连续非线性系统的模糊控制

连续非线性系统的模糊控制
连续非线性系统的模糊控制

连续非线性系统的模糊控制

摘要

与传统控制相比,模糊控制具有两大不可比拟的优点:其一,它在许多应用中可以有效且便捷的实现人的控制策略和经验;其二,它可以不需要被控对象的数学模型即可实现较好的控制。在控制领域,模糊系统主要用来作为非线性函数的逼近工具。日本学者Takagi和Sugeno在1985年提出的Takagi-Sugeno(T-S)模糊模型,给模糊控制理论研究及应用带来了深远的影响,使模糊系统稳定性分析上升到新的理论高度,且有许多结果已经应用于实际对象中。T-S模糊模型的优点在于它充分运用了Lyapunov稳定性理论来进行系统分析和控制器设计,通过对非线性系统进行T-S模糊建模,建立起相应的模糊T-S模糊系统。在此基础上,调整选取合适的模糊规则及隶属度函数,使得模型逼近原非线性系统。

采用Lyapunov稳定性原理对系统的稳定性进行分析,得到系统稳定的充要条件。通过Matlab工具箱中的LMI工具箱,得到系统控制器的解。

关键词:非线性系统,模糊控制,并行分布补偿算法(PDC),稳定性,线性矩阵不等式(LMI),

Fuzzy Control of Continuous Nonlinear Systems

ABSTRACT

Compared with the tradition control, fuzzy control's having two greatly can not compare of merit: firstly, it can be effective in many applications and conveniently she carries out the person's control strategy and experience; secondly, it need not be charged the mathematical models of object can immediately carry out better control affection. In control realm, the fuzzy system mainly usage is an approaching of non- liner function tool. Japanese scholar Takagi and Sugeno in 1985 suggested Takagi-Sugeno (T-S) fuzzy pattern, give fuzzy control theory the search and application brought profound impact and made the misty system stability analysis up to a new theory high, and have many result have already been applied to actual object amid. The merit of T-S fuzzy pattern lay in it to make the most of Lyapunov stability theory to carry on systematic analysis and control T-S model based fuzzy logic system is composed of Japanese scholars Takagi T and Sugeno M made in 1985. T-S fuzzy system has many attractive features: the system part of the antecedent of fuzzy rules is ambiguous; the latter part is determined by piece. The proposal to make such systems theory of fuzzy systems has been strengthened, and the precision of such systems can approximate a n arbitrary nonlinear system.

Uses the lyapunov stable principle to carry on the analysis to system's stability, obtains the system stable necessary and sufficient condition. Through Matlab's LMI toolbox, obtains system controller's solution.

KEY WORDS: Nonlinear system, Fuzzy control, Parallel Distributed Compensation (PDC), Stability, Linear Matrix Inequality (LMI)

目录

前言 (1)

第1章引言 (4)

1.1模糊控制的产生及其发展 (4)

1.1.1 模糊控制理论的产生 (4)

1.1.2 模糊控制技术的发展 (5)

1.1.3 模糊控制应用领域及现状 (8)

1.1.4 模糊控制的研究成果 (9)

第2章T-S模糊模型建模 (12)

2.1 T-S模型建模 (12)

2.1.1T-S模糊模型简述 (12)

2.1.2 T-S模糊模型建模 (12)

第3章T-S模糊模型控制器设计 (15)

3.1 T-S模糊模型控制器设计 (15)

3.1.1 PDC并行分布补偿算法 (15)

3.1.2模糊控制器的设计 (16)

第4章系统渐近稳定条件 (17)

4.1李雅普诺夫稳定性理论 (17)

4.1.1稳定性的几个定义 (17)

4.1.2Lyapunov第一法 (17)

4.1.3 Lyapunov第二法 (19)

4.2连续时间T-S模糊系统的稳定性分析 (22)

第5章仿真实验 (25)

5.1 MATLAB及LMI工具箱简介 (25)

5.1.1 MA TLAB软件简介 (25)

5.1.2 LMI工具箱简介 (28)

5.2算例仿真实验 (30)

结论 ................................................................ 错误!未定义书签。谢辞 (38)

