氧气分析仪原理

氧气分析仪原理
氧气分析仪原理

系统测量原理

1.OXYMAT6氧气分析原理

氧气具有顺磁性。OXYMAT通道正是利用氧气的这一特性来进行氧气浓度测量的。在不均匀磁场中,氧分子由于其顺磁性,会朝着磁场力增强的方向移动。当氧气浓度不同的两种气体在同一磁场中相遇时,它们之间将会产生一个压力差。

对于OXYMAT通道,一种气体(17,下图1)是参比气(N2, O2 或者是空气),另外一种就是样气(21,下图)。参比气从双通道(19)进入到样气室中(22)。其中一种参比气流在磁场区域内(23)与样气相遇。因为双通道是连在一起的,所以与氧气浓度成比列关系的压力将会产生一个气流。微流量传感器(20)测得该气流并将它转变为一个电信号。

微流量传感器包含有两个被加热到大约120°C的镍格栅,这两格镍格栅与两个补充电阻

一起构成一个惠斯通电桥。脉冲气流会导致镍格栅电阻发生改变,这就会导致在电桥中生成一个取决于样气氧气浓度大小的偏移量。因为流量传感器是位于参比气流中的,所以测量不会受到样气热导率、温度或内部磨擦的影响。因为流量传感器没有受到样气的直接影响,所以这也就让它具有了高度的防腐蚀性。

通过改变磁场的强度(24)来使微流量传感器的背景气流作用不被传感器检测到,因此仪器摆放的方向也就对测量没有影响。因为样气室是直接置于样气路中并且体积小,所以OXYMAT 通道的响应时间非常短。如果测量地点出现频繁的振动,则就会使测量信号出现错误(噪音)。所以就应

图1

使用另外一个无气体流过的微流量传感器(26)。该传感器被用作振动传感器并且它的信号与

测量信号相连以对测量信号进行补偿。如果样气的密度与参比气的密度之差超过参比气密度的50 %,那么补偿的微流量传感器(26)就应像测量传感器一样用参比气进行吹洗。

对气体分析系统维护的一些认识:

这些建议只是对刚刚接触气体分析的人士,对气体分析系统的内行来说这些可能是早就知道和认识到的知识:

1.对分析系统的维护量来说,主体分析仪表维护较少。只要不会有不稳定的用电环境和糟糕的使

用环境,仪表不会产生问题。对仪表的校准是按照说明和自己的实际情况来的,一般的误差是在自己使用的合理要求内的。

2.对分析系统的延后性,与相关的使用人员要解释清楚,设计人员既然设定好的。一般是在允许

的情况下,如果出现情况特别延后,那么你可以去检查采样的管道了。

3.一般对气体分析(热气体)的维护,实际上只是对采样气体的处理装置的维护。要想使分析仪

表使用的时间长,使用时得分析稳定准确。就要对处理装置要求很高,维护量也就出来了。一般的处理装置分两种:

1)热处理系统,很好理解对采样气体直接取进来过滤,清洁,直接进入系统分析出数据。这个系统对自身允许环境要求有但是不是太严格,一般就是环境温度比一般高点、低点都没问题。

但是价钱很贵,维护量也有,坏了更换,同样也是昂贵。

2)冷处理系统:对采样气体过滤,冷却凝结出水汽,再过滤达到分析的要求。这套系统价钱适中,维护量大,尤其对环境温度要求严格,对采样气体分析速度也不错。当环境温度高和低的情况下就会出现对仪表的冲击,如果这个套系统有一套对自己的高要求报警装置就会相当影响正常使用。这是个平衡问题,要不对仪表冲击大,仪表使用寿命受影响;要不就是老报警你的停下生产去处理。相比较来说,热处理系统是主流,但是你也避免不了使用冷处理系统。4. 对维护的安全要求做到认识,分析气体的系统分析的都是些重要数据(对环保来说不怎么危险

吧,我也没接触过这方面),要面对的是冶金,石油化工方面,矿山等等领域,气体一般有毒,有腐蚀。最重要的有毒,笔者维护的系统是炼钢产生的煤气,很要命的。所以带个报警器吧,有危险一定第一时间撤离。生命最重要。

