植物的水分代谢分析

植物的水分代谢分析
植物的水分代谢分析

植物的水分代谢

陆生植物是由水生植物进化而来的,因此,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下,才能进行,否则,植物的正常生命活动就会受阻,甚至停止。所以说,没有水,就没有生命。在农业生产上,水是决定收成有无的重要因素之一,农谚说:“有收无收在于水”,就是这个道理。

植物从环境中不断地吸收水分,以满足正常生命活动的需要。但是,植物又不可避免地要丢失大量水分到环境中去。这样就形成了植物水分代谢(water metabolism)的3个过程:水分的吸收、水分在植物体内运输和水分的排出。

植物对水分的需要

一、植物的含水量

植物体中都含有水分,但是植物体的含水量并不是均一和恒定不变的,因为含水量与植物种类、器官和组织本身的特性和环境条件有关。

不同植物的含水量有很大的不同。例如,水生植物(水浮莲、满江红、金鱼藻等)的含水量可达鲜重的 90%以上,在干旱环境中生长的低等植物(地衣、藓类)则仅占6%左右。又如草本植物的含水量为70~85%,木本植物的含水量稍低于草本植物。

同一种植物生长在不同环境中,含水量也有差异。凡是生长在荫蔽、潮湿环境中的植物,它的含水量比生长在向阳、干燥的环境中的要高一些。

在同一植株中,不同器官和不同组织的含水量的差异也甚大。例如,根尖、嫩梢、幼苗和绿叶的含水量为60~90%,树干的为40~50%,休眠芽的为40%,风干种子的为10~14%。由此可见,凡是生命活动较旺盛的部分,水分含量都较多。

二、植物体内水分存在的状态

水分在植物体内的作用,不但与其数量有关,也与它的存在状态有关。水分在植物细胞内通常呈束缚水和自由水两种状态,而这又与原生质有密切联系。

原生质的化学成分,主要是由蛋白质组成的,它占总干重60%以上。蛋白质的分子很大,其水溶液成为高分子溶液,具有胶体的性质,因此,原生质是一个胶体系统(colloidal system)。蛋白质分子形成空间结构时,疏水基(如烷烃基、苯基等)包在分子内部,而许多亲水基(如—NH2,—COOH,—OH等)则暴露在分子的表面。这些亲水基对水有很大的亲和力,容易起水合作用(hydration)。所以原生质胶体微粒具有显著的亲水性(hydrophilic nature),其表面吸引着很多水分子,形成一层很厚的水层(图1-1)。水分子距离胶粒越近,吸附力越强;相反,则吸附力越弱。靠近胶粒而被胶粒吸附束缚不易自由流动的水分,称为束缚水(bound water);距离胶粒较远而可以自由流动的水分,称为自由水(free water)。事实上,这两种状态水分的划分是相对的,它们之间并没有明显的界限。

自由水参与各种代谢作用,它的数量制约着植物的代谢强度,如光合速率、呼吸速率、生长速度等。自由水占总含水量百分比越大,则代谢越旺盛。束缚水不参与代谢作用,但植

物要求低微的代谢强度去渡过不良的外界条件,因此束缚水含量与植物抗性大小有密切关系。

由于自由水含量大小不同,所以原生质亲水胶体有两种不同的状态:一种是含水较多的细胞,原生质胶粒完全分散在介质(medium)中,胶粒和胶粒之间联系减弱,胶体呈现溶液状态,这种状态的胶体称为溶胶(sol);另一种是含水较少的细胞,其原生质胶粒和胶粒相互结成网状,液体分布在网眼内,胶体失去流动性而凝结近似固体状态,这种状态的胶体称为凝胶(gel)。除了休眠种子的原生质呈凝胶状态外,在大多数情况下,植物细胞原生质呈溶胶状态。这点可从原生质运动的事实得到证明。

三、水分在生命活动中的作用

水分在植物生命活动中的作用是很大的,水分含量的变化密切地影响着植物的生命活动。

1.水分是原生质的主要成分原生质的含水量一般在70~90%,使原生质呈溶胶状态,保证了旺盛的代谢作用正常地进行,如根尖、茎尖。如果含水量减少,原生质便由溶胶状态变成凝胶状态,生命活动就大大减弱,如休眠种子。

2.水分是代谢作用过程的反应物质在光合作用、呼吸作用、有机物质的合成和分解的过程中,都有水分子参与。

3.水分是植物对物质吸收和运输的溶剂一般来说,植物不能直接吸收固态的无机物质和有机物质,这些物质只有溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输,也要溶在水中后才能进行。

4.水分能保持植物的固有姿态由于细胞含有大量水分,维持细胞的紧张度(即膨胀),使植物枝叶挺立,便于充分接受光照和交换气体,同时,也使花朵张开,有利于传粉。

由于水分在植物生命活动中起着如此重大的作用,所以,满足植物对水分的需要是植物体正常生存十分重要的条件;适时灌溉是夺取农业丰收的重要保证。

第二节植物细胞对水分的吸收

一切生命活动都是在细胞内进行的,吸水也不例外。细胞吸水有3种方式;(1)未形成液泡的细胞,靠吸涨作用去吸水;(2)液泡形成以后,细胞主要靠渗透性吸水;(3)与渗透作用无关的代谢性吸水。在这3种方式中以渗透性吸水为主。

一、细胞的渗透性吸水

渗透作用是水分进出细胞的基本过程。水分移动需要能量作功,所以要首先讨论自由能和水势的概念,然后再讲渗透问题。

(一)自由能和水势

根据热力学原理,系统中物质的总能量可分为束缚能(bound energy)和自由能(freeenergy)两部分。束缚能是不能转化为用于作功的能量,而自由能是在温度恒定的条件下用于作功的能量。一种物质每mol的自由能就是该物质的化学势(chemical potential),可衡量物质反应或转移所用的能量。同样道理,衡量水分反应或转移能量的高低,可用水势表示。在植物生理学上,水势(water potential)(差)就是每偏摩尔体积水的化学势(差)。就是说,水液的化学势(μw)与同温同压同一系统中的纯水的化学势(μ0w)之差(△μw),除

以偏摩尔体积()所得的商,称为水势。水势?(psi,希腊字母)或?W可用下式表示:

式中的水的偏摩尔体积(partial molar volume),是指加入1mol水使体系的体积发生

的变化。水的偏摩尔体积的具体数值,随不同含水体系而异,与纯水的摩尔体积(

=18.00cm3/mol)不同。在稀的溶液中,和相差很小,实际应用时,往往用VW代替。

化学势是能量概念,其单位为J/mol(J=N·m),而偏摩尔体积的单位为m3/mol,两者相除并化简,得N/m2,成为压力单位Pa,这样就把以能量为单位的化学势化为以压力为单位的水势。

纯水的自由能最大,水势也最高。但是水势的绝对值不易测得。因此,在同样温度和同样大气压的条件下,测定纯水和溶液的水势,以作比较。纯水的水势定为零,其他溶液就与它相比。溶液中的溶质颗粒降低了水的自由能,所以溶液中水的自由能要比纯水低,溶液的水势就成负值。溶液越浓,水势越低。现列举几种水溶液在25℃下的水势和不同环境下叶片的水势范围,使读者对水势有个大体概念。纯水的水势为0MPa,荷格伦特(Hoagland)氏培养液为-0.05MPa,海水为-2.5MPa,1mol蔗糖溶液为-2.70MPa,1mol氯化钾溶液为-4.5MPa。土壤水分供应充足、生长迅速的叶片的水势为-0.2~-0.8MPa;土壤干旱、生长缓慢的叶片的水势为-0.8~-1.5MPa。

和其他物质一样,水分移动需要能量,因此,水分一定是从高势区域顺着能量梯度(energy gradient)流到低势区域,也就是说,水分是由水势高处流到水势低处。

(二)渗透作用

把蚕豆种皮紧缚在漏斗上,注入蔗糖溶液,然后把整个装置浸入盛有清水的烧杯中,漏斗内外液面相等(图1-2,1)。由于蚕豆种皮是接近半透膜(semipermeable membrane)(即让水分子通过而蔗糖分子不能透过的一种薄膜),所以整个装置就成为一个渗透系统。在一个渗透系统中,水的移动方向决定于半透膜两边溶液的水势高低。水势高的溶液的水,流向水势低的溶液。实质上,半透膜两边的水分子是可以自由通过的,可是清水的水势高,蔗糖溶液的水势低,从清水到蔗糖溶液的水分子比从蔗糖溶液到清水的水分子多,所以在外观上,烧杯中清水的水流入漏斗内,漏斗内的玻璃管内液面上升,静水压也开始增高。随着水分逐渐进入玻璃管内,液面越上升,静水压也越大,压迫水分从玻璃管内向烧杯移动速度就越快,膜内外水分进出速度越来越接近。最后,液面不再上升,停留不动,实质上是水分进出的速度相等,呈动态平衡(图1-2,2)。水分从水势高的系统通过半透膜向水势低的系统移动的现象,就称为渗透作用(osmosis)。

(三)植物细胞是一个渗透系统

一个成长植物细胞的细胞壁主要是由纤维素分子组成的,它是一个水和溶质都可以通过的透性膜(permeable membrane)。质膜和液泡膜则不同,两者都是半透膜(关于生物膜的结构详见第二章),因此,我们可以把原生质层(包括质膜、细胞质和液泡膜)当作一个半透膜来看待。液泡里面的细胞液含有许多溶解在水中的物质,具有水势。这样,细胞液、原生质层和环境中的溶液之间,便会发生渗透作用。所以,一个具有液泡的植物细胞,与周围溶液

