超声波物理特性(精)

超声波物理特性(精)
超声波物理特性(精)

超声波物理特性

1、方向性

超声波与一般声波不同,由于频率极高,波长很短,远远小于换能器(探头压电晶体片)的直径,故在传播时发射的超声波集中于一个方向,类似平面波,声场分布呈狭窄的圆柱状,声场宽度与换能器压电晶体片之大小相接近,因有明显的方向性,故称为超声束。

2、反射、散射、透射、折射和绕射

超声在密度均匀的介质中传播,不产生反射和散射射。在传播中,经过两种不同介质的界面时,一部分能量由界面处返回第一介质,此即反射,其方向与声束和界面间的夹角有关,反射角和入射角相等,如二者垂直,即沿原入射声束的途径返回;另一部分能量能穿过界面,进入第二介质,此即透射。两介质声阻相差愈小,财界面处反射愈少,透射入第二介质愈多,甚至可以没有反射,只有透射,如超声波在均匀介质水中的传播就是如此。超声诊断常用这一特性来鉴别病变的囊性、实质性及结构是否均匀。反之,两种不同介质的声阻相差愈大,则界面处反射愈强,透射入第二介质愈少,甚至难以透过,超声波的这一特性限制了超声在肺和骨的应用。

超声在传播时,遇到与超声波波长近似或小于波长(小界面)的介质时,产生散射与绕射。散射为小介质向四周发散超声,又成为新的声源。绕射是超声波绕过障碍物的边缘,继续向前传播。散射回声强度与超声波入射角无关。穿过大界面的透射波如果发生声束前进方向的改

变,称为折射。折射是由于两种介质声速不同引起的。

超声检查时,通过人体内各组织器官的界面反射和散射回声,不仅能显示器官的轮廓及毗邻关系,而且能显示其细微结构及运动状态,故界面的反射和散射回声是超声成像的基础。

3.吸收与衰减

当声波在弹性介质中传播时,由于“内摩擦”或所谓“黏滞性”而使声能逐渐减小,声波的振幅逐渐减低,介质对声能的此种作用即为吸收,而声波由强变弱的过程即为衰减。吸收与衰减的多少和超声波的频率、介质的黏滞性、导热性、温度及传播的距离等因素有密切关系。超声波在介质中传播时,入射声能随传播距离的增加而减少的现象称超声衰减,其原因有反射、散射、声束的扩散及吸收。一般认为,人体中的超声波衰减、吸收是主要的。声能吸收之后,能量减小,显示的反射亦较弱,故深部结构有时探查比较困难。

4.多普勒效应

振动源以固定频率发射声波,当遇界面时即发生反射或散射。如果界面静止不动,则返回声波的频率与发射频率相同,无频差出现。反之,如果界面活动,则返回声波的频率与发射频率即有所不同,界面向振动源移近时,返回声波频率增加,界面远离振动源时,频率即减少。这种频率增加和减少的现象称为多普勒效应。因此,根据频差的有无及大小,可以了解界面的活动情况。这一物理特性已广泛应用于心血管等活动脏器疾病的检查。

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

2.1 超声波的定义 波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。声波是一种弹性机械波。人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。 在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。 2.2超声波的物理特性 当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ?为反射横波,L ?为反射纵波,L ?为折射纵波,S ?为折射横波。 L 图2.1超声波的反射、折射及其波形转换 这些物理现象均遵守反射定律、折射定律。除了有纵波的反射波折射波以外,还有横波的反射和折射。 因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。在理想介质中,超声波的波动方程描述方法与电磁波是类似的。描述简谐声波向X 正方向传播的质点位移运动可表示为: ()cos()A A x t kx ω=+ (2.1) 0()ax A x A e -= (2.2) 式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。衰减系数与声波所在介质和频率关系: 2af α= (2.3)