关于多变量非线性系统的自适应模糊控制

自动化学报980613 自动化学报 ACTA AUTOMATICA SINCA 1998年 第24卷 第6期 Vol.24 No.6 1998 关于多变量非线性系统的自适应模糊控制1) 佟绍成 徐为民 柴天佑 摘 要 结合模糊逻辑系统、自适应控制和H∞控制,对一类非线性多变量未知系统提出了新的控制策略,给出了控制算法的稳定性分析.仿真结果证明了所提控制算法的有效性. 关键词 模糊控制,自适应控制,非线性系统. ADAPTIVE FUZZY CONTROL FOR MIMO NONLINEAR SYSTEMS TONG SHAOCHENG XU WEIMIN CHAI TIANYOU (Automation Research Center of Northeastern University, Shenyang 110006) Abstract By combining fuzzy logic systems, adaptive control and H∞control, this paper developed a new adaptive fuzzy control method for a class of MIMO unknown nonlinear systems and it is proven that this control algorithm can guarantee the stability of the closed-loop system. The simulation results verify the effectiv eness of the proposed algorithm. Key words Fuzzy control, adaptive control, nonlinear systems. 1 引言 模糊逻辑控制作为利用专家知识及经验的有效方法之一,在许多实际控制问题中已经取得了 成功.然而,目前大多数模糊控制系统缺少保证系统的基本性能准则的分析方法,其稳定性 、收敛性是模糊控制理论研究的重要课题.本文在文[1]的基础上,对一类非线性未知MIMO系统给出了新的控制算法.此控制算法是基于模糊逻辑系统,把一般非线性系统控制的设计与H∞控制相结合,它不但保证控制系统稳定,而且把参数的匹配误差和外部干扰减少到预先规定的指标. 2 问题描述 考虑如下的MIMO非线性系统 =f(x)+g1(x)u1+…+g p(x)u p, (1a) y1=h1(x), (1b) file:///E|/qk/zdhxb/980613.htm(第 1/7 页)2010-3-23 14:19:35

神经网络与模糊控制考试题及答案

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1); (2)。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、 和。知识库的设计推理机的设计人机接口的设计 13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、 和。判断性规则控制性规则数据

模糊控制的应用

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师黄静 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现 场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对 那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易 导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控 制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值 ,输出变量为电机的电压变化量u。图2为电机调试之间的差值e及其变化率e c 输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。

非线性控制理论和方法

非线性控制理论和方法 姓名:引言 人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,现实生活中,大多数的系统都是非线性的。非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。控制理论的发展目前面临着一系列严重的挑战, 其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。 1.传统的非线性研究方法及其局限性 传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。相平面法是Poincare于1885年首先提出的一种求解常微分方程的图解方法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。描述函数法是 P. J.Daniel于1940

模糊控制与PID控制性能比较

本程序选自楼顺天,胡昌华,张伟编著《基于MATLAB 的系统分析与设计:模糊系统》,西安电子科技大学出版社,2001年5月第一版,ISBN7-5606-1011-0,定价:14元第77-87页例3.8中源程序。程序运行输出图形如下: 00.51 1.52 2.53 3.54 4.5 0.2 0.4 0.6 0.8 1 1.21.4 1.6 1.8 时间(0.01秒)输出程序运行后在输出图形时需要用鼠标左键分别先后在红色曲线和蓝色曲线上方点一下,输出提示文本,否则若在图形区域外直接点击鼠标左键,会输出错误提示。源程序清单如下: %Example 3.8 %------------------------- %典型二阶系统的模糊控制与传统PID 控制的性能比较 %------------------------ num=20; den=[1.6,4.4,1]; [a1,b,c,d]=tf2ss(num,den); x=[0;0]; T=0.01;h=T; umin=0.07;umax=0.7; td=0.02;Nd=td/T; N=500;R=1.5*ones(1,N); %-------------------- %传统PID 控制 %-------------------- e=0;de=0;ie=0; kp=5;ki=0.1;kd=0.001; for k=1:N uu1(1,k)=-(kp*e+ki*de+kd*ie);

%延迟环节 if k<=Nd u=0; else u=uu1(1,k-Nd); end %死区和饱和环节 if abs(u)<=umin u=0; elseif abs(u)>umax u=sign(u)*umax; end %利用龙格-库塔法进行系统仿真 k0=a1*x+b*u; k1=a1*(x+h*k0/2)+b*u; k2=a1*(x+h*k1/2)+b*u; k3=a1*(x+h*k2)+b*u; x=x+(k0+2*k1+2*k2+k3)*h/6; y=c*x+d*u; %计算误差、微分和积分 e1=e; e=y(1,1)-R(1,k); de=(e-e1)/T; ie=e*T+ie; yy1(1,k)=y; end %----------------- %模糊控制 %----------------- %定义输入和输出变量及其隶属度函数 a=newfis('Simple'); a=addvar(a,'input','e',[-6,6]) a=addmf(a,'input',1,'NB','trapmf',[-6,-6,-5,-3]); a=addmf(a,'input',1,'NS','trapmf',[-5,-3,-2,0]); a=addmf(a,'input',1,'ZR','trimf',[-2,0,2]); a=addmf(a,'input',1,'PS','trapmf',[0,2,3,5]); a=addmf(a,'input',1,'PB','trapmf',[3,5,6,6]); a=addvar(a,'input','de',[-6,6]); a=addmf(a,'input',2,'NB','trapmf',[-6,-6,-5,-3]); a=addmf(a,'input',2,'NS','trapmf',[-5,-3,-2,0]); a=addmf(a,'input',2,'ZR','trimf',[-2,0,2]); a=addmf(a,'input',2,'PS','trapmf',[0,2,3,5]); a=addmf(a,'input',2,'PB','trapmf',[3,5,6,6]); a=addvar(a,'output','u',[-3,3]);