一起,构成一个渗透系统。

我们可用一个简单的实验去证明这一点。把具有液泡的细胞置于某些对细胞无毒害的物质(如蔗糖)的浓溶液中,外界溶液的水势低,细胞液水势高,细胞液的水分就向外流出,液泡体积变小,细胞液对原生质体和细胞壁的压力也减低,因为细胞壁和原生质体都具伸缩性,这时整个细胞的体积便缩减一些。假如此时的外界溶液还是比较浓,水势比细胞液低,细胞液的水分将继续外流,但是,由于细胞壁的伸缩性有限,而原生质体的伸缩性较大,所以细胞壁停止收缩,而原生质体继续收缩下去,这样,原生质体便开始和细胞壁慢慢分开。起初只是细胞的各角上稍微分离,后来分离的地方渐渐扩大,最后原生质体和细胞壁完全分开,原生质体收缩成球状小团(图1-3)。原生质体和细胞壁之间的空隙充满着蔗糖溶液。植物细胞由于液泡失水,而使原生质体和细胞壁分离的现象,称为质壁分离(plasmolysis)。从这个现象可以看到,原生质层确是半透膜,植物细胞是渗透系统。

如果把发生了质壁分离现象的细胞浸在水势较高的稀溶液或清水中,外面的水分便进入细胞,液泡变大,整个原生质体慢慢地恢复原来状态,这种现象称为质壁分离复原(deplasmolysis)。由于原生质层不是一个理想的半透膜,事实上溶质是可以通过原生质层的,只不过速度较慢。因此发生质壁分离的细胞如果较长时间被放在浓溶液中,溶质逐渐进入细胞,细胞液浓度提高,外界水分进入细胞,最后也会产生质壁分离复原现象。

我们可以利用质壁分离现象解决下列几个问题:(1)说明原生质层是半透膜。(2)判断细胞死活。只有活细胞的原生质层才是半透膜,才有质壁分离现象;如细胞死亡,原生质层结构破坏,半透膜性质消失,不能产生质壁分离现象。(3)测定细胞液的渗透势。

(四)细胞的水势

细胞吸水固然与其细胞液的渗透势有关,但并不完全决定于渗透势,因为原生质体的外围还有细胞壁存在,限制原生质体膨胀;与此同时,细胞亲水胶体又有吸水的本领,所以细胞吸水情况比前述渗透作用更复杂。

细胞吸水情况决定于细胞水势。典型细胞水势ψw是由3个势组成的:

ψw=ψπ+ψp+ψM

ψw为细胞的水势,ψπ为渗透势(osrnotic potential),ψp为止力势(pressure potential),ψM为衬质势(matric potential)。

渗透势就是溶液的水势,亦称溶质势(solute potential)。渗透势是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。溶液的渗透势决定于溶液中溶质颗粒(分子或离子)总数。例如,在0.1mol浓度的NaCl中,有将近80%的NaCl分解成Na+和Cl-,即它的溶质颗粒总数比同浓度的非电解质多80%,渗透势也低80%。如果溶液中含有多种溶质,则其渗透势是各种渗透势的总和。植物细胞的渗透势值因内外条件不同而异。一般来说,温带生长的大多数作物叶组织的渗透势在-1~-2MPa,而旱生植物叶片的渗透势很低,达-10MPa之多。渗透势的日变化和季节变化也颇大,凡是影响细胞液浓度的外界条件,都使其渗透势改变。

压力势是由于细胞壁压力的存在而增加的水势。水分进入细胞,使细胞的体积膨大,增加水分向细胞外移动的潜势。压力势往往是正值。草本作物叶片细胞的压力势,在温暖天气的下午约为+0.3至+0.5MPa,晚上则为+1.5MPa。在特殊情况下,压力势会等于零或负值。例如,质壁分离时,压力势为零;剧烈蒸腾时,细胞的压力势会呈负值。

衬质势是细胞胶体物质亲水性和毛细管对自由水束缚而引起水势降低的值,以负值表示。未形成液泡的细胞具有一定的衬质势,如干燥种子的衬质势可达-100MPa;但已形成液泡的细胞,其衬质势很大,只有0.01MPa左右,只占整个水势的微小部分,通常省略不计。因此,上述公式可简化为:

ψw=ψπ+ψp

本公式适用于有液泡的细胞或细胞群。

细胞含水量不同,细胞体积会发生变化(尤其是嫩叶和细胞壁未木质化的细胞),渗透势和压力势因之也发生改变。现以图1-4说明细胞水势、渗透势和压力势3者在细胞不同体积中的变化。在细胞初始质壁分离时(相对体积=1.0),压力势为零,细胞的水势等于渗透势,两者都呈最小值(约-2.0MPa)。当细胞吸水,体积增大时,细胞液稀释,渗透势增大(使它负得少一些),压力势增大,水势也增大。当细胞吸水达到饱和时(相对体积=1.5),渗透势与压力势的绝对值相等(约1.5MPa),但符号相反,水势便为零,不吸水。

前面已经指出,叶片细胞的压力势在剧烈蒸腾时,是呈负值的(图1-4的虚线部分),因为在蒸腾迅速时,细胞壁表面蒸发失水多于原生质体蒸发失水,所以原生质体不会脱离细胞壁。细胞壁便随着原生质体的收缩而收缩,压力势就从正值变为负值。失水越多,压力势越负。从该图左边还可以看出,在上述情况下,水势低于渗透势。

(五)细胞间的水分移动

上面讨论细胞水分在清水或溶液中的交换过程是从水势高的流到水势低的。那么,细胞之间的水分流动方向又决定于什么呢?

相邻两细胞的水分移动方向,决定于两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞方向流动。如图1-5所示,虽然细胞X的渗透势(-1.4MPa)低于细胞Y的渗透势(-1.2MPa),但前者的水势(-0.6MPa)高于后者的水势(-0.8MPa),所以细胞X的水分流向细胞Y。水势高低不同不仅影响水分移动方向,而且影响水分移动速度。两细胞之间水势差异越大,水分移动越快,反之则慢。

当有多个细胞连在一起时,如果一端的细胞水势较高,另一端水势较低,顺次下降,就形成一个水势梯度(Water potential gradient),水分便从水势高的流向水势低的。植物器官之间水分流动方向就是依据这个规律。

不同的细胞或组织的水势变化很大。在同一植株中,地上器官的细胞水势比根部低。虽然同是叶子,但它的水势伴随着距离地面高度而降低,细胞水势在叶子中距主脉越远则越低,在根部则内部低于外部。土壤或大气湿度小、光线强,都使细胞水势降低。由于细胞水势高低说明细胞水分充足与否,故可利用水势为指标,诊断作物灌溉适宜的时期。

二、细胞的吸涨作用

吸涨作用(imbibition)是亲水胶体吸水膨胀的现象。原生质、细胞壁和淀粉粒、蛋白质等都呈凝胶状态,其中细胞壁里面还有大大小小的缝隙。水分子(液态的水或气态的水蒸气)会迅速地以扩散或毛细管作用跑到这些凝胶内部。由于这些凝胶是亲水性的,而水分子是极性分子,水分子以氢键与亲水凝胶结合,使后者膨胀。原生质凝胶的吸涨作用大小与凝胶物质亲水性有关,蛋白质、淀粉和纤维素三者的亲水性依次递减,所以含蛋白质较多的豆类种子吸涨现象非常显著。

一般来说,细胞在形成液泡之前的吸水主要靠吸涨作用。如风干种子的萌发吸水,果实种子形成过程的吸水,分生细胞生长的吸水,等等,都是靠吸涨作用。吸涨作用的大小就是衬质势的大小。根据ψW=ψM+ψπ+ψP,由于干燥种子的细胞没有液泡,ψπ=0,ψP=0,所以ψW=ψM,即衬质势等于水势。吸涨过程的水分移动方向,也是从水势高的流向水势低的。溶液(或水)的水势高,吸涨物的水势低,水分就流向吸涨物。

三、细胞的代谢性吸水

利用细胞呼吸释放出的能量,使水分经过质膜而进入细胞的过程,称为代谢性吸水。不少试验证明,当通气良好,细胞呼吸加强时,细胞吸水便增强;相反,减小氧气或以呼吸抑制剂处理时,细胞呼吸速率降低,细胞吸水也就减少。由此可见,原生质代谢过程与细胞吸水有着密切关系。关于细胞这种吸水方式的机理,尚无可靠的解释。

第三节植物根系对水分的吸收

高等植物的叶片上虽然有角质层,但当被雨水或露水湿润时,叶子也能吸水,不过数量很少,在水分供应上没有重要意义。根系是陆生植物吸水的主要器官,它从土壤中吸收大量水分,满足植物体的需要。

根系虽然是吸水器官,但并不是根的各部分都能吸水,各部分的吸水能力也不相同。根部表皮细胞木质化或木栓化部分的吸水能力很小,根的吸水主要在根尖进行。在根尖中,以根毛区的吸水能力最大,根冠、分生区和伸长区较小。后三个部分之所以吸水差,可能是由

于细胞质浓厚,输导组织不发达,对水分移动阻力大。根毛区有许多根毛,增大了吸收面积(玉米增大5.5倍,大豆增大12倍);同时根毛细胞壁的外部是由果胶质组成,粘性强,亲水性也强,有利于与上壤颗粒粘着和吸水;而且根毛区的输导组织发达,对水分移动的阻力小,所以根毛区吸水能力最大。由于根部吸水主要在根尖部分进行,所以移植幼苗时应尽量避免损伤细根。

一、根系吸水的动力

根系吸水有两种动力;根压和蒸腾拉力,后者较为重要。

(一)根压

植物根系的生理活动使液流从根部上升的压力,称为根压(root pressure)。根压挖根部的水分压到地上部,土壤中的水分便不断补充到根部,这就形成根系吸水过程,这是由根部形成力量引起的主动吸水。各种植物的根压大小不同,大多数植物的根压不超过0.1~0.2MPa,而有些树木和葡萄也只有几百个kPa。下面两种现象都证明根压的存在。

