统的频域分析

第三章.连续时间系统的频域分析 一、任意信号在完备正交函数系中的表示法 (§6.3---6.4) 信号分解的目的: ● 将任意信号分解为单元信号之和,从而考查信号的特性。 ● 简化电路分析与运算,总响应=单元响应之和。 1.正交函数集 任意信号)(t f 可表示为n 维正交函数之和: ∑==++++=n r r r n n r r t g C t g C t g C t g C t g C t f 12211) () ()()()()(ΛΛ& 原函数 ()()()t g t g t g r Λ21,相互正交:???=≠=??n m K n m dt t g t g m t t n m , , 0)()(2 1 ()t g r 称为完备正交函数集的基底。 一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。 2.能量信号和功率和信号(§6.6一) 设()t i 为流过电阻R 的电流,瞬时功率为 R t i t P )()(2 = 一般说来,能量总是与某一物理量的平方成正比。 令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: ? -∞ →=22 2 00)(lim T T T dt t f W ? -∞→=22 20 000)(1 lim T T T dt t f T P 讨论上述两个式子,只可能出现两种情况: ∞<

第三章连续系统的频域分析

习题三 31证明题图囂所示矩形函数/址)与冷“尬帆为整数}在区间(0.2^ )上正応 J 1 /W P -7T r 卷也J 3.2设了①的正交展开式为 /0 =養恥 是iiE 明f ⑴和护o ”6呵£ }是11对应关系E [1 (「1)<于<2 0其他 II 试问函数组 苗⑦務②焉②爲②}在(山4)区间上是否为正交函数值,是否为归一 牝正交函數组,是否为完备正交画数爼「并用它们的线t 删合精确的表示题團玄2所示函数 “) 9 /(i) 題要1 3 2 M4证明下列函数集在匕心*— 匡间上是正交函数集右肯任意一个正实数? \ 叫丿 (1){ cos^ivof, sinMw e f | M - 0,±1,±2^.,,); ⑵{*叫1沪蚣…}h

3.5试求题因3.3所示信号的三角形傅立叶级数展开式,并画出频谙因。 1/w A A n 1,n[ 1 , :J72?T t KS 3.3 3.6试求题图34所示周期信号的指数形傅立叶级数系鹽,并画出它的幅度谙。 3?己知剛函数前四分之一的周期的波形女廳图?.5所示.根据下列各恬况的要求,画出/(/)在一个周期(0*T)的波形? (1)/(f)是偶函数'只含有偶次谐波: (2)/(f)是偶函数,只含有奇次谐波; (3)/(f)是偶函数,含有偶次和奇次谐波; (4)/(f)是奇函数,只含有偶次谐波; (5)/(f)是奇函数,只含有奇次谐波; (6)/(f)是奇函数,含有偶次和奇次谐波.

3.8设是满足以下两个条件的周期函数:条件1 : /(0 = -/(~0 ; 条件2:/a± j)= -/(o ? 试证明/(◎中只含有奇次谐波的正弦分星。 3.9设周期信号/(f)的指城傅立叶级数系数为尺,试证明缪的指数形傅立叶级数系 at 数为感(式中叫=亨). 3.10设有一周期信号/O) >其奇波频率为w。= X ,且/(f)的指数形傅立叶级数为 这里,丘“;阿|"/4 ;|^|=1/2 ; |^|= 1/3 o 试写出的三角形傅立叶级数表达式? 3.L1求题图3.6所示信号的傅立叶变换? 题图3.6

自动控制系统的时域频域分析报告

摘要......................................................................... I 第一早绪论 (1) 1.1自动控制理论发展概述 (1) 1.2Matlab 简介............................. 2 第二早控制系统的时域分析与校正...... 2 2.1概述 (2) 2.2一阶系统的时间响应及动态性能 (3) 2.3二阶系统的时间响应及动态性能 (4) 2.4高阶系统的阶跃响应、动态性能及近似 (11) AVV ------- * 第二早控制系统的频域分析与校正 (13) 3.1概述 ................................ . (13) 3.2频率特性的表示方法.................. .. (14) 3.3频率特性的性能指标.................. .. (15) 3.4典型环节的频率特性.................. .. (17) 第四章结论 (23) 课程设计总结 (24) 参考文献 (25) 附录 (26)

摘要

第一章绪论 1.1自动控制理论发展概述 自动控制理论是在人类征服自然地生产实践活动中孕育、产生,并随 着社会生产和科学技术的进步而不断发展、完善起来的。 早在古代,劳动人民就凭借生产实践中积累的丰富经验和对反馈概念的直观认识,发明了许多闪烁控制理论智慧火花的杰作。我国北宋时代苏 颂和韩公廉利用天衡装置制造的水运仪象台,就是一个按负反馈原理构成 的闭环非线性自动控制理论;1681年Dennis Papin发明了用做安全调节 装置的锅炉压力调节器;1765年俄国人普尔佐诺夫发明了蒸汽锅炉水位调节器。 1788年,英国人瓦特在他发明的蒸汽机上使用了离心调速器,解决了蒸汽机的速度控制问题,引起了人们对控制技术的重视。之后,人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。 1868年,英国物理学家麦克斯韦通过对调速系统线性常微分方程的建立与分析,解释了瓦特速度控制系统中出现的不稳定问题,开辟了用数 学方法研究控制系统的途径。此后,英国数学家劳斯和德国数学家古尔维茨独立的建立了直接根据代数方程的系数判别系统稳定性的准则。这些方 法奠定了经典控制理论中时域分析法的基础。 1932年,美国物理学家乃奎斯特研究了长距离电话信号传输中出现的失真问题,运用了复变函数理论建立了以频率特性为基础的稳定性判据,奠定了频率响应法的基础。随后伯德和尼克尔斯进一步将频率响应法加以发展,形成了经典控制理论的频域分析法。 之后,以传递函数作为控制系统的数学模型,以时域分析法、频域分析法为主要分析设计工具,构成了经典控制理论的基本框架。到20世纪60年代初,一套以状态方程作为描述系统的数学模型,以最优控制和卡尔曼滤波为核心的控制系统分析、设计的新原理和方法基本确定,现代控 制理论应运而生。控制理论目前还在向更深、更广阔的领域发展,在信息

相关文档
最新文档