模糊控制的优缺点

模糊控制的优缺点

————————————————————————————————作者:————————————————————————————————日期:

1.模糊控制中模糊的含义 模糊控制中的模糊其实就是不确定性。从属于该概念和不属于该概念之间没有明显的分界线。模糊的概念导致了模糊现象。 2.模糊控制的定义 模糊控制就是利用模糊数学知识模仿人脑的思维对模糊的现象进行识别和判断,给出精确的控制量,利用计算机予以实现的自动控制。 3.模糊控制的基本思想 模糊控制的基本思想:根据操作人员的操作经验,总结出一套完整的控制规则,根据系统当前的运行状态,经过模糊推理,模糊判断等运算求出控制量,实现对被控制对象的控制。 4.模糊的控制的特点 不完全依赖于纯粹的数学模型,依赖的是模糊规则。模糊规则是操作者经过大量的操作实践总结出来的一套完整的控制规则。 模糊控制的对象称为黑匣(由于不知道被控对象的内部结构、机理,无法用语言去描述其运动规律,无法去建立精确的数学模型)。但是模糊规则又是模糊数学模型。 5 模糊控制的优缺点及需要解决的问题分析 5.1模糊控制的优点 (1)使用语言方便,可不需要过程的精确数学模型;(不需要精确的数学模型) (2)鲁棒性强,适于解决过程控制中的非线性、强耦合时变、

滞后等问题;鲁棒性即系统的健壮性。 (3)有较强的容错能力。具有适应受控对象动力学特征变化、环境特征变化和动行条件变化的能力; (4)操作人员易于通过人的自然语言进行人机界面联系,这些模糊条件语句容易加到过程的控制环节上。 5.2模糊控制的缺点 (1)信息简单的模糊处理将导致系统的控制精度降低和动态品质变差; (2)模糊控制的设计尚缺乏系统性,无法定义控制目标。 6.模糊数学 模糊数学就是利用数学知识研究和解决模糊现象。在数学和模糊现象之间架起了一座桥梁。 6.1模糊集合的概念 每一个概念都有内涵和外延。 内涵就是指概念的本质属性的集合。外延就是符合某种本质属性的全体对象的集合。 模糊数学的基础就是模糊理论集。 在模糊集合设计到的论域U 上,给定了一个映射A,A :U →[0,1] ,)(x x A μ ,则称A 为论域U 上的模糊集合或者模糊子集; )(x A μ表示U 中各个元素x 属于集合A 的程度,称为元素x 属于模糊集合A 的隶属函数。当x 是一个确定的0x 时,称)(0x A μ为元素0x 对于模糊集合A 的隶属 度。 F 集合引出的几个概念

非线性系统模糊控制算法研究

非线性系统模糊控制算法研究 摘要:随着社会科技的进步,系统自动化越来越强,而要强化系统的自动化,就需要对系统控制进行深入的研究。系统控制是我国目前科学研究的一个重要方向,通过基本结构的建立和仿真实验,控制分析的深度会有明显的增加。在系统控制当中,非线性系统的模糊控制是一项重要的内容,通过对此中控制的算法进行分析和研究,可以提供非线性系统模糊控制的有效性。该文就非线性系统控制算法进行研究,旨在分析此系统算法的应用优势,从而强化其在实践中的应用水平。 关键词:非线性系统模糊控制算法研究 中图分类号:TP273.4 文献标识码:A 文章编号:1672-3791(2017)04(c)-0196-02 在控制研究中,比较典型的基于受控对象精确模型的控制是古典控制和状态空间模型控制。在实际研究中发现,除去受控对象比较精确的控制外,还存在比较复杂的控制,这种控制的受控对象不明确,所以数学模型的建立相对困难。为了对这种控制进行有效的利用,采用模糊控制算法进行数学模型的建立是主要的方法。因此,积极的对非线性系统模糊控制算法进行研究意义重大。