从植物茎的基部把茎切断,切口不久即流出液滴。从受伤或折断的植物组织溢出液体的现象,称为伤流(bleeding)。流出的汁液是伤流液(bleeding sap)。伤流是由根压所引起的。不同植物的伤流程度也不同,葫芦科植物伤流液较多,稻、麦等的较少。同一植物在不同季节中根系生理活动强弱、根系有效吸收面积大小等都直接影响伤流液的多少。伤流液除了含有大量水分外,还含有各种无机盐、有机物和植物激素。所以,伤流液的数量和成分,可作为根系活动能力强弱的指标。

没有受伤的植物如处于土壤水分充足、天气潮湿的环境中,叶片尖端或边缘也有液体外泌的现象。这种从未受伤叶片尖端或边缘向外溢出液滴的现象,称为吐水( guttation)。吐水也是由根压所引起的。水分是通过叶尖或叶缘的水孔排出的。在自然条件下,当植物吸水大于蒸腾时(如早晨、傍晚),往往可以看到吐水现象。在生产上,吐水现象可作为根系生理活动的指标,它可以说明水稻秧苗回青等生长状况。

到目前为止,关于根压产生的机理问题,还没有得到彻底解决。主要有两种解释。

1.渗透论根部导管四周的活细胞进行新陈代谢,不断向导管分泌无机盐和有机物,导管溶液的水势就下降,而附近活细胞的水势较高,所以水分不断流入导管,同样道理,较外层细胞的水分向内移动。最后,土壤水分沿着根毛、皮层,流到导管,进一步向地上部分运送。值得注意的是内皮层细胞壁上的凯氏带,它环绕在内皮层径向壁和横向壁上,木栓化和木质化,而细胞质牢牢地附在凯氏带上,所以水分既不能在壁中作径向运动,也不能在壁和质膜之间移动,而只能通过内皮层的原生质体(图1-6)。这样,内皮层就起着半透性膜的作用。持这种看法的人认为,根在吸水过程中起渗透计(osmometer)的作用,水分从水势较高的土壤溶液,经过由内皮层细胞组成的“半透膜”,进入水势较低的木质部中去。试验证明,根系在水势高的溶液中时,伤流速度快;如将根系转放在水势较低的溶液中,伤流速度变慢;当外界溶液的水势更低时,伤流停止甚至已流出的伤流液也再被吸回。由此可见,根系吸水快慢和有无,决定于导管汁液与外界溶液之间的水势差异大小和有无。

2.代谢论持这种见解的人认为,呼吸释放的能量参与根系的吸水过程。例如,当外界环境温度降低、氧分压下降或呼吸抑制剂存在时,根压、伤流、吐水或根系吸水便会降低或停顿;相反,低浓度的生长素溶液则能促进伤流速度。

(二)蒸腾拉力

叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。同理,旁边细胞又从另一个细胞取得水分,如此下去,便从导管要水,最后根部就从环境吸收水分。这种吸水完全是蒸腾失水而产生的蒸腾拉力(transpirational pull)所引起的,是由枝叶形成的力量传到根部而引起的被动吸水。蒸腾着的枝叶可通过被麻醉或死亡的根吸水,甚至没有根的切条也可以吸水。因此,根似乎只是水分进入植物体的被动吸收表面。

根压和蒸腾拉力在根系吸水过程中所占的比重,因植株蒸腾速率而异。通常蒸腾植物的吸水主要是由蒸腾拉力引起的。只有春季叶片未展开时,蒸腾速率很低的植株,根压才成为主要吸水动力。

二、影响根系吸水的外界条件

了解根的吸水部位和根系吸水方式以后,我们便可讨论影响根系吸水的条件。内部条件(如根的木质部溶液的渗透势、根系发达程度、根系对水分的透性程度和根系呼吸速率等)能影响吸水,外界因素也影响根系吸水。这里只叙述后者。

在外界条件中,大气因子影响蒸腾速率,从而间接影响根系吸水,而土壤因子则直接影响根系吸水。关于影响蒸腾的大气因子,下一节还要讨论。这里只着重讨论影响根系吸水的土壤因子。

(一)土壤中可用水分

土壤中的水分对植物来说,并不是都能被利用的。根部有吸水的能力,而土壤也有保水的本领(土壤中一些有机胶体和无机胶体能吸附一些水分,土壤颗粒表面也吸附一些水分),假如前者大于后者,则吸水,否则不吸水。植物从土壤中吸水,实质上是植物和土壤彼此争夺水分的问题。植物只能利用土壤中可用水分(available water)。土壤可用水分多少和土粒粗细以及土壤胶体数量有密切关系,粗砂、细砂、砂壤、壤土和粘土的可用水分数量依次递减。

(二)土壤通气状况

试验证明,用CO2处理根部,可使幼苗的吸水量降低;如通以空气,则吸水量增加。土

壤通气不良之所以使根系吸水量减少的原因,是因为土壤缺乏氧气和二氧化碳浓度过高,短期内可使细胞呼吸减弱,影响根压,继而阻碍吸水;时间较长,就形成无氧呼吸,产生和累积较多酒精(详见第四章),根系中毒受伤,吸水更少。作物受涝,反而表现出缺水现象,也是因为土壤空气不足,影响吸水。栽培水稻时,中耕耘田、排水露田等措施的主要目的,就是增加土壤空气,增强吸水、吸肥能力。土壤粘重的农田,掺沙改土的目的之一,就是增加土壤通气状况。

不同植物对土壤通气不良的忍受能力差异甚大,如水稻、香蒲和芦苇在水分饱和的土壤中,生长正常;而番茄和烟草在土粒空隙被水分充满的土壤中,则易萎蔫甚至死亡。这种情况与植物的结构差异和生理区别有关。从结构方面看,忍受能力大的植物,由于长期生长在通气不良的沼泽地带,根部具有较大的细胞间隙和气道,与叶茎的细胞间隙和气道相连,空气可以从叶茎运到根部,满足根系吸水的需要。从生理方面看,可能是它们的呼吸机理有些不同。例如,水稻根部具有较强的乙醇酸氧化途径,氧化乙醇酸,并产生过氧化氢,后者在过氧化氢酶作用下,放出氧气,供根系呼吸用;水稻幼苗在缺氧情况下,细胞色素氧化酶仍保持一定的活性,可能是秧苗耐淹的生理原因之一。

根据上面的讨论可知,土壤中具有足够的可用水分和良好的通气状况,是植物充分吸收水分的必要条件。但事实上土壤中水分和空气的存在是矛盾的,不是水多空气少就是水少空气多。团粒土壤可克服这个矛盾。因为团粒土壤具有大小空隙,在大空隙里除了正在下雨或浇水时以外,都充满着空气。在小空隙里多半有水分,故可同时满足根系的需要。耕作上应尽量使土壤形成团粒结构。

(三)土壤温度

低温能降低根系的吸水速率,其原因是:水分本身的粘性增大,扩散速率降低;细胞质粘性增大,水分不易通过细胞质;呼吸作用减弱,影响根压;根系生长缓慢,有碍吸水表面的增加。春天低温水凉,水稻的水分管理原则之一,就是提高水温和土温。在冷底田栽种水稻生长不良的原因之一,就是土温低,影响禾苗吸水、吸肥。

土壤温度过高对根系吸水也不利。高温加速根的老化过程,使根的木质化部位几乎达到尖端,吸收面积减少,吸收速率也下降。同时,温度过高使酶钝化,细胞质流动缓慢甚至停止。

(四)土壤溶液浓度

土壤溶液含有一定盐分,具有水势。根系要从土壤中吸水,根部细胞的水势必须低于土壤溶液的水势。在一般情况下,土壤溶液浓度较低,水势还是比较高。盐碱土则相反,土壤水分中的盐分浓度高,水势很低,作物吸水困难。在围海造田时,采取灌水洗盐等有效措施去降低土壤溶液浓度。水稻幼苗在含盐量0.2%以下即可正常生长。施用化学肥料时不宜过量,特别是在砂质土,以免根系吸水困难,产生“烧苗”现象。

四植物体内水分的运输

陆生植物根系从土壤中吸收的水分,必须运到茎、叶和其他器官,供植物各种代谢的需要或者蒸腾到体外。

一、水分运输的途径

水分从被植物吸收至蒸腾到体外,大致需要经过下列途径:首先水分从土壤溶液进入根部,通过皮层薄壁细胞,进入木质部的导管和管胞中;然后水分沿着木质部向上运输到茎或叶的木质部;接着,水分从叶片木质部末端细胞进入气孔下腔附近的叶肉细胞细胞壁的蒸发部位;最后,水蒸气就通过气孔蒸腾出去。由此可见,土壤—植物—空气三者之间的水分是具有连续性的。

根据原生质的有无,植物组织可分为质外体(apoplast,又称非原质体)和共质体(symplast)两大部分。质外体是指没有原生质的部分,包括细胞壁、细胞间隙和导管的空腔,

贯穿各个细胞之间,是一个连续的体系。质外体不是空隙就是具有细孔的网状体(如细胞壁),水分、溶质和气体可以在其中自由扩散,所以,运输迅这。共质体是指无数细胞的原生质体,通过胞间连丝联系,形成一个连续的整体。水分和溶质在共质体内进行渗透性运输,速度较慢。水分在茎、叶细胞内的运输也有两种途径:

水分在茎、叶细胞内的运输也有两种途径:

1.经过死细胞导管和管胞都是中空无原生质体的长形死细胞,细胞和细胞之间都有孔,特别是导管细胞的横壁几乎消失殆尽,对水分运输的阻力很小,适于长距离的运输。裸子植物的水分运输途径是管胞,被子植物是导管和管胞。管胞和导管的水分运输距离以植株高度而定,由几cm到几百m。