式(2.3)中,a 为介质常数,f 为振动频率。 2.2.1超声波的衰减 从理论上讲,超声波衰减主要有三个方面: (1) 由声速扩展引起的衰减 在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。 (2) 由散射引起的衰减 由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。 (3) 由介质的吸收引起的衰减 超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。 扩散衰减仅取决于波的几何形状而与传播介质的性质无关。对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率 η:动力粘滞系数 C :超声波传播速度 v C :定容比热 p C :定压比热 ρ:传播介质密度 式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示: 223 83f C πηβρ= (2.5) 把C = 2.5)可得: 3223 322283()M f R T β πηργ=?? (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。在实际应用中,一般选

江西中医学院计算机学院08生物医学工程2班黄月丹学号2 超声诊断仪原理及其基本结构 超声成像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析处理和显像,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创性检查技术。 超声诊断技术的发展历程 20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。80年代介入性超声逐渐普及,体腔探头和术中探头的应用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的应用使超声诊断又上了一个新台阶。 二.超声诊断仪的种类 (一) A型这是一种幅度调制超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图,现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。(二) B型这是辉度调制型超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代表回声的强弱。通过扫

描电路,最后显示为断层图像,称为声像图。B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。矩形声像图和梯形声像图用线阵探头实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头、相控阵探头和凸阵探头均显示扇形声像图。前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。 (三) M型 M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线。用以观察心脏瓣膜活动等,现在M型超声已成为B型超声诊断仪中的一个功能部分不作为单独的仪器出售。(四) D型在二维图像上某点取样,获得多普勒频谱加以分析,获得血流动力学的信息,对心血管的诊断极为有用,所用探头与B型合用,只有连续波多普勒,需要用专用的探头。超声诊断仪兼有B型功能和D型功能者称双功超声诊断仪。(五) 彩色多普勒超声诊断仪具有彩色血流图功能,并覆盖在二维声像图上,可显示脏器和器官内血管的分布、走向,并借此能方便地采样,获得多普勒频谱,测得血流的多项重要的血流动力学参数,供诊断之用。彩色多普勒超声诊断仪一般均兼有B型、M型、D型和彩色血流图功能。(六) 三维超声诊断仪三维超声是建立在二维基础上,在彩色多普勒超声诊断仪的基础上,配上数据采集装置,再加上三维重建软件,该仪器即有三维显示功能。(七) C型C型超声仪也是辉度调制型的一种,与B型不同的是其显示层面与探测面呈同等深度。超声诊断仪基本原理

声速 声速与介质的体弹性系数和密度有关。由于介质的弹性系数与温度有关,因此声速也与温度有关。在超声诊断的频段中,人体组织的超声速度与频率无关,而且软组织中的声速都很接近,约为1540m/s。 波长、周期和频率 声波在介质中传播时,两个相邻的同相位点之间的距离,如相邻两点稠密部之间的距离(超声 波在人体中一般是以纵波方式传播),称为声波的波长,以λ表示。波向前移动一个波长的距离所需的时间,称为声波的周期,以T表示。介质中任何一给定点在单位时间内通过的波敝,称为声波的频率,以f 表示。它们之间的关系为 λ=C/f=CT 式中为声波的传播速度。 医学诊断中采用的超声波频率在1-20MHz范围内。 声阻抗 介质中任意点的密度ρ与该点处声波的传播速度C之积为此介质在该点处的声阻抗,以Z表示,即Z=ρC。它是表征介质的声学特性的一个重要物理量。声阻抗的变化将影响超声波的传播。声阻抗是采用反射回波法进行超声诊断的物理基础。 声压级与声强级 声压级LP是以分贝表示的某个声压P与参考分压P0的比值,即LP=20lg(P/P0) 声强级LI是以分贝表示的某个声强I与参考声强I0的比值,即LI=10lg(I/I0) 声强是表示声的客观强弱的物理量,它表示通过垂直于传播方向上单位面积的能流率。声强为I=1/2(ρCω02A2)= p02/(2Z) 声强的单位是mW/cm2或W/m2。 声强与声源的振幅有关,振幅越大,声强也越大。对于平面超声波,他的总功率为强度I和面积S的乘积,即W=IS。 由于超声强度太大会破坏人体正常细胞组织,因其不可逆的生物效应。因此,国际上对诊断用 超声强度安全剂量作出规定,一般接受的安全剂量为20mW/cm2。