1 模糊控制的数学描述 模糊控制是控制研究中的重要类别,这种控制不仅是一种实时控制,而且不依赖于受控对象的精确模型,所以说它是一种打破了传统束缚的新型计算机控制。此种控制的产生为解决更加复杂的计算机问题带来了全新的方法。从特征上来看,此种方法对于模型的要求比较低,而且在实际利用中的计算非常简便,控制性能也比较优良。该文在非线性系统中进行模糊控制算法的研究,为了使得研究简便,利用了一个非线性系统的式子: 在这个式子当中,u表示的是输入量,而y则表示输出量,整个式子代表是就是工程实际当中难于建模的一大类复杂受控对象。根据这个式子,确定合适的参考轨迹,控制公式便可以得到书写。 2 模糊控制的算法原理 模糊控制的算法原理是研究的重点内容,在实际分析的过程中主要包括了四个方面:第一是进行非线性系统的模糊模型建立,然后对其进行规范化,使其转变为参数辨识问题。比如在考虑一个SISO非线性系统的时候,将系统的输入空间和输出空间按照精度进行分别的量化,那么系统的特性便会转变为一个特定的公式,整个公式反应了系统的条件,也构成了系统的模糊模型。第二是对模型的在线递推进行修正。为了使得整个控制测算更加的精确,利用全新的信息结

1模糊控制器的基本结构

第13章 模糊控制理论 13.1模糊控制器的基本结构 本章将介绍模糊控制(fuzzy control)的基本原理、结构分析、稳定性理论和设计方法。模糊控制器的基本结构如图13.1所示。 图13.1中,t u 是SISO 被控对象的输入,t y 是被控对象的输出,t s 是参考输入,t t t y s e -=是误差。 图中虚线框内的就是模糊控制器(FC),它根据误差信号t e 产生合适的控制作用t u ,输出给被控对象。模糊控制器主要由模糊化接口、知识库、模糊推理机、解模糊接口四部分组成,各部分的作用概述如下。 1.模糊化(Fuzzification) 模糊化接口接受的输入只有误差信号t e ,由t e 再生成误差变化率t e 或误差的差分t e ?,模糊化接口主要完成以下两项功能。 ⑴论域变换:t e 和t e 都是非模糊的普通变量,它们的论域(即变化范围)是实数域上的一个连续闭区间,称为真实论域,分别用X 和Y 来代表。在模糊控制器中,真实论域要变换到内部论域X '和Y '。如果内部论域是离散的(有限个元素),模糊控制器称为“离散论域的模糊控制器”(D -FC),如果内部论域是连续的(无穷多个元素),模糊控制器称为“连续论域的模糊控制器”(C -FC)。对于D -FC ,X ',Y '={0±整数};对于C —FC ,X ',Y '=[-l ,1]。无论是D -FC 还是 C -FC ,论域变换后t e ,t e 变成*t e ,*t e ,相当乘了一个比例因子(还可能有偏移)。 ⑵模糊化:论域变换后*t e 和*t e 仍是非模糊的普通变量,对它们分别定义若干个模糊集合,如:“负大”(NL)、“负中”(NM)、“负小”(NS)、“零”(Z)、“正小”(PS)、“正中” (PM)、“正大”(PL) ,…,并在其

关于模糊控制的论文

模糊控制器在 PID 温度控制中的应用
2010-9-27 16:39:00 来源:作者:
摘 要:本文对中央空调系统的模糊控制器的设计做了比较详尽的论述,并结合 MATLAB 仿真软件对控制系统做了仿真,得到其响应曲线,并与 PID 控制方法进行比较,从而得 出模糊控制器在中央空调系统温度自动控制中具有很高的应用价值。 关键词:偏差; 模糊控制器; 系统响应 0 引言
中央空调系统的设计是以室内空气参数为基本依据,通过对整个空调系统新风、 回风的温度、湿度、送风风机运行状态、初效过滤段的压差等现场信号的采集,根据 所设计的控制策略控制送风风机的变频调速、加湿器的加湿、冷、热水阀门的开度大 小来达到设定的空气状态,且根据室内、外空气的状态(温度、湿度)确定系统的运 行工况,在保证生产工艺的要求的前提下,使空调系统运行合理、安全、可靠、能耗 低等,使控制效果达到最优。一般系统中的被控参数可设定为两个:室内温度和湿度。 常规恒温恒湿中央空调系统是一个多输入、多输出的控制系统。因为回风温、湿度与 室内温、湿度的变化情况有一致性,所以常把系统回风温、湿度作为被控参数,控制 回路采用多个回路的 PID 控制。但由于空调系统传递滞后较大,且是一个干扰大、高 度非线性、随机干扰因素多的系统,参数整定困难,一组整定好的参数只能在较小的 范围内有较好的控制效果,当参数变化超过一定范围时,系统控制效果变差,致使普 通 PID 控制难以满足要求。我们文章针对以上情况,结合航天科工集团某研究所光学 加工楼新风系统自动控制项目,我们运用模糊控制技术,采用一种基于模糊控制规则 的控制方法设计出恒温恒湿中央空调控制系统,具有超调小、调节迅速和上升时间短 的特点,且具有很好的鲁棒性。 1 制冷空调系统模型
制冷空调的实际控制对象大多可用高阶的微分方程来描述。为了分析简便,我们 常用低阶模型来近似描述控制对象的动态特性,只要能满足一定的控制精度。
在自动控制系统中一阶惯性环节定义的微分方程是一阶的,且输出响应需要一定 的时间才能达到稳态值。因此中央空调系统中表冷器、电动水阀都可以近似的用一阶 惯性环节来表示,而房间作为系统的控制对象,根据能量守恒定律,可建立控制对象 房间的微分方程,它是一个二阶系统,但在工业控制中我们往往用纯迟延的一阶模型 来代替,仿真结果表明,用带纯迟延的一阶模型来近似描述控制对象完全可以满足实 际应用的要求。温度检测和变送环节也有一定的时间滞后,但和控制对象房间的时间 常数相比,可以忽略不计,因此温度检测和变送环节可以近似用一阶比例环节来代 替。 2 模糊温度控制器的设计
模糊控制(fuzzy control)是一种对系统控制的宏观方法,加入了控制规则, 规则通常采用“IF-THEN”方式来表达实际控制中的专家知识和规则,其最大的特征 是将专家的控制经验、知识表达成语言控制规则,用规则去控制目标系统,特别适用 于那些数学模型未知的、复杂的、非线性系统进行控制。