2.经过活细胞水分由叶脉到气孔下腔附近的叶肉细胞,都是经过活细胞。这部分在植物内的长度不过几mm,距离很短,但因细胞内有原生质体,加上以渗透方式运输,所以阻力很大,不适于长距离运输。没有真正输导系统的植物(如苔藓和地衣)不能长得很高,在进化过程中出现了管胞(蕨类植物和裸子植物)和导管(被子植物),才有可能出现高达几m甚至几百m的植物,道理就在此。

二、水分沿导管或管胞上升的动力

目前认为水分沿导管或管胞上升的动力有两种:(1)下部的根压;(2)上部的蒸腾拉力。

以前已经讲过,根压能使水分沿导管上升。但根压一般不超过 0.2MPa,而0.2MPa也只能使水分上升20.4m。许多树木的高度远比这个数值大得多,同时蒸腾旺盛时根压很小,所以水分上升的主要动力不是靠根压。只有多年生树木在早春芽叶尚未舒放以前,以及土温高、水分充足、大气相对湿度大、蒸腾作用很小时,根压对水分上升才起较大的作用。

一般情况下,蒸腾拉力才是水分上升的主要动力。当气孔下腔附近的叶肉细胞因蒸腾失水时,便从旁边的细胞夺取水分。同样道理,这个细胞又从另一细胞吸水,这样依次下去,便可以从导管夺取水分。因此,蒸腾越强,失水越多,从导管拉水的力量也越强。

蒸腾拉力要使水分在茎内上升,导管的水分必须形成连续的水柱。如果水柱中断,蒸腾拉力便无法把下部的水分拉上去。那么,导管的水柱能否保证不断呢?

我们知道,相同分子之间有相互吸引的力量,称为内聚力(cohesive force)。水分子的内聚力很大,据测定,植物细胞中水分子内聚力竟达—20MPa以上。叶片蒸腾失水后,便从下部吸水,所以水柱一端总是受到拉力,与此同时,水柱本身重量又使水柱下降,这样上拉下堕使水柱产生张力(tension)。木质部水柱张力为-0.5~-3MPa。水柱张力大小和吸水与蒸腾之间的差额有关,越缺水,张力越大。一般来说,草本植物的水柱张力是-0.1~-0.15MPa,灌木是-0.7~-0.8MPa,高大树木是-2~-3MPa。水分内聚力比水柱张力大,故可使水柱不断。

总之,叶片因蒸腾失水而向导管或管胞吸水,使导管或管胞的水柱产生张力,由于水分子内聚力大于水柱张力,保证水柱的连续性而使水分不断上升。这种以水分具有较大的内聚力保证由叶至根水柱不断来解释水分上升原因的学说,称为内聚学说(cohesion theory),这个学说亦称蒸腾—内聚力—张力学说(transpiration-cohesion-tension theory),是爱尔兰人H.H.Dixon提出的(图1-12)。这个学说近几十年来争论较多。争论焦点有两个方面:一个方面是水分上升是不是也有活细胞参与。有人认为导管和管胞周围的活细胞对水分上升也起作用,但是更多的研究指出,茎部局部死亡(如用毒物杀死或烫死)后,水分照样能运到叶片。另一个方面是木质部里有气泡,水柱不可能连续,为什么水分还继续上升?如果把木质部环割,水分还是向上运输,植物不枯萎。据此,怀疑这个学说的可靠性。然而也有更多试验支持这个学说。他们认为,水分子与水分子之间具有内聚力,水分子与细胞壁分子之间又具有强大的附着力(adhesive force),所以水柱中断的机会很小。而且,在张力的作用下,植物体内所产生的连续水柱,除了在导管腔(或管胞腔)之外,也存在于其他空隙(如细胞壁的微孔)里。虽然空气进入导管腔(或管胞腔),大水柱中断,但水流还能通过微孔之间的小水柱上升。再者,水分上升不需要全部木质部起作用,只要部分木质部输导组织畅通即可。观察指出,树木茎内许多木质部管道是被气体堵塞的,水柱中断,无运输功能,只有年轮外围幼嫩的木质部输导组织是水柱连续、运输畅通的。因此,部分导管或管胞的水柱中断也不影响大局。总的来看,内聚学说目前是比较受支持的。

三、水分运输的速度

活细胞原生质体对水流移动的阻力很大。因为原生质是由许多亲水物质组成,都具水合膜,当水分流过时,原生质把水分吸住,保持在水合膜上,所以水流便遇到阻力。据实验在0.1MPa条件下,水流经过原生质的距离只有10~3cm/h。

水分在木质部中运输的速度比在薄壁细胞中快得多,为3~45m/h。具体速度以植物输导组织隔膜大小和环境条件而定。具环孔材的树木的导管较大而且较长,水流速度最高为20~40m/h,甚至更高;具散孔材的树木的导管较短,水流速度慢,只有1~6m/h;而裸子植物只有管胞,没有导管,更慢,还不到0.6m/h。草本植物的水流速度和环孔材树木差不多。同样枝条,被太阳直接照射的水流速度快于不直接照射的。同一植株,晚上水流速度最低,白天最高。

第二章 植物的水分代谢

第 2 章植物的水分代谢 一、名词解释 1. 水分代谢 2. 自由水 3. 束缚水 5. 化学势 7. 水势 10. 渗透作用 11. 半透膜 12. 溶质势势降低的数值。溶质势表示溶液中水分潜在的渗透能力的大小,因此, 公溶质势又可称为渗透势 (osmosis potential,π) 。溶质势可用ψs=RTlnNw/ V W,m 式计算 , 也可按范特霍夫公式ψs= ψπ=-iCRT 计算。 13. 衬质势 14. 压力势 15. 重力势。 16. 膨压 17. 集流 18. 质壁分离 20. 水通道蛋白 22. 吸胀作用 23. 根压 24. 伤流 25. 吐水 29水分临界期。 30.蒸腾效率 31.蒸腾系数 40、被动吸水 41、等渗溶液 42、主动吸水 二、填空题 1.将一植物细胞放人纯水(体积很大)中,达到平衡时测得其ψw为-0.26Mpa,那么

该细胞的ψp为ψw为。 3.将一植物细胞放入ψw=-0.8 MPa 的溶液(体权相对细胞来说很大)中,吸水达到平衡时测得细胞的ψs=-o.95MPa,则该细胞内的ψp为,ψw为。4.某种植物形成5g干物质消耗了2.5Kg水,其蒸腾效率为蒸腾系数 为。 5.植物体内自由水/束缚水比值降低时,植物的代谢活动,抗逆 性。 8.利用质壁分离现象可以判断细胞、细胞的以及观测物质透过原生质层的难易程度。 9.根系吸水有主动吸水和被动吸水两种方式,前者的动力是,后者的动力是。 10.和纯水相比,含有溶质的水溶液其冰点 ,渗透势。 11.在干旱条件下,植物为了维持体内的水分平衡,一方面要,一方面要尽量。 12.水分沿着导管或管胞上升的下端动力是,上端动力 是。由于的存在,保证水柱的连续性而使水分不断上升。这一学说在植物生理学上被称为。 14.气孔在叶面所占的面积一般为,但气孔蒸腾失去了植物体内的大量水分,这是因为气孔蒸腾符合原理,这个原理的基本内容 是。 17.一般认为,植物细胞吸水时起到半透膜作用的是:、和 三个部分。 19.细胞中的自由水越多,原生质粘性________,代谢_____ ,抗性________ 。 21. 植物细胞发生初始质壁分离时,其Ψw =________;当细胞吸水达到饱和时,其Ψw= ________ 。 22. 一般植物细胞Ψw= _________;当细胞刚发生质壁分离时,其Ψ w= __________ 。 23. 液泡化的植物细胞,其水势主要由________和_________组成,而________可以忽略不计。 27.种子萌发时靠________作用吸水,其吸水量与_________有关。 28.分生组织主要依靠________吸水,形成液泡的细胞主要靠_______ 吸水。

植物的水分代谢

植物的水分代谢 陆生植物是由水生植物进化而来的,因此,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下,才能进行,否则,植物的正常生命活动就会受阻,甚至停止。所以说,没有水,就没有生命。在农业生产上,水是决定收成有无的重要因素之一,农谚说:“有收无收在于水”,就是这个道理。 植物从环境中不断地吸收水分,以满足正常生命活动的需要。但是,植物又不可避免地要丢失大量水分到环境中去。这样就形成了植物水分代谢(water metabolism)的3个过程:水分的吸收、水分在植物体内运输和水分的排出。 植物对水分的需要 一、植物的含水量 植物体中都含有水分,但是植物体的含水量并不是均一和恒定不变的,因为含水量与植物种类、器官和组织本身的特性和环境条件有关。 不同植物的含水量有很大的不同。例如,水生植物(水浮莲、满江红、金鱼藻等)的含水量可达鲜重的 90%以上,在干旱环境中生长的低等植物(地衣、藓类)则仅占6%左右。又如草本植物的含水量为70~85%,木本植物的含水量稍低于草本植物。 同一种植物生长在不同环境中,含水量也有差异。凡是生长在荫蔽、潮湿环境中的植物,它的含水量比生长在向阳、干燥的环境中的要高一些。 在同一植株中,不同器官和不同组织的含水量的差异也甚大。例如,根尖、嫩梢、幼苗和绿叶的含水量为60~90%,树干的为40~50%,休眠芽的为40%,风干种子的为10~14%。由此可见,凡是生命活动较旺盛的部分,水分含量都较多。 二、植物体内水分存在的状态 水分在植物体内的作用,不但与其数量有关,也与它的存在状态有关。水分在植物细胞内通常呈束缚水和自由水两种状态,而这又与原生质有密切联系。 原生质的化学成分,主要是由蛋白质组成的,它占总干重60%以上。蛋白质的分子很大,其水溶液成为高分子溶液,具有胶体的性质,因此,原生质是一个胶体系统(colloidal system)。蛋白质分子形成空间结构时,疏水基(如烷烃基、苯基等)包在分子内部,而许多亲水基(如—NH2,—COOH,—OH等)则暴露在分子的表面。这些亲水基对水有很大的亲和力,容易起水合作用(hydration)。所以原生质胶体微粒具有显著的亲水性(hydrophilic nature),其表面吸引着很多水分子,形成一层很厚的水层(图1-1)。水分子距离胶粒越近,吸附力越强;相反,则吸附力越弱。靠近胶粒而被胶粒吸附束缚不易自由流动的水分,称为束缚水(bound water);距离胶粒较远而可以自由流动的水分,称为自由水(free water)。事实上,这两种状态水分的划分是相对的,它们之间并没有明显的界限。 自由水参与各种代谢作用,它的数量制约着植物的代谢强度,如光合速率、呼吸速率、生长速度等。自由水占总含水量百分比越大,则代谢越旺盛。束缚水不参与代谢作用,但植