水质分析仪的工作原理及特点

水质分析仪的工作原理及特点 一、前言 随着近年来我国经济的快速发展,城市的工业和生活垃圾大量增加,目前对垃圾进行处理的主要方法是卫生填埋,而进行填埋都是露天作业,垃圾经压实后,随着垃圾中生物的分解及遇到雨雪天气时,雨水和雪水渗入填埋区,会产生垃圾渗滤液。渗滤液属高浓度有机废水,浓度值变化范围大,其中含碳氢化合物、硝酸盐、硫酸盐及微量铜、镉、铅等重金属离子,细菌指标很高,如不进行处理直接排入水体,将严重污染当地的水环境。为了保护水环境,必须加强对污水排放的监测。检测点的设计和检测仪表(主要是水质分析仪)的质量对水环境监测起着至关重要的作用,本文结合某一污水处理厂的设计谈谈这方面体会。 二、水质分析仪的工作原理 污水处理厂使用的分析仪有两种:pH计和溶氧分析仪。 1、pH计的工作原理 水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。pH值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10-7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。 pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。该厂采用了CPS11型pH传感器和CPM151型pH 变送器。具体结构如图1所示,测量电极上有特殊的对pH反应灵敏的玻璃探头,

热导检测器工作原理、结构组成及检测条件

热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1R3=R2R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N 二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为和,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作。③、④是为了获得高稳定性。表 3 -2-3 列出了商品TCD中常用的热丝性能。 钨丝电阻率低,相同长度之阻值只有铁铼丝的一半,灵敏度难以提高。另外,钨丝强度差,高温下易氧化,致使噪声增加、信!噪比下降。

42i氮氧化物分析仪 中文说明书

热电42i氮氧化物分析仪 技术资料 方法标准:ISO7996-1985 方法名称:化学发光法 山东美吉佳环境科技有限公司

目录 第一章简介(性能和工作原理)第二章使用说明书 第三章设备保养维修操作规程 一、仪器安装 二、校准 三、日常维护保养 四、故障诊断和排除

简介 产品性能 42i 化学发光法分析仪结合检测技术,轻松利用菜单驱动软件和高级诊断提供了极其卓越的适应性和可靠性。42i 分析仪具有以下的特征: ·320*240液晶图像显示 ·菜单驱动软件 ·区域可定量程 ·用户自选单/双/自动量程模式 ·多重用户自定义模拟输出 ·模拟输入选择 ·高灵敏度 ·快速响应时间 ·全量程线性 ·独立NO-NO2-Nox量程 ·NO2 转化炉可替代选择 ·用户自选数字输入/输出容量 ·标准通讯特色包括RS232/485和以太网 ·C-Link, MODBUS协议,以及流动数据协议 工作原理 42 i 分析仪原理是基于一氧化氮(NO)与臭氧(O3)的化学发光反应产生激发态的NO2分子,当激发态的NO2分子返回基态时发出一定能量的光, 所发出光的强度于NO的浓度呈线性关系,42i分析仪就是利用检测光强来进行NO的检测, 其化学反应式如下: NO + O3 ──NO2 + O2+ h 仪器在进行二氧化氮(NO2)的检测时必须先将NO2转换成NO,然后再通过化学发光反应进行检测。NO2是通过钼转换器完成NO2到NO的转换. 其转换器的加热温度约为325℃(可选不锈钢转化器加热温度为625℃)。 如图1-1所示, 样品气通过标有SAMPLE的进气口被抽入42i分析仪,然后样气经颗粒物过滤器过滤,到达一电磁阀,由该电磁阀选择样气的路径是直接到达反应室(测NO方式),还是先经过NO2到NO转换器后再进入反应室(测

氧气分析仪的特点与原理

氧气分析仪的特点与原理 氧气分析仪具有测量快速、准确、高精度的特点,它采用了先进的燃料池传感器测量氧含量。由于传感器完全密封,所以传感器是免维护的。通常使用寿命可达三到五年。 是老一代微氧仪的更新换代产品。并且与先进的单片机技术,流量控制,温度补偿,压力控制系统想结合,使之具有更好的人机操作平台和广泛的使用性能。 仪器采用独特的过压保护装置,当气体流量突然增大的时候,过压保护动作,气体进入传感器的通道被切断,从而很好的保护了传感器避免过压损坏。 同时由于该仪器设计时采针阀可将传感器在不使用的条件下密封,防止传感器在空气中消耗并且可以达到对进样管路进行吹扫,以达到清扫进样管路的目的,更使它在快速、大量分析作业众发挥重要作用。 仪器工作原理: 氧气分析仪采用完全密封的燃料池氧传感器是当前国际上zui先进的测氧方法之一。 燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。 O2+2H2O+4e4OH 2Pb+4OH2Pb(OH)2+4e KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电