超声波的四个特性及应用特性 来源:全球五金网2011-9-8 作者:济宁天华超声电子仪器有限公司公司产品公司商机公司招商公司新闻 超声波顾名思义,超过常规声波的声波。声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。 超声波特性有四个方面: 1)超声波可在气体、液体、固体、固熔体等介质中有效传播。 2)超声波可传递很强的能量。 3)超声波会产生反射、干涉、叠加和共振现象。 4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。 1.束射特性 由于超声波的波长短,超声波射线能够和光线一样,可以反射、折射,也能聚焦,而且.恪守几何光学上的定律。即超声波射线从一种物质外表反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射,也就是要改动它的传插方向,两种物质的密度差异愈大,则折射也愈大。 2.吸收特性 声波在各种物质中传播时,随着传播间隔的增加,强度会渐进削弱,这是由于物质要吸收掉它的能量。关于同一物质,声波的频率越高,吸收越强。关于一个频率一定的声波,在气体中传播时吸收最历害,在液体中传播时吸收比拟弱,在固体中传播时吸收最小。 3.超声波的能量传送特性 超声波所以往各个工业部门中有普遍的应用,主要之点还在于比声波具有强大得多的功率。为什么有强大的功率呢?由于当声波抵达某一物资中时,由于声波的作用使物质中的分子也跟着振动,振动的频率和声波频率―样,分子振动的频率决议了分子振动的速度。频率愈高速度愈大。 物资分子由于振动所取得的能量除了与分子的质量有关外,是由分子的振动速度的平方决议的,所以假如声波的频率愈高,也就是物质分子愈能得到更高的能量、超声波的频率比声波能够高很多,所以它能够使物资分子取得很大的能量;换句话说,超声波自身能够供应物质足够大的功率。 4.超声波的声压特性 当声波通入某物体时,由于声波振动使物质分子产生紧缩和稠密的作用,将使物质所受的压

目录 摘要 (2) 引言 (3) 1.超声波的基本原理及传播特点 (4) 1.1什么是超声波 (4) 1.2超声波的基本原理 (4) 1.2.1压电效应及脉冲超声波的产生 (4) 1.2.2超声波波形 (5) 1.3超声波传播的特点 (6) 2.超声波的应用 (6) 2.1超声波在制浆造纸中的应用 (7) 2.2超声波传感器 (8) 2.3超声波测距 (9) 2.4超声波在医学诊断中的应用 (10) 2.5超声波在生物技术领域的应用 (11) 2.5.1用于培养液及药物的雾化 (11) 2.5.2提高种子发芽率和遗传物质的转化率 (11) 2.6超声波在军事中的应用 (11) 3. 结束语 (12) 参考文献 (12) 致谢 (13)

摘要 超声波是一种高能机械波,本文通过介绍超声波的产生机制和基本原理。让读者更深层次的认识超声波,文中根据超声波的自身特点从超声波传感器、超声波测距、及超声波在纸浆造纸中、医学诊断中、生物技术领域中、军事中的应用这六个方面进行详细讲述。超声波是一门年轻的学科,随着超声研究技术的不断成熟,未来将会更好的应用在生产生活中。 关键词:超声波;传感器;测距;医学诊断 Abstract Ultrasonic is a kind of high-energy mechanical wave, this paper introduces the basic principle of ultrasonic generation mechanism and give readers a deeper understanding of ultrasound, in this paper, according to the characteristics of ultrasonic sensors, ultrasonic distance measurement, and ultrasonic in pulp papermaking, medical diagnosis, in the field of biotechnology, the application of the military in these six aspects in detail. Ultrasonic is a young discipline, with the ultrasonic technology matures, the future will be better application in the production and living. Key words: ultrasonic ;the sensor ;ranging; medical diagnosis 引言 超声波最早被人类发现是在1793年由意大利科学家斯帕拉捷在蝙蝠身上发现其存在,随后的30多年里人们进行了有关超声波的产生机理方面的大量研究,直到1830年F ·Savar 用齿轮产生4104.2 HZ 的超声,首次实现了人类在人工控制下超声波的产生,开启了超声历史的新纪元,其他新技术如压电效应与逆压电效应的发现大大推动了超声波的快速发展,在随后的60年间,世界各地区有关超声技术的研究不断的取得突破性成果,20世纪的40年代超声技术开始应用于临床医疗方面,这也同样推动了人类医疗事业的发展,有关超声波在医学方面的应用与研究取得突破性进展,国际间也有过许多的交流与合作,共同推动了超声科技的发展和进步。我国在超声方面的研究相对落后于国际主流国家,我国由于当时特别的时期和特别的情况,20世纪60年代才开始超声方面的研究,有关超声学的相关研究始于也在这个时期真正开始,并且在随后的几年发展中取得了许多重要成果和重要的应用,如金属探伤、种子的培育、印染等。在基础研究方面也取得了重要进展,如研制出有关超声波在固体中衰减所用的检测设备,进行了有关超声乳化等课题的研究,研制出分子声学试验等设备,表面换能器的相关研究在1960年左右开始。改革开放的新时期,超声技术开始了实际应用之路,并且在该领域的一些列成果开始走进我们的生