(完整版)第二章植物的水分代谢复习题参考答案

第二章植物的水分代谢复习题参考答案1、植物细胞吸水方式有、和 。 2、植物调节蒸腾的方式有、和 。 3、植物散失水分的方式有和。 4、植物细胞内水分存在的状态有和。 5、水孔蛋白存在于细胞的和上。水孔蛋白活化依靠 作用调节。 6、细胞质壁分离现象可以解决下列问题:、 和。 7、自由水/束缚水比值越大,则代谢;其比值越小,则植物的抗逆性。 8、一个典型细胞的水势等于;具有液泡的细胞的水势等于;干种子细胞的水势等于。 9、形成液泡后,细胞主要靠吸水。 10、风干种子的萌发吸水主要靠。 11、溶液的水势就是溶液的。 12、溶液的渗透势决定于溶液中。 13、在细胞初始质壁分离时,细胞的水势等于,压力势等于。 14、当细胞吸水达到饱和时,细胞的水势等于,渗透势与压力势绝对值。 15、将一个ψp=-ψs的细胞放入纯水中,则细胞的体积。 16、相邻两细胞间水分的移动方向,决定于两细胞间的。 17、植物可利用水的土壤水势范围为。 18、植物根系吸水方式有:和。前者的动力是________后者的动力是。 19、证明根压存在的证据有和。 20、对于大多数植物,当土壤含水量达到永久萎蔫系数时,其水势约为 MPa,该水势称为。 21、叶片的蒸腾作用有两种方式:和。 22、某植物制造10克干物质需消耗5公斤水,其蒸腾系数。 23、水分在茎、叶细胞内的运输有两种途径1. 细胞,2. 细胞。 24、小麦的第一个水分临界期是,第二个水分临界期是 。 25、常用的蒸腾作用的指标有、和 。 26、影响气孔开闭的因子主要有、 和。 27、影响蒸腾作用的环境因子主要是、、和。 28、C3植物的蒸腾系数比C4植物。 29、可以较灵敏地反映出植物的水分状况的生理指标有、 、和 。 30、近年来出现的新型的灌溉方式有、和 。 四、选择题 1、植物在烈日照射下,通过蒸腾作用散失水分降低体温,是因为()。 A、水具有高比热; B、水具有高气化热; C、水具有表面张力; D、水分子具有内聚力。 2、一般而言,进入冬季越冬作物组织内自由水/束缚水的比值:()。 A、升高; B、降低; C、不变; D、无规律。 3、有一个充分为水饱和的细胞,将其放入比细胞液浓度低10倍的溶液中,则细胞体积:() A、变大; B、变小; C、不变; D、可能变小,也可能不 变。 4、已形成液泡的植物细胞吸水靠()。 A、吸涨作用; B、渗透作用; C、代谢作用; D、扩散作 用。 5、已形成液泡的细胞,其衬质势通常省略不计,其原 因是:()。 A、初质势很低; B、衬质势不存在; C、衬质势很高, 绝对值很小;D、衬质势很低,绝对值很小。 6、植物分生组织的细胞吸水靠()。 A、渗透作用; B、代谢作用; C、吸涨作用; D、扩散作 用。 7、将一个细胞放入与其渗透势相等的外界溶液中,则 细胞()。 A、吸水; B、失水; C、既不吸水也不失水; D、既可能 失水也可能保持平衡。 8、在土壤水分充足的条件下,一般植物的叶片的水势 为( ) 。 A、-0.2- -0.8 Mpa; B、–2- -8 Mpa; C、-0.02- 0.08 Mpa;D、0.2- 0.8 Mpa。 9、在气孔张开时,水蒸气分子通过气孔的扩散速度 ()。 A、与气孔的面积成正比; B、与气孔周长成正比; C、 与气孔周长成反比;D、与气孔面积成反比。 10、蒸腾作用快慢,主要决定于()。 A、叶内外蒸汽压差大小; B、气孔长度; C、叶面积大 小;D、叶片形状。 11、保卫细胞的水势变化与下列无机离子有关 ()。 A、Ca2+; B、K+; C、Cl-; D、Mg2+。 12、保卫细胞的水势变化与下列有机物质有关 ()。 A、丙酮酸; B、脂肪酸; C、苹果酸; D、草酸乙酸。 13、调节植物叶片气孔运动的主要因素是 ( )。 A、光照; B、温度; C、氧气; D、二氧化碳。 14、根部吸水主要在根尖进行,吸水能力最大的是 ()。 A、分生区; B、伸长区; C、根毛区; D、根冠。 15、土壤通气不良使根系吸水量减少的原因是 ()。 A、缺乏氧气; B、水分不足; C、水分太多; D、CO2浓 度过高。 16、植物体内水分长距离运输的途径是 ( )。 A、筛管和伴胞; B、导管和管胞; C、通道细胞; D、胞 间连丝。 17、植物体内水分向上运输的动力有 ( )。 A、大气温度; B、蒸腾拉力; C、水柱张力; D、根压。 18、土壤温度过高对根系吸水不利,因为高温会 ()。 A、加强根的老化; B、使酶钝化; C、使生长素减少; D、 原生质粘度增加。 19、植物的水分临界期是指植物()。 A、对水分缺乏最敏感的时期; B、需水量最多的时期; C、需水终止期; D、生长最快的时期。 20、作为确定灌溉时期的灌溉生理指标有:( ) 。 A、叶片水势; B、细胞汁液浓度; C、渗透势; D、气孔 开度。 五、是非判断题 1、影响植物正常生理活动的不仅是含水量的多少,而 且还与水分存在的状态有密切关系。() 2、在植物生理学中被普遍采用的水势定义是水的化学 势差。() 3、种子吸胀吸水和蒸腾作用都是需要呼吸作用直接供 能的生理过程。() 4、植物根系吸水快慢和有无,决定于导管汁液与外界 溶液之间的水势差异的大小有无。() 5、植物细胞吸水方式有主动吸收和被动吸水。 () 6、植物的临界水势越高,则耐旱性越强。 ( ) 7、在细胞初始质壁分离时,细胞水势等于压力势。 () 8、在细胞为水充分饱和时,细胞的渗透势为零。 () 9、把一个细胞放入某溶液中体积不变,说明该细胞液 的浓度与此溶液的浓度相等()。 10、蒸腾效率高的植物,一定是蒸腾量小的植物。 () 11、蒸腾作用与物理学上的蒸发不同,因为蒸腾过程 还受植物结构和气孔行为的调节。() 12、空气相对湿度增大,空气蒸汽压增大,蒸腾加强。 () 13、低浓度CO2促进气孔关闭,高浓度CO2促进气孔迅 速张开。() 14、糖、苹果酸和K+、Cl-进入液泡,使保卫细胞压力 势下降,吸水膨胀,气孔张开。() 15、就利用同单位的水分所产生的干物质而言,C3植物 比C4植物要多1-2倍。() 16、干旱时细胞内磷酸酯酶活性减弱;硝酸还原酶活 性增强。() 17、植物轻度缺水时,光合作用尚未受影响,但生长 已受抑制。( ) 18、灌溉的形态指标易于观察,它比生理指标更及时 和灵敏。 ( ) 19、植物体内的水分平衡是有条件的、短暂的。 ( ) 20、作物一定时期缺水并不一定会降低产量,还可能 对作物增产更为有利。( ) 一、名词解释 1、水分代谢( water metabolism):植物对水分的吸收、 运输、利用和散失的过程。 2、水势(water potential ):每偏摩尔体积水的化学势 差。符号:ψw 3、渗透势(osmotic potential ):由于溶液中溶质颗 粒的存在而引起的水势降低值,符号ψπ。用负值表示。亦称 溶质势(ψs)。 4、压力势(water potential ):由于细胞壁压力的存 在而增大的水势值。一般为正值。符号:ψp。初始质壁分离 时,ψp为0;剧烈蒸腾时,ψp会呈负值。 5、衬质势(water potential): 由于细胞胶体物质亲 水性和毛细管对自由水的束缚而引起的水势降低值,以负值表 示。符号:ψm 6、重力势(water potential ):由于重力的存在而 使体系水势增加的数值。符号:ψg 。 7、自由水:距离胶粒较远而可以自由流动的水分。 8、束缚水:靠近胶粒而被胶粒所束缚,不易自由流动 的水分。 9、渗透作用:水分从水势高的系统通过半透膜向水势 低的系统移动的现象。 10、吸涨作用:亲水胶体吸水膨胀的现象。 11、代谢性吸水:利用细胞呼吸释放出的能量,使水 分经过质膜进入细胞的过程。 12、水的偏摩尔体积:在温度、压强及其他组分不变 的条件下,在无限大的体系中加入1摩尔水时,对体系体积的 增量。符号V-w 13、化学势:一种物质每mol的自由能就是该物质的 化学势。 14、水通道蛋白:存在于生物膜上的一类具有选择性、 高效转运水分功能的内在蛋白,亦称水孔蛋白。 15、吐水:从未受伤的叶片尖端或边缘的水孔向外溢 出液滴的现象。 16、伤流:从受伤或折断的植物器官、组织伤口处溢 出液体的现象。 17、根压:植物根部的生理活动使液流从根部上升的 压力。 18、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度 使导管中水分上升的力量。 19、蒸腾作用:水分以气体状态通过植物体表面从体 内散失到体外的现象。 20、蒸腾速率:又称蒸腾强度,指植物在单位时间内, 单位叶面积通过蒸腾作用而散失的水分量。(g/dm2·h) 21、蒸腾比率:植物每消耗1kg水时所形成的干物质 重量(g)。 22、蒸腾系数:植物制造1g干物质所需消耗的水分量 (g)。又称为需水量。它是蒸腾比率的倒数。 23、小孔扩散律:指气孔通过多孔表面的扩散速率不与 其面积成正比,而与小孔的周长成正比的规律。 24、永久萎蔫:萎蔫植物若在蒸腾速率降低以后仍不能 恢复正常,这样的萎蔫就称为永久萎蔫。 25、临界水势:气孔开始关闭的水势。 26、水分临界期:植物对水分缺乏最敏感的时期。一般 为花粉母细胞四分体形成期。 27、生理干旱:盐土中栽培的作物,由于土壤溶液的水 势低,吸收水分较为困难或者是原产热带的作物遇低于10℃ 的温度时而出现的萎蔫现象。 28、内聚力学说:又称蒸腾流一内聚力—张力学说。即 以水分的内聚力来解释水分沿导管上升的原因的学说。 29、初干:在蒸腾失水过多或水分供应不足的条件下, 细胞间隙及气孔下腔不再为水蒸气所饱和,这时即使气孔张 开,蒸腾作用也受到抑制的现象。 30、节水农业:是充分利用水资源、采取水利和农业措 施提高水分利用率和生产效率,并创造出有利于农业可持续发