PID控制与模糊控制比较

PID控制与模糊控制的比较 专业:控制理论与控制工程 班级:级班 姓名:X X X 学号: xxxxxxxxxxxxxx

摘要:介绍了PID控制系统和模糊控制系统的工作原理。PID控制器结构简单,实现简单,控制效果良好,已经得到了广泛的应用。而模糊控制器相对复杂,但在许多的智能化家用电器中也得到了大量应用。但对于一个简单的系统来讲,哪一种控制方法更好,是不是越智能的控制就能得到越好的效果。 关键词:PID控制,模糊控制,比较

Abstract: Introduced the working principle of PID control system and fuzzy control system. PID controller structure is simple, implementation is simple, the control effect is good, has been widely used. And fuzzy controller is relatively complicated, but in a lot of intelligent household appliances also received a large number of applications. But for a simple system, which kind of control method is better, is weather the intelligent control can obtain the good effect. Key words: PID control, fuzzy control, compare

连续非线性系统的模糊控制

连续非线性系统的模糊控制 摘要 与传统控制相比,模糊控制具有两大不可比拟的优点:其一,它在许多应用中可以有效且便捷的实现人的控制策略和经验;其二,它可以不需要被控对象的数学模型即可实现较好的控制。在控制领域,模糊系统主要用来作为非线性函数的逼近工具。日本学者Takagi和Sugeno在1985年提出的Takagi-Sugeno(T-S)模糊模型,给模糊控制理论研究及应用带来了深远的影响,使模糊系统稳定性分析上升到新的理论高度,且有许多结果已经应用于实际对象中。T-S模糊模型的优点在于它充分运用了Lyapunov稳定性理论来进行系统分析和控制器设计,通过对非线性系统进行T-S模糊建模,建立起相应的模糊T-S模糊系统。在此基础上,调整选取合适的模糊规则及隶属度函数,使得模型逼近原非线性系统。 采用Lyapunov稳定性原理对系统的稳定性进行分析,得到系统稳定的充要条件。通过Matlab工具箱中的LMI工具箱,得到系统控制器的解。 关键词:非线性系统,模糊控制,并行分布补偿算法(PDC),稳定性,线性矩阵不等式(LMI),

Fuzzy Control of Continuous Nonlinear Systems ABSTRACT Compared with the tradition control, fuzzy control's having two greatly can not compare of merit: firstly, it can be effective in many applications and conveniently she carries out the person's control strategy and experience; secondly, it need not be charged the mathematical models of object can immediately carry out better control affection. In control realm, the fuzzy system mainly usage is an approaching of non- liner function tool. Japanese scholar Takagi and Sugeno in 1985 suggested Takagi-Sugeno (T-S) fuzzy pattern, give fuzzy control theory the search and application brought profound impact and made the misty system stability analysis up to a new theory high, and have many result have already been applied to actual object amid. The merit of T-S fuzzy pattern lay in it to make the most of Lyapunov stability theory to carry on systematic analysis and control T-S model based fuzzy logic system is composed of Japanese scholars Takagi T and Sugeno M made in 1985. T-S fuzzy system has many attractive features: the system part of the antecedent of fuzzy rules is ambiguous; the latter part is determined by piece. The proposal to make such systems theory of fuzzy systems has been strengthened, and the precision of such systems can approximate a n arbitrary nonlinear system. Uses the lyapunov stable principle to carry on the analysis to system's stability, obtains the system stable necessary and sufficient condition. Through Matlab's LMI toolbox, obtains system controller's solution. KEY WORDS: Nonlinear system, Fuzzy control, Parallel Distributed Compensation (PDC), Stability, Linear Matrix Inequality (LMI)