超声波纸浆特性及其抄造性能的研究 超声波制浆技术是一种新型的制浆技术,其生产工序简短,节能减排明显,生产的纸浆得率高、物理性能良好。为了推广超声波制浆技术的应用,本文对超声波麦草浆纤维素和残留木质素进行分析,并研究超声波麦草浆性能特点及其配抄文化用纸的适应性。研究结果如下:超声波麦草浆光学与物理性能较好,白度77.8%ISO,纤维平均长度0.754mm,纤维平均宽度29.5 μ m,耐破指数 3.08kPa·m2/g,撕裂度3.98mN · m2/g,抗张指数30.49N·m/g,耐折度29次,与漂白碱法草浆近似,优于杨木APMP化机浆。 超声波麦草浆残余木质素的羰基含量远低于烧碱蒽醌法麦草浆,所以超声波麦草浆白度较好。原因是超声波制浆过程中的中性和温和的反应环境,减少了酚羟基和醌基的形成。超声波纸浆残余木质素中的总酚羟基含量远低于烧碱蒽醌法麦草浆木质素。 与超声波制浆技术相比,烧碱蒽醌法制浆破坏性更大,引起更多的芳基醚键和甲氧基断裂,进而形成更多的酚羟基。另外,超声波纸浆中的羧基含量(0.52 mmol/g)多于未漂白化学浆(0.3 mmol/g)本文对利用超声波麦草浆和杨木化学浆进行了双胶纸和新闻纸配抄实验研究,研究结果如下:双胶纸配抄比例为超声波纸浆:杨木化学浆=50:50,AKD施胶量为0.8%,CPAM添加量为0.2%,碳酸钙添加量为8.0%~12.0%,表面施胶选用CS-1表面施胶剂、硫酸铝(浓度30%,用量2kg/t)和氧化淀粉(浓度10%,用量1.5g/m2)配合进行,表面施胶剂最佳添加量为 0.14g/m2。根据优化工艺配抄的双胶纸经过压光,其吸水性为34.02g/m2,白度为80.9%ISO,不透明度为93%,印刷适应性为2.8m/s,平滑度为38.56s,抗张指数为36.3N · m/g,耐折度18次。