第一章 植物的水分代谢

第一章植物的水分代谢 一填空题 1 淀粉磷酸化酶在pH值降低时催化________转变为________,在光下由于光合作用的进行,保卫细胞中的________减少,pH值上升。 2 典型植物细胞的水势是由________组成的,细胞间水分子移动的方向决定于________,即水势________的细胞向水势________的细胞方向流动。 3 植物根系吸水的动力是________和________,其中________较为重要。 4 将已发生质壁分离的细胞放入清水中,细胞的水势变化趋势是________,细胞的渗透势________,压力势________。当________时,细胞停止吸水。 5 水分在植物细胞内以________和________状态存在,________比值大时,代谢旺盛;________比值小时,代谢降低。 6 在相同________下,一个系统中一偏摩尔容积的________与一偏摩尔容积的________之间的________,叫作水势。 7 ________和________现象可以证明根压的存在。 8 当相邻两个植物细胞连在一起时,水分移动方向决定于两端细胞的________。 9 植物对蒸腾的调节方式有________、________和________。 10 植物根部吸水能力最强的部位为________,因为________________。 二是非题 1 Leave is always the source and root is always the sink in the source-sink relationship. () 2 Osmotic adjustment is an active process in reducing the plant osmotic potential during water deficiency. () 3 小麦从灌浆期倒乳熟末期是它的第二水分临界期。() 4 伤流速度主要取决于木质部溶液与外界溶液的水势差。() 5 深秋的早晨,树木花草叶面上有许多水滴,这种现象称为吐水。() 6 落叶乔木在春天芽刚萌动时主要依靠根压吸收水分。() 7 植物的蒸腾比率越大,说明其越抗旱。() 8 土壤中水分越多,对植物吸收越有利。() 9 植物蒸腾系数大,说明其利用水效率低。() 10 蒸腾效率高的植物,一定是蒸腾量小的植物。() 11 具液泡的细胞,其衬质势数值很小,通常忽略不计。() 12 细胞水势在根部距离导管越远,则越高。() 三选择题 1 The direction of water movement between adjacent cells is determined by the _______ gradient of the cells. A. water potential B. osmotic potential C. pressure potential D. matric potential 2 The loss of water from plants is called ____ and typically occurs through the ____. A. evaporation, leaves B. transpiration, leaves C. transpiration, stem D. osmosis, roots

第2章 植物的水分代谢复习资料

第2章植物的水分代谢 第一节水在植物生命活动中的意义 1.1 植物的含水量 一般来说,植物组织含水量一般为70%~90%。 草本>木本,水生>陆生 潮湿环境,阴生植物>干燥、向阳环境中的植物 生长旺盛和代谢活跃的器官或组织含水量较高。 1.2 植物体内水分的存在状态 束缚水(bound water):指细胞内与原生质胶粒紧密结合而不能自由移动的水分。 自由水(free water):指细胞内距离原生质胶粒较远而可以自由移动的水分。 这种划分是相对的,两种水分之间没有明显的界限。 自由水/束缚水是衡量植物代谢强弱和抗性强弱的生理指标之一。 1.3 水对植物的生理生态作用 生理作用: 1、水是原生质的重要组分; 2、水参与植物代谢过程(原料、参与); 3、水是植物吸收、运输物质的良好介质; 4、水能使植物保持固有姿态; 5、水能促进细胞的分裂和生长。 生态作用: 1、调节植物体温; 高比热:稳定植物体温 高汽化热:降低体温,避免高温危害 介电常数高:有利于离子的溶解 2、水对可见光有良好的通透性; 3、水可调节植物的生存环境。 第二节植物细胞对水分的吸收 一、植物细胞的渗透现象 1、渗透作用(osmosis):在一个系统中,水分通过半透膜从水势高的一方向水势低的一方移动的现象。(两个条件:半透膜、水势差) 渗透装置的条件 1、具有半透膜 2、半透膜两侧具有浓度差 植物细胞是一个渗透系统 二、水势的概念 水势(Ψw ):水的化学势,即偏每摩尔体积水所含的自由能。 自由能(G):系统中物质能用于做功的潜在能量。 束缚能:系统中物质不能用于做功的潜在能量。 化学势(μ):每偏摩尔体积某物质所含的自由能。 化学势是能量概念,单位为J/mol [J=N(牛)·m], 偏摩尔体积的单位为m3/mol

植物的水分代谢复习题参考答案

第二章植物的水分代谢复习题参考答案 一、名词解释 1、水分代谢( water metabolism):植物对水分的吸收、运输、利用和散失的过程。 2、水势(water potential ):每偏摩尔体积水的化学势差。符号:ψw 3、渗透势(osmotic potential ):由于溶液中溶质颗粒的存在而引起的水 势降低值,符号ψ π。用负值表示。亦称溶质势(ψ s )。 4、压力势(water potential ):由于细胞壁压力的存在而增大的水势值。一 般为正值。符号:ψ p 。初始质壁分离时,ψ p 为0;剧烈蒸腾时,ψ p 会呈负值。 5、衬质势(water potential): 由于细胞胶体物质亲水性和毛细管对自由水 的束缚而引起的水势降低值,以负值表示。符号:ψ m 6、重力势(water potential ):由于重力的存在而使体系水势增加的数值。符号:ψg 。 7、自由水:距离胶粒较远而可以自由流动的水分。 8、束缚水:靠近胶粒而被胶粒所束缚,不易自由流动的水分。 9、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 10、吸涨作用:亲水胶体吸水膨胀的现象。 11、代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。 12、水的偏摩尔体积:在温度、压强及其他组分不变的条件下,在无限大的 体系中加入1摩尔水时,对体系体积的增量。符号V- w 13、化学势:一种物质每mol的自由能就是该物质的化学势。 14、水通道蛋白:存在于生物膜上的一类具有选择性、高效转运水分功能的内在蛋白,亦称水孔蛋白。 15、吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。 16、伤流:从受伤或折断的植物器官、组织伤口处溢出液体的现象。 17、根压:植物根部的生理活动使液流从根部上升的压力。 18、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。 19、蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。 20、蒸腾速率:又称蒸腾强度,指植物在单位时间内,单位叶面积通过蒸腾作用而散失的水分量。(g/dm2·h) 21、蒸腾比率:植物每消耗1kg水时所形成的干物质重量(g)。 22、蒸腾系数:植物制造1g干物质所需消耗的水分量(g)。又称为需水量。它是蒸腾比率的倒数。 23、小孔扩散律:指气孔通过多孔表面的扩散速率不与其面积成正比,而与小孔的周长成正比的规律。 24、永久萎蔫:萎蔫植物若在蒸腾速率降低以后仍不能恢复正常,这样的萎蔫就称为永久萎蔫。 25、临界水势:气孔开始关闭的水势。 26、水分临界期:植物对水分缺乏最敏感的时期。一般为花粉母细胞四分体形成期。 27、生理干旱:盐土中栽培的作物,由于土壤溶液的水势低,吸收水分较为