滑模变结构控制理论及其算法研究与进展_刘金琨

第24卷第3期2007年6月 控制理论与应用 Control Theory&Applications V ol.24No.3 Jun.2007滑模变结构控制理论及其算法研究与进展 刘金琨1,孙富春2 (1.北京航空航天大学自动化与电气工程学院,北京100083;2.清华大学智能技术与系统国家重点实验室,北京100084) 摘要:针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望. 关键词:滑模控制;鲁棒控制;抖振 中图分类号:TP273文献标识码:A Research and development on theory and algorithms of sliding mode control LIU Jin-kun1,SUN Fu-chun2 (1.School of Automation Science&Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing100083,China; 2.State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing100084,China) Abstract:According to the development of sliding mode control(SMC)in recent years,the SMC domain is character-ized by eighteen directions.These directions are chattering free of SMC,quasi SMC,trending law SMC,discrete SMC, adaptive SMC,SMC for mismatched uncertain systems,SMC for nonlinear systems,time-delay SMC,terminal SMC, global robust SMC,sliding mode observer,neural SMC,fuzzy SMC,dynamic SMC,integral SMC and SMC for stochastic systems,etc.The evolution of each direction is introduced and analyzed.Finally,further research directions are discussed in detail. Key words:sliding mode control;robust control;chattering 文章编号:1000?8152(2007)03?0407?12 1引言(Introduction) 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动.由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识,物理实现简单等优点.该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生颤动. 滑模变结构控制出现于20世纪50年代,经历了50余年的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一般的设计方法.以滑模为基础的变结构控制系统理论经历了3个发展阶段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的变结构控制;20世纪60年代末开始了变结构控制理论研究的第2阶段,研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制的理论和应用研究开始进入了一个新的阶段,所研究的对象已涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力学系统等众多复杂系统,同时,自适应控制、神经网络、模糊控制及遗传算法等先进方法也被应用于滑模变结构控制系统的设计中. 2滑模变结构控制理论研究进展(Develop-ment for SMC) 2.1消除滑模变结构控制抖振的方法研 究(Research on chattering elimination of SMC) 2.1.1滑模变结构控制的抖振问题(Problems of SMC chattering) 从理论角度,在一定意义上,由于滑动模态可以 收稿日期:2005?10?19;收修改稿日期:2006?02?23. 基金项目:国家自然科学基金资助项目(60474025,90405017).