超声基础部分 1.何谓超声波?诊断用超声波是如何产生的? 人耳能感知的声波频率范围为20—20000Hz。低于20Hz者称为雌声波,高于20000Hz者称为超声波。医用诊断用超声波的范围多在1—15MHz。 超声波是机械波。可由多种能量通过换能器转变而成。医用超声波是由压电晶体(压电陶瓷等)产生。压电晶体在交变电场的作用下发生厚度的交替改变,即机械振动。其振动频率与交变电场的变化频率相同。当电场交变电频率等于压电晶片的固有频率时其电能转换为声能(电—声)效率最高,即振幅最大。 压电晶体只有两种可逆的能量转变效应。上述在交变电场的作用下,由电能转换为声能,称为逆压电效应。相反,在声波机械压力交替变化的作用下,晶体变形而表面产生正负电位交替变化,称压电效应。 超声探头(换能器)中的压电晶片,在连接电极电压交替变化的作用下产生逆压电效应,称为超声发生器;而在超声波机械压力下产生压电效应,又成为超声波接收器。这是超声波产生和接收的物理学原理。 2.超声波物理特性及其在介质中传播的主要物理量有哪些?它们之间有何关系? (1)频率(frequency):质点单位时间内振动的次数称为频率(f)。 (2)周期(cycle):波动传播一个波长的时间或一个整波长通过某一点的时间(T)。 (3)波长(wavelength):声波在同一传播方向上,两个相邻的相位相差2π的质点间的距离为波长(λ)。 (4)振幅(amplitude):振动质点离开平衡位置的最大位移称振幅,或波幅(A)。 (5)声速(velocity of sound,sound velocity):单位时间内,声波在介质中传播的距离称声速(C)。介质不同,超声在介质中的声速度也不同,但是在同一介质中,诊断频段超声波的声速可认为相同。声波在介质中的传播速度与介质的弹性系数(k)和介质密度(ρ)有关。其声速与k和ρ比值的平方根成正比,即 式中C为声速,E为杨式模量。 根据物理学意义,c、f、T、λ之间有下列关系: f=1/T,c=λf=λ/ T,λ=c/ f 超声在人体软组织(包括血液、体液)中的声速约为1540m/s;骨与软骨中的声速约为软组织中的2.5倍;而在气体中的声速仅为340m/s左右。 近年来的研究发现,不仅离体组织与活体组织有较大的声速差别,而且使用不同的固定溶液、固定速度也常影响声速。此外,声速尚与组织温度有关。通常,非脂肪组织的声速随温度上升而增快,脂肪组织的声速随温度上升而减慢。当脂肪组织由20o升到40o时,声速可下降15%之多。在进行精细的研究工作时,这些因素必须予以注意。 (6)超声能量与能量密度:当超声波在介质中传播时,声波能到达之处的质点发生机械振动和位移。前者产生动能而后者产生弹性势能。动能和势能之和组成波动质点的总能量。也即超声波的能量。声波在介质中传播的过程,也是能量在介质中传递的过程。 设介质的密度为ρ,声波传播到的质点体积元为△V,其位移为x,△V将鞠有的动能为Wk,产生的势能为Wp。则: Wk=Wp=1/2ρA2ω2(△V)sin2ω(t-x/c) △V具有的总能量为: W=Wk+ Wp=ρA2ω2(△V)sin2ω(t-x/c) 从表达式中可以看出超声波传播过程中总能量传递方式为:①介质振动质点的动能和势能随时间同时发生周期性变化。②振动质点以获得能量又向下一质点放出(传递)能量的方式传递声波。

超声基础知识总结 物理基础 基本概念――人耳听觉范围:20-20000H Z 超纵声波频率>20000H Z――纵波(疏密波):粒子运动平行于波传播轴; 诊断最常用超声频率:2-10MH Z 基本物理量:频率(f)、波长(λ)、声速(c);三者关系:λ=c/f 人体软组织的声速平均为1540m/s,与水的声速相近;骨骼的声速最高,相当于软组织平均声速的2倍以上。 超声场:发射超声在介质中传播时其能量所达到的空间;简称声场,又称声束。 声束的影响因素:探头的形状、大小; 阵元数及其排列; 工作频率(超声的波长); 有无聚焦及聚焦的方式; 吸收衰减; 反射、折射和散射等。 声束由一个大的主瓣和一些小的旁瓣组成。超声的成像主要依靠探头发射高度指向性的主瓣并接收回声;旁瓣的反向总有偏差,容易产生伪像。 声场可分为近场和远场两部分 (1)近场声束集中,呈圆柱状;直径――探头直径(较粗); (横断面声能分布不均匀)长度――超声频率和探头半径。 公式:L=(2r·f)/c L为近场长度, r为振动源半径, f为频率, c为声速 (2)远场声束扩散,呈喇叭状;声束扩散角越小,指向性越好。 (横断面声能分布较均匀) 声束两侧扩散的角度为扩散角(2θ);半扩散角(θ)。 超声波指向性优劣指标是近场长度和扩散角。 影像因素:增加超声频率;――近场变断、扩散角变小; 增加探头孔径(直径)――但横向分辨率下降。 采用聚焦技术――方法:固定式声透镜聚焦; 电子相控阵聚焦; 声束聚焦:采用声束聚焦技术,可改善图像的横向和(或)侧向分辨力。 固定式声透镜聚焦――将声透镜贴附在探头表面。 常用于线阵探头、凸阵探头; 可提高横向分辨力,但远场仍散焦。 电子相控阵聚焦――(1)利用延迟发射是声束偏转,实现发射聚 焦或多点聚焦;可提高侧向分辨力; 常用于线阵探头、凸阵探头; (2)动态聚焦:在长轴方向上全程接收聚焦。 (3)利用环阵探头进行环阵相控聚焦; 可改善横向、侧向分辨力; (4)其他聚焦技术:如二维多阵元探头。