绿色植物的水分代谢教案

绿色植物的水分代谢 教学目标 1.使学生了解植物细胞的两种吸水方式;理解细胞渗透吸水原理;了解植物体的水分代谢包括水分的吸收、运输、利用和散失的大体过程;理解蒸腾作用对植物的作用。 2.通过细胞质壁分离和复原的实验,使学生了解探索细胞渗透吸水的方法,巩固制作临时装片的技能;通过分析细胞的吸水原理和探索细胞吸水的过程,使学生初步学会探索细胞吸水原理的科学方法,训练学生科学的思维。培养学生研究问题的能力。 3.通过联系生产和生活实际,使学生了解研究该课题的实践价值,增强学生关心生产、关心水资源的利用等意识。同时对学生进行结构与功能相适应的生命科学观点的教育。 重点、难点分析 1.渗透吸水原理,是本课题的重点。因为: (1)渗透吸水是植物吸水的主要方式,学生只有理解了渗透吸水的原理,才能理解细胞吸水的条件,理解影响植物细胞吸水的各种因素,理解植物体内细胞间的水分传递和植物整体水分的吸收和散失原理。 (2)渗透吸收不仅是植物细胞同时也是动物细胞的主要吸水方式,因此,学生理解渗透吸水原理,对理解动物细胞与外环境、动物细胞与内环境之间的水分交换等有重要意义。 (3)在渗透吸水的教学中,可以较好地渗透细胞结构与功能相统一的观点;渗透理论分析和实验验证的方法。培养学生研究和解决问题的能力。

2.质壁分离和复原的实验,是本课题的又一重点。因为: (1)质壁分离和复原的实验,是使学生理解植物细胞是一个渗透系统的关键。学生只有通过实验操作和观察质壁分离和复原的现象,获得细胞吸水和失水与环境溶液浓度的关系的感性认识,才能深入理解细胞是一个渗透系统以及影响细胞渗透吸水的内外条件。 (2)通过质壁分离和复原的实验,可以巩固学生制作装片和使用显微镜的技能。技能需要不断重复练习才能掌握,通过该实验,可以巩固第一章学的制作装片和使用显微镜的技能。 (3)该实验是研究细胞吸水的基础实验。它不仅能证明成熟的植物细胞是一个渗透系统,运用该实验的设计思想,可以设计测定细胞水势、验证细胞膜的选择透过性、验证细胞的死活等一系列的生理实验。通过该实验,可以开阔学生解决问题的思路,扩展解决问题的方法。 3.蒸腾作用的生理意义,也是本课题的教学的重点。因为: (1)蒸腾作用是植物体水分的吸收和运输的主要动力,也是植物体水分的利用和散失的主要方式。只有引导学生分析蒸腾途径、蒸腾方式以及与水分吸收和运输的关系,才能使学生深入理解蒸腾作用在水分代谢中的地位,理解它对植物体的重要生理意义。 (2)蒸腾作用的强弱,是植物体水分代谢的一个重要的生理指标。在一定程度上可反映植物水分代谢状况,还可以判断植物对水分的利用效率。不同生态类型的植物,适应环境的形态和结构特征,与影响蒸腾作用有关,在此可以联系。 4.分析渗透原理、成熟的植物细胞是一个渗透系统,是教学的难点。因为: 在渗透作用中,水分从水分子密度高的一侧向密度低的一侧运动,由于在细胞中水是溶液的溶剂,因此从溶液的角度来说,水分是从溶液浓度

植物的水分代谢复习题

植物的水分代复习题 一、名词解释 1、水分代; 2、水势; 3、渗透势; 4、压力势; 5、衬质势; 6、重力势; 7、自由水; 8、束缚水; 9、渗透作用;10、吸胀作用;11、代性吸水;12、水的偏摩尔体积;13、化学势;14、水通道蛋白;15、吐水;16、伤流;17、根压; 18、蒸腾拉力;19、蒸腾作用;20、蒸腾速率;21、蒸腾比率;22、蒸腾系数; 23、小孔扩散律;24、永久萎蔫;25、临界水势;26、水分临界期;27、生理干旱;28、聚力学说;29、初干;30、节水农业。 二、缩写符号翻译 1、atm; 2、bar; 3、Mpa; 4、Pa; 5、PMA; 6、RH; 7、RWC; 8、μw; 9、Vw;10、Wact;11、Ws;12、WUE;13、ψw;14、ψp;15、ψs;16、ψm;17、ψπ;18、AQP;19、RDI;20、SPAC。 三、填空题 1、植物细胞吸水方式有渗透性吸水、吸胀吸水和代性吸水。 2、植物调节蒸腾的方式有气孔关闭、初干和暂时萎蔫。 3、植物散失水分的方式有蒸腾作用和吐水。 4、植物细胞水分存在的状态有自由水和束缚水。 5、水孔蛋白存在于细胞的液泡膜和质膜上。水孔蛋白活化依靠磷酸化/脱磷酸化作用调节。 6、细胞质壁分离现象可以解决下列问题:判断膜的半透性、判断细胞死活 和测定细胞渗透势。

7、自由水/束缚水比值越大,则代越旺盛;其比值越小,则植物的抗逆性越强。 8、一个典型细胞的水势等于ψπ+ψp+ψm;具有液泡的细胞的水势等于ψπ+ψp;干种子细胞的水势等于ψm。 9、形成液泡后,细胞主要靠渗透性吸水。 10、风干种子的萌发吸水主要靠吸胀作用。 11、溶液的水势就是溶液的渗透势。 12、溶液的渗透势决定于溶液中溶质颗粒总数。 13、在细胞初始质壁分离时,细胞的水势等于ψπ,压力势等于零。 14、当细胞吸水达到饱和时,细胞的水势等于零,渗透势与压力势绝对值相等。 15、将一个ψp=-ψs的细胞放入纯水中,则细胞的体积不变。 16、相邻两细胞间水分的移动方向,决定于两细胞间的水势差异。 17、植物可利用水的土壤水势围为-0.05MPa~-0.30MPa。 18、植物根系吸水方式有:主动吸水和被动吸水。前者的动力是__根压______后者的动力是蒸腾拉力。 19、证明根压存在的证据有吐水和伤流。 20、对于大多数植物,当土壤含水量达到永久萎蔫系数时,其水势约为-1.5MPa MPa,该水势称为永久萎蔫点。 21、叶片的蒸腾作用有两种方式:角质蒸腾和气孔蒸腾。

第二章 植物的水分代谢

第二章植物的水分代谢 (一)填空 1.由于的存在而引起体系水势降低的数值叫做溶质势(solute potential)。溶质势表示溶液中水分潜在的渗透能力的大小,因此,溶质势又可称为。溶质势也可按范特霍夫公式Ψs=Ψπ=来计算。 2.具有液泡的细胞的水势Ψw=。干种子细胞的水势Ψw=。 4.某种植物每制造一克干物质需要消耗水分500g,,其蒸腾系数为,蒸腾效率为____________。 5.通常认为根压引起的吸水为吸水,而蒸腾拉力引起的吸水为吸水。 6.植物从叶尖、叶缘分泌液滴的现象称为,它是存在的体现。 7.在标准状况下,纯水的水势为。加入溶质后其水势,溶液愈浓其水势愈。 8.永久萎蔫是引起的,暂时萎蔫则是暂时的引起的。相当于土壤永久萎蔫系数的水,其水势约为 MPa。 9.植物的吐水是以状态散失水分的过程,而蒸腾作用以状态散失水分的过程。 10.田间一次施肥过多,作物变得枯萎发黄,俗称苗,其原因是土壤溶液水势于作物体的水势,引起水分外渗。 11.种子萌发时靠作用吸水,干木耳吸水靠作用吸水。形成液泡的细胞主要靠作用吸水。 12.植物细胞处于初始质壁分离时,压力势为,细胞的水势等于其。当吸水达到饱和时,细胞的水势等于。 13.植物细胞中自由水与束缚水之间的比率增加时,原生质胶体的粘性,代谢活性,抗逆性。 14.气孔开放时,水分通过气孔扩散的速度与小孔的成正比,不与小孔的成正比。 15.气孔在叶面上所占的面积一般为 %,但通过气孔蒸腾可散失植物体内的大量水分,这是因为气孔蒸腾符合原理。 16.移栽树木时,常常将叶片剪去一部分,其目的是减少。 17.植物激素中的促进气孔的张开;而则促进气孔的关闭。 18.常用的蒸腾作用指标是、和。 19.C4植物的蒸腾系数要于C3植物。 20.设甲乙两个相邻细胞,甲细胞的渗透势为-1.6MPa,压力势为0.9MPa,乙细胞的渗透势为-1.3MPa,压力势为0.9MPa,甲细胞的水势是,乙细胞的水势是,水应从细胞流向细胞。 21.利用细胞质壁分离现象,可以判断细胞,测定细胞的。 23.根系吸水的部位主要在根的尖端,其中以区的吸水能力为最强。 24.根中的质外体常常是不连续的,它被内皮层的分隔成为内外两个区域。 25.共质体途径是指水分从一个细胞的细胞质经过进入另一个细胞的细胞质的移动过程,其水分运输阻力较。 26.蒸腾作用的生理意义主要有:产生力、促进部物质的运输、降低和促进CO2的同化等。 27.保卫细胞的水势变化主要是由和等渗透调节物质进出保卫细胞引起的。 28.通常认为在引起气孔开启的效应中,红光是通过效应,而蓝光是通过效应而起作用的。红光的光受体可能是,而蓝光的光受体可能是色素。 29.低浓度CO2促进气孔,高浓度CO2能使气孔迅速。 30.植物叶片的、、、等均可作为灌溉的生理指标,其中是最灵敏的生理指标。

植物生理学第一章课后习题含答案

第一章 、英译中(Translate) 植物的水分生理 7.semipermeable membrane 32.stomatal transpiration 13. matric potential 38.stomatal frequency 14.solute potential 39.transpiration rate 19.plasma membrane-intrinsic prot(ein 44.transpiration-cohesion-tension th(eory 1.water metabolism 26.bleedin g 2.colloidal system 27.guttati on 3.bound energy 28.transpirational pull 4.free energy 29.transpirat ion 5.chemical potential 30.lenticular transpiration 6.water potential 31.cuticular transpiration 8. osmosis 33.stomatal movement 9. plasmolysis 34.starch-sugar conversion theory ( 10. deplasmolysis 35.inorganic ion uptake theory ( 11. osmotic potential 12. pressure potential 36.malate production theory ( 37.light-activated+-Hpumping ATPase ( 15.water potential gradient 40.transpiration ratio 16.imbibiti on 41.transpiration coefficient 17.aquapori n 42.cohesive force 18.tonoplast-intrinsic protein7 43.cohesion theory 20.apoplast pathway 21.transmembrane pathway 46.sprinkling irrigation 22.symplast pathway 47.drip irrigation 23.cellular pathway 48. diffusion 24.casparian strip 25.root 49. mass flow 二、中译英 (Translate) 3 .束缚能 2.胶体系统4.自由能