模糊控制在非线性系统中的应用

模糊控制在非线性系统中的应用 杨立波,徐志强 (广东科技学院,广东 东莞 523083) 摘 要:作为人工智能技术中的一种,模糊控制被广泛的应用在非线性的系统控制之中,其有效的将工业生产中许多的大滞后、非线性问题解决了。而文章主要围绕的是模糊控制算法在非线性系统中的运用方面进行研究。关键词:非线性系统;模糊控制算法;应用分析中图分类号:TP273+.4 文献标志码:A 文章编号:1672-3872(2017)02-0081-01 1 研究背景 非线性系统在很多实际情况中都难以用已知的函数来进行定性描述。在动态系统中建模时,系统不可避免地存在误差、系统的工作环境会随时间发生动态变化、出现未知物理现象等各种各样的不确定性对其产生了一定的影响。文章在对其进行描述和分析时,这些问题的存在备受关注。神经网络或者模糊系统均是处理不稳定性特别有效的方式。自引入模糊集合以后,能够将人们的判断能力和思维能力用较为简单的一种数字化表达的形式表示出来,使得复杂化的系统可以通过简单的数学来解决相对应的问题,而这也使得不确定性复杂问题有了一个有效的解决途径。 对于非线性系统而言,其已经取得了非常大的突破,但是在实际的生活应用中依然还有很多急需解决的问题存在着。文章将从模糊控制算法以及多年对模糊控制技术、非线性控制技术以及控制器结构的设计等内容进行运用的经验,其目的在于可行性高性能的控制系统的设计方法能够实现,以此来对不确定性的、多样化的、复杂控制系统进行稳定。可见,对非线性控制理论的发展而言,研究模糊控制在非线性系统中的应用有非常重要的现实和理论意义。 2 模糊控制算法在非线性系统中的应用 1)模糊控制是控制研究中的重要类别,这种控制不仅是一种实时控制,而且不依赖于受控对象的精确模型。因此。它是一种打破了传统束缚的新型计算机控制,可以用鲁棒模糊控制算法来解决SISO 匹配条件的不确定性问题。鲁棒模糊控制算法适应于非线性,它是通过观测器的设计对系统状态进行估计,而这并没有对假设系统中的状态可测性提出要求(见图1)。基于这样的一种算法,其工作原理是基于最优、逼近标称向量同参数向量之差范数,以及相关的未知逼近误差界限等。因而所设计的鲁棒模糊控制的算法必须使闭环系统中的所有信号是在一致有界的范围内,并使跟踪误差估计 ——————————————作者简介: 杨立波(1981-),男,黑龙江木兰人,讲师,研究方向: 智能控制、线性控制、非线性控制。 图 1 假设结果示意图 值会收敛到小的一个零领域之中。 2)有关于Backstepping 的算法,是一类不确定性SISO 严格地反馈非线性的系统所提出来的,通过利用RBF 神经网络逼近器,让第一种的算法主要是在假设最小逼近误差的情况下对有界条件的确定进行满足。通过制定设计方案,能够有效的对控制器奇异的问题进行克服,从而使闭环系统控制的性能得到提高,并使适用范围扩大。第二种的算法是建立在第一种算法之上的,选择合适的设计参数,所有闭环系统的信号都会是一致有界,并且在跟踪误差这一变量任意地收敛到较小的零领域中去,上面所提到两种模糊算法都能够证实这一点。 3)通常,相较于严格地匹配条件系统以及反馈系统来讲,纯反馈的系统反而更加的复杂。通过模糊控制方法,提出不确定稳定一类、非线性MIMO 纯反馈系统。从Backstepping 中可知,模糊系统的利用,每一步都可以看到,其都会逐渐向每一个子系统之中的未知函数逼近。因而在对输入设计进行控制的过程中,鲁棒控制的算法能够有效的对逼近误差向量进行补偿。所提出来的控制方法必须是在闭环系统中对所有的信号进行使用的,只有这样才能够在跟踪误差向量以及一致有界中额范数在任意的一个小的零领域中收敛。 3 结束语 综上所述,在控制理论界的观点中,非线性系统的控制从来都是值得研究和探讨的一个问题。文章主要是对两种不同的非线性结构系统进行了分析与探讨,对其相关的两种有效模糊控制算法进行了分析。通过Backstepping、Nussbaum 等函数的引入,一步一步克服和解决以上所存在的问题。文章所提出的控制方法,使闭环系统中的信号在一致有界上的要求得到了保证。由此可见,通过仿真实验的进行促使设计方法的可行性得到了证实。参考文献: [1]郭峰.基于模糊ARX 模型的水泥回转窑预测控制算法研究[D].燕 山大学,2012. [2]韩京元.非线性板球系统的监督分层智能自适应控制算法研究 [D].吉林大学,2014. [3]王旭东.基于倒立摆系统的模糊控制算法研究[D].西安电子科技 大学,2012. [4]李旭.不确定非线性系统的直接自适应模糊控制[D].东北石油大 学,2013.[5]郑兰,周卫东,廖成毅,等.模型不确定非线性系统的自适应 模糊Backstepping 预测控制[J].哈尔滨工业大学学报,2014 (11):107-111. (收稿日期:2017-1-13)

模糊控制系统设计及实现

物理与电子工程学院 《人工智能》 课程设计报告 课题名称模糊控制系统的设计与实现专业自动化 班级 2班 学生姓名梁检满 学号 指导教师崔明月 成绩 2014年6月18日

模糊控制系统的设计与实现 摘要 自然界与人类社会有关系的系统绝大部分是模糊系统,这类系统的数学模型不能由经典的物理定律和数学描述来建立。本文在模糊控制理论基础上设计模糊温控系统,利用专家经验建立模糊系统控制规则库,由规则库得到相应的控制决策,并分析系统隶属度函数,利用matlab与simulink结合进行仿真。仿真结果表明,该系统的各项性能指标良好,具有一定的自适应性。模糊控制算法不但简单实用,而且响应速度快,超调量小,控制效果良好。 关键词:模糊逻辑;隶属度函数;模糊控制; 控制算法