1.机械效应:超声波在介质中前进时所产生的效应。(超声波在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声波振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。 超声波机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。 2.温热效应:人体组织对超声能量有比较大的吸收本领,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。 产热过程既是机械能在介质中转变成热能的能量转换过程。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。 3.理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用: A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。 B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。 C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。 D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。 4,钟表,精密仪器:有了科达超声波清洗器,钟表,精密仪器免除了逐一拆装螺丝,齿轮,游丝发条,表链等的麻烦,只须把外壳卸下,整个放进装有相应清洗剂(如汽油)的清洗槽内,便可以取得事半功倍的清洗效果。

超声波物理特性 1、方向性 超声波与一般声波不同,由于频率极高,波长很短,远远小于换能器(探头压电晶体片)的直径,故在传播时发射的超声波集中于一个方向,类似平面波,声场分布呈狭窄的圆柱状,声场宽度与换能器压电晶体片之大小相接近,因有明显的方向性,故称为超声束。 2、反射、散射、透射、折射和绕射 超声在密度均匀的介质中传播,不产生反射和散射射。在传播中,经过两种不同介质的界面时,一部分能量由界面处返回第一介质,此即反射,其方向与声束和界面间的夹角有关,反射角和入射角相等,如二者垂直,即沿原入射声束的途径返回;另一部分能量能穿过界面,进入第二介质,此即透射。两介质声阻相差愈小,财界面处反射愈少,透射入第二介质愈多,甚至可以没有反射,只有透射,如超声波在均匀介质水中的传播就是如此。超声诊断常用这一特性来鉴别病变的囊性、实质性及结构是否均匀。反之,两种不同介质的声阻相差愈大,则界面处反射愈强,透射入第二介质愈少,甚至难以透过,超声波的这一特性限制了超声在肺和骨的应用。 超声在传播时,遇到与超声波波长近似或小于波长(小界面)的介质时,产生散射与绕射。散射为小介质向四周发散超声,又成为新的声源。绕射是超声波绕过障碍物的边缘,继续向前传播。散射回声强度与超声波入射角无关。穿过大界面的透射波如果发生声束前进方向的改

变,称为折射。折射是由于两种介质声速不同引起的。 超声检查时,通过人体内各组织器官的界面反射和散射回声,不仅能显示器官的轮廓及毗邻关系,而且能显示其细微结构及运动状态,故界面的反射和散射回声是超声成像的基础。 3.吸收与衰减 当声波在弹性介质中传播时,由于“内摩擦”或所谓“黏滞性”而使声能逐渐减小,声波的振幅逐渐减低,介质对声能的此种作用即为吸收,而声波由强变弱的过程即为衰减。吸收与衰减的多少和超声波的频率、介质的黏滞性、导热性、温度及传播的距离等因素有密切关系。超声波在介质中传播时,入射声能随传播距离的增加而减少的现象称超声衰减,其原因有反射、散射、声束的扩散及吸收。一般认为,人体中的超声波衰减、吸收是主要的。声能吸收之后,能量减小,显示的反射亦较弱,故深部结构有时探查比较困难。 4.多普勒效应 振动源以固定频率发射声波,当遇界面时即发生反射或散射。如果界面静止不动,则返回声波的频率与发射频率相同,无频差出现。反之,如果界面活动,则返回声波的频率与发射频率即有所不同,界面向振动源移近时,返回声波频率增加,界面远离振动源时,频率即减少。这种频率增加和减少的现象称为多普勒效应。因此,根据频差的有无及大小,可以了解界面的活动情况。这一物理特性已广泛应用于心血管等活动脏器疾病的检查。