植物生理学之 第一章 植物的水分代谢

第一章植物的水分代谢 一、名词解释 1.水分代谢2.水势3.压力势4.渗透势5.根压6.自由水7.渗透作用8.束缚水9.衬质势10.吐水11.伤流12.蒸腾拉力13.蒸腾作用14.蒸腾效率15.蒸腾系数16.生态需水17.吸胀作用18.永久萎蔫系数19.水分临界期20.内聚力学说2l.植物的最大需水期22.小孔扩散律23. 重力势24. 水通道蛋白25. 节水农业 二、写出下列符号的中文名称 1. RWC 2.Ψw 3.Ψs 4.Ψm 5. Vw 6.Ψp 7. SPAC 8. RH 9.Mpa 10.AQP 三、填空题 1. 水分在植物体内以______ 和______ 两种形式存在。 2. 将一个充分饱和的细胞放入比其细胞液低10倍的溶液中,其体积______。 3. 植物细胞的水势是由______ 、______ 、______ 等组成的。 4. 细胞间水分子移动的方向决定于______,即水分从水势______的细胞流向______的细胞。 5. 水分通过叶片的蒸腾方式有两种,即______ 和______ 。 6. ______和______现象可以证明根压的存在。 7. 无机离子泵学说认为,气孔在光照下张开时,保卫细胞内______离子浓度升高,这是因为保卫细胞内含______,在光照下可以产生______,供给质膜上的______作功而主动吸收______离子,降低保卫细胞的水势而使气孔______。 8. 影响蒸腾作用最主要的外界条件是______ 。 9. 细胞中自由水越多,原生质粘性______,代谢______,抗性______。 10. 灌溉的生理指标有______ ,细胞汁液浓度,渗透势和______ 。 11. 植物细胞吸水有三种方式,未形成液泡的细胞靠______吸水,液泡形成以后,主要靠______吸水,另外还有______吸水,这三种方式中以______吸水为主。 12. 相邻的两个植物细胞,水分移动方向决定于两端细胞的______。 13. 干燥种子吸收水分的动力是______ 。 14. 植物对蒸腾的调节方式有______、______和______。 15. 某种植物每制造一克干物质需要消耗水分500克,其蒸腾系数为______,蒸腾效率为______。 16. 水滴呈球形,水在毛细管中自发上升。这两种现象的原因是由于水有______。 17. 影响气孔开闭的最主要环境因素有四个,它们是______,______,______和______。 18. 植物被动吸水的能量来自于______,主动吸水的能量来自于______。 19. 影响植物气孔开闭的激素是______、______。 20. 将已发生质壁分离的细胞放入清水中,细胞的水势变化趋势是______,细胞的渗透势______ ,压力势______ 。 四、问答题 1. 温度过高或过低为什么不利于根系吸水? 2. 试述气孔运动的机理。 3. 试述水对植物生长发育的影响。 4. 蒸腾拉力能将水分提升至植物体的各个部位,其途径和机理是什么? 5. 解释“烧苗”现象的原因。 6.土壤通气不良造成根系吸水困难的原因是什么?

影响植物新陈代谢及环境因素分析

影响植物新陈代谢的环境因素分析 摘要:植物的新陈代谢受外部环境因素(如光、温度)和内部因素(如激素)的影响,植物所处的环境主要包括有气候(温度、水分、光照、空气)、土壤、地形地势、生物及人类的活动因素。通常将植物所生存环境的简称为“生态环境”。因此,研究植物所处的环境因素对植物生命活动的影响具有重要意义。 关键词:植物;新陈代谢;环境因素 1 温度 植株在整个生长发育过程中,温度起着至关重要的作用,如:①种子的发芽。多数种子在变温条件下可发芽良好,而恒温条件下反而略差。②植物的生长。大多数植物均表现为在昼夜变温条件下比恒温条件下生长良好。其原因可能是适应性及昼夜温差大,有利于营养积累。③植物的开花结实。在变温和一定程度的较大温差下,开花较多且较大,果实也较大,品质也较好。植物的温度周期特性与植物的遗传性和原产地日温变化的特性有关。在园林建设中,必须对当地的气候变化以及植物的物候期有充分的了解,才能发挥植物的园林功能以及进行合理的栽培管理措施。植物在生长期中如遇到温度的突然变化,会打乱植物生理进程的程序而造成伤害,严重的会造成死亡。 2 水分 水是花卉苗木的重要组成部分,水分是植物生理生化反应的溶剂,是物质运输的介质。植物所在基质内,水分同样也影响到植物的呼吸作用,水分过多会占用气体空间而使植物根系缺乏氧气窒息,水分不足则因得不到足够的水分而干渴。所以要根据植株所在环境而适当供水。根据植物对水分的需要分为3类植物,旱生植物,湿生植物和中生植物,同一植株的不同生长阶段对水分的需求不同,一般来讲,种子萌发时期需要水分较多,幼苗时期根系弱,深入基质较浅,需要保持湿润。生长到一定阶段抗旱能力增强,生长旺盛期,需要水分较多,开花结实时则空气湿度较小,果实成熟期则相对要求空气干燥些。 3 养分 养分是植物所不可缺的主要因素之一,同样也需要一个适宜的范围,养分过多会出现中毒现象,养分过少会营养不良,同时植物对养分的吸收具有选择性,并要清楚了解植物生长过程中对矿物元素的种类和吸收量。矿质元素对植物生命活动的影响很大。缺乏某种必需元素,往往会严重影响植物的生长发育。了解植物必需的矿质元素的种类,是合理施肥的基础,同时也是无土栽培时配制营养液的依据。 4 土壤基质 土壤基质的pH值对植物的生理生化性质影响很大,根系对植物所处基质的酸碱性与植物的遗传性有关,有的植物能在酸性介质中生长良好,有的能在碱性介质中生长状态良好,但是实验证明,酸性介质中生长良好的植物嫁接到适应碱性介质的植株上仍然能够茁壮成长,说明植物根系的生理是植株抗性的基础,起着至关重要的调节作用。 5 大气环境 除了根系所处基质环境外,大气环境也是植物生长分化的重要影响因子。对绿色植物来讲,氧、二氧化碳、光、热、水及无机盐类这6个因素,都是绿色植物的生存条件。在植物的影响因子中,有的并不直接影响于植物而是以间接的关系来起作用的。光照度和光照时间直接控制着植物的生长分化,是影响植物光合作用,光控发育的重要因子。我们可以控制光照时间和光照度来控制植物的光合作用强弱。

植物生理学考研复习资料第一章 植物的水分生理教学文案

第一章植物的水分生理 一、名词解释 1.水势 2.渗透势 3.压力势 4.衬质势 5.自由水 6.束缚水 7.渗透作用 8.吸胀作用 9.代谢性吸水 10.水的偏摩尔体积 11.化学势 12.自由能 13.根压 14.蒸腾拉力 15.蒸腾作用 16;蒸腾速率 17.蒸腾比率 18.蒸腾系数 19.水分临界期20.生理干旱 21.内聚力学说 22.初干 23.萎蔫 24.水通道蛋白 二、写出下列符号的中文名称 1.atm 2.bar 3.MPa 4.Pa 5.PMA 6.RH 7.RWC 8.μw 9.Vw 10.Wact 11.Ws 12.WUE 13.Ψm 14.Ψp 15.Ψs 16.Ψw 17.Ψπ 18.SPAC 三、填空题 1.植物细胞吸水方式有、和。 2.植物调节蒸腾的方式有、和。 3.植物散失水分的方式有和。 4.植物细胞内水分存在的状态有和。 5.植物细胞原生质的胶体状态有两种,即和。 6.细胞质壁分离现象可以解决下列问题、和。 7.自由水/束缚水的比值越大,则代谢,其比值越小,则植物的抗逆性。 8.一个典型的细胞的水势等于。 9.具有液泡的细胞的水势等于。 10.形成液泡后,细胞主要靠吸水。 11.干种子细胞的水势等于。 12.风干种子的萌发吸水主要靠。 13.溶液的水势就是溶液的。 14.溶液的渗透势决定于溶液中。 15.在细胞初始质壁分离时,细胞的水势等于,压力势等于。 16.当细胞吸水达到饱和时,细胞的水势等于,渗透势与压力势绝对值。 17.将一个Ψp=-Ψs的细胞放入纯水中,则细胞的体积。 18.相邻两细胞间水分的移动方向,决定于两细胞间的。 19.在根尖中,以区的吸水能力最大。 20.植物根系吸水方式有:和。 21.根系吸收水的动力有两种:和。 22.证明根压存在的证据有和。 23.叶片的蒸腾作用有两种方式:和。 24.水分在茎、叶细胞内的运输有两种途径:。和。 25.小麦的第一个水分临界期是。 26.小麦的第二个水分临界期是。 27.常用的蒸腾作用的指标有、和。 28.影响气孔开闭的主要因子有、和。 29.影响蒸腾作用的环境因子主要是、、和。 30.C3植物的蒸腾系数比C4植物。 31.可以较灵敏地反映出植物的水分状况的生理指标有:、、 及等。 四、选择题 1.植物在烈日照射下,通过蒸腾作用散失水分降低体温,是因为( )。

相关文档
最新文档