1引言 在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。随着社会及科技的发展,现代工程实践对系统的控制要求也在不断地提高,但对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,随着人类生产、生活对控制的精细需求,传统的控制理论已渐渐不能满足工艺要求。虽然于是工程师利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了,因此便尝试着以模糊数学来处理这些控制问题。 “模糊”是人类感知万物、获取知识、思维推理、决策实施的重要特征。模糊并非是将这个世界变得模糊,而是让世界进入一个更现实的层次。“模糊”比“清晰”所拥有的信息量更大,内涵更丰富,更符合客观世界。“模糊控制理论”是由美国学者加利福尼亚大学著名教授L. A. Zadeh于1965年首先提出,至今已有50多年的历史。模糊控制是用模糊数学的知识模仿人脑的思维方式,对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制,它是用语言规则描述知识和经验的方法,结合先进的计算机技术,通过模糊推理进行判决的一种高级控制策略。它含有人工智能所包括的推理、学习和联想三大要素;它不是采用纯数学建模的方法,而是将相关专家的知识和思维、学习与推理、联想和决策过程,有计算机来实现辨识和建模并进行控制。因此,它无疑是属于智能控制范畴,而且发展至今已发展成为人工智能领域中的一个重要分支。其理论发展之迅速,应用领域之广泛,控制效果之显著,实为世人关注。 在工业生产过程中,温度控制是重要环节,控制精度直接影响系统的运行和产品质量。在传统的温度控制方法中,一般采取双向可控硅装置,并结合简单控制算法(如PID算法),使温度控制

完整版模糊控制技术的发展及前景展望

模糊控制技术的发展与 前 景

展 望 模糊控制技术发展现状与前景展望

1.引言 人的手动控制策略是通过操作者的学习,实验以及长期经验积累而形成的,他通过人的自然语言来叙述。由于自然语言具有模糊性,所以,这种语言控制也被称为模糊语言控制,简称模糊控制。 近年来,对于经典模糊控制系统稳态性能的改善,模糊集成控制,模糊自适应控制,专家模糊控制与多变量模糊控制的研究,特别是对复杂系统的自学习与参数自调整模糊系统方面的研究,受到各国学者的重视。人们将神经网络和模糊控制技术相结合,形成了一种模糊神经网络技术,他可以组成一组更接近于人脑的智能信息处理系统,其发展前景十分广阔。 2.模糊控制的热点问题 模糊控制技术是一项正在发展的技术,虽然近年来得到了蓬勃发展,但它也存在一些问题,主要有以下几个方面 (1) 还没有有形成完整的理论体系,没有完善的稳定性和鲁棒性分析、系统的设计方法(包括规则的获取和优化、隶属函数的选取等); (2) 控制系统的性能不太高(稳态精度较低,存在抖动及积分饱和等问题); (3) 自适应能力有限。目前,国内外众多专家学者围绕着这些问题展开了广泛的研究,取得了一些阶段性成果,下面介绍一下近期的主要研究热点。 2.1 模糊控制系统的稳定性分析 任何一个自动控制系统要正常工作,首先必须是稳定的。由于模糊系统本质上的非线性和缺乏统一的系统描述,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和设计,因此,模糊控制理论的稳定性分析一直是一个难点课题,未形成较为完善的理论体系。正因为如此,关于模糊系统的稳定性分析近年来成为众人关注的热点,发表的论文较多,提出了各种思想和分析方法。目前模糊控制系统稳定性分析方法主要有以下几种: (1) 李亚普诺夫方法 基于李亚普诺夫直接方法,许多学者讨论了离散时间和连续时间模糊控建立了包括非Ying制系统的稳定性分析和设计。使用李亚普诺夫线性化方法, 线性对象的T-S模糊控制系统局部稳定性的必要和充分条件。另外,一种在大系统中使用的向量李亚普诺夫直接方法,被用于推导多变量模糊系统的稳定性条件;李亚普诺夫第二方法被用于判别模糊系统量比因子选择的稳定性;波波夫一李亚普诺夫方法被用于研究模糊控制系统的鲁棒稳定性。 但是,李亚普诺夫的一些稳定性条件通常比较保守,即当稳定性条件不满足时,控制系统仍是稳定的。 (2) 基于滑模变结构系统的稳定性分析方法 由于模糊控制器是采用语义表达,系统设计中不易保证模糊控制系统的稳定性和鲁棒性。而滑模控制有一个明显的特点,即能处理控制系统的非线性,而且是鲁棒控制。因此一些学者提出设计带有模糊滑模表面的模糊控制器,从而能用李亚普诺夫理论来获得闭环控制系统稳定性的证明。Palm和Driankov采用滑模控制的概念分析了增益规划的闭环模糊控制系统的稳定性和鲁棒性。另有一些学者用模糊推理来处理控制系统的非线性和减少控制震颤,使得基于李亚普诺夫方法可保证控制系统的稳定性。 基于变结构系统理论,可以得到控制系统的跟踪精度和模糊控制器的I/O 模糊集映射形状之间的关系,从而可以解释模糊控制器的鲁棒性和控制性能。文献等研究了基于变结构控制框架的模糊控制系统的稳定性,通过输出反馈的模糊

相关文档
最新文档