教案首页 SWH-QR-JYS-12/A 课程名称诊断学年级2005 级专业,层次护理专科 教员张萍专业技术职 务 讲师 授课方式 (大班) 讲授/实习 (大班/小 班) 学时 1.5 学 时 授课题目(章,节)第三章超声检查 第一节超声诊断的基础知识 第二节超声诊断法的种类 基本教材或主要参考书全国医学高等专科学校教材《诊断学》第五版,邓长生主编,2005 全国高等学校教材《医学影像学》第五版,吴恩惠主编,2005 教学目的与要求: ⒈掌握超声波的概念⒉掌握人体组织的声学分型⒊掌握超声检查法的种类 4.熟悉超声波的 物理特性,了解超声诊断仪工作原理 大体内容与时间安排,教学方法:⒈超声波的概念和诊断用超声波(8 分钟)⒉超声波的物理特性和超声诊断仪工作原理(17 分钟)⒊人体组织的声学分型(10 分钟)⒋超声检查方法的种类(20 分钟) ⒌复习总结(5 分钟)教学方法:采用讲授为主,注意理论联系实际,并充分利用绘图、多媒体动画等手段,详细讲解并特别强调重点和难点内容。 教学重点,难点:重点:超声检查的方法。难点:超声波的物理特性,多普勒超声的原理。 教研室审阅意见: 教学内容符合教学大纲要求,教学进程、教学方法安排恰当,时间分配合理,同意实施。 (教学组长签名)(教研 室主任签名) 2006 年3 月5 日1 2006-10-16 2006-10-6

基本内容 不构成声学界面,不产生回波,称无反射型。 超声图像表现:液性暗区。 2. 少反射型 (低回声型) : 指人体中结构均匀的实质性脏器或组 织。如心肌、肝、脾等,这些脏器中 的组织结构较均匀,界面声阻抗差小,超声波反射较弱。 超声图像表现:均匀细小的弱回声光点。 3. 多反射型 (强回声型) : 指那些非均质性、实质性结构,如乳 腺或结构较致密的实质性结构与液性 物质的界面上,如心内膜、心包、瓣膜、血管壁等。构成声学界面的两种介质 的声阻抗差较大,反射强,形成多反射型。 超声图像表现:粗大不均匀的强回声光点、光斑、光带等。 4. 全反射型 (含气型): 肺、胃肠道等器官,存在软组织与气体构成的界面,声阻抗差很大,可达 3000 多倍,声能几乎全部从界面上反射回 来,而进入第二种组织的声能很少。 超声图像表现:很强的回声,其后方为无回声或很弱的回声区域。 含气组织的这种声学特性,致使超声对肺和胃肠道的诊断受到很大限制。 交控电路中的同步信号发生器产生同步触发脉冲信号, 这些信号作用到发 射电路,产生高压电脉冲,激励超声换能器(探头) ,由压电晶片组成的换能 器将电能转换成机械能,产生机械振动,发射超声波,对人体组织器官进行探 查,然后换能器接收反射回声信号,并将回声信号转换为高频电信号,通过计 算机接收、放大、处理后,在显示器上显示出来,并将有价值的图像存贮。 第二节 超声诊断法的种类 20 分 钟 辅助手段和时间 分配 内的胆汁声像图 举例说明 以心肌、肝实质和 脾实质的声像图 举例说明 以心脏瓣膜、肝包 膜声像图举例说 明 以直肠内气体 声 2 分钟 用示意 图简要说 明 五、超声诊断仪的工作原理

相关文档
最新文档