极不需定期清洗或更换。 样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量; 这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。 采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程; “金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中; 传感器可以非常稳定可靠的工作很长时间。事实上,燃料电池氧传感器是完全免维护的。 标签: 氧气分析仪

热导分析仪维护

1.4热导分析仪 1.4.1框图及原理 热导式分析仪是利用各种气体的热传导速度各不相同的物理特性制成的,可分析混合气体中某组分的百分含量,彼此无化学反映的混合气体的导热系数近似为各组分导热系数的算术平均值。使用时需满足:混合气体中除被测组分外,其余组分导热系数相近,且被测组分与其余组分导热系数要有明显差别。即入(侧)>>入(其余),入(混)=入(其余)+〔入(侧)—入(其余)〕×C(侧),因H2的导热系数最大,传热能力最强,CO2、SO2、Ar等比一般气体导热系数小,故热导式分析仪一般用于测以上几种。 (1)热导式分析仪检测器(热导池)的工作原理 由于气体导热系数都很小,直接测量较难,一般使导热系数变化转为热敏电阻值的变化,经测组值来测待测组分的体积百分含量。 热导池一般为圆筒内垂直挂一热敏电阻(如铂丝),电阻上通电流,气室内电阻丝产生的热量为Q=0.24I2Rn(Rn:电流工作作用下电阻丝平衡温度Tn 时的阻值)。 电阻丝向四周散热形式有:周围气体的热传导、热对流、辐射散热、被流通气体带走的热量、电阻丝轴向热传导等,只有热传导是经导热系数来反映的,其余为干扰,为减少干扰可用加大电阻丝长度与直径比、控制电阻丝热平衡温度,减去气室内壁温度<200℃,减小气室内半径、使被测气体流量小且恒定等措施。 当电阻丝产生的热量与经气体热传导所散失的热量相等时达到热量平衡,此时经理论计算电阻丝阻值与导热系数间为单位函数。热导分析仪都有稳压、稳流、恒温装置以保证流过电阻丝的电流、壁温、气体流量稳定。 图1.4.1-1 (2)检测器类型及测量回路 检测器结构有分流式、对流式、扩散式、对流扩散式四种。

溶氧分析仪的工作原理

溶氧分析仪的工作原理 整理时间:2008-8-8 10:05:00 查看次数:373关键词:溶解氧分析仪,工作原理 测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。该厂采用了COS4型溶氧传感器和COM252型溶氧变送器。 氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的 溶解度与其分压成正比。 以COS4氧量测量传感器为例,其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入 而导致污染和毒化。 相反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: O2+2H2O+4e-? 4OH-。 电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-? 4AgCl+4e-。对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测同污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。COS4

溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低 流速要求为0.5cm/s。

热导检测器(TCD)原理及操作注意事项

【资料】-热导检测器(TCD)原理及操作注意事项 热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E 流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。M、N二点电位相等,

电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻 ....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为0.1~1.0mm 的小珠,密封在玻壳内。 热敏电阻有三个优点 ..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点 ..:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝 ..一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高 阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度 ....,同时丝体积小 ,可缩小池体积,制作微TCD。③、④是为了获得高稳定性 ....。表 3 -2-3 列出了商品TCD中常用的热丝性能。

氮氧化物分析仪简易操作手册

Signal 4000VM 氮氧化物分析系统使用与日常维护 Signal 4000VM氮氧化物分析系统仪表选型为英国SIGNAL GROUP公司,Model 4000VM型加热化学发光法氮氧化物分析仪测量样本气体中氮氧化物含量。 为便于用户更好地使用此仪器减少故障发生,特作此简要操作手册,在日常使用中应注意以下几点:(本手册只提供简易操作与维护,详细信息请以原版英文手册为准) 一、准备 1.仪器使用交流220V/50-60Hz电源供电,在对仪器进行操作或维修时请确保人身安全,应有专业人员操作此仪器,维修或检查仪器前请先断电! 2.仪器零点气使用T40钢瓶气,纯度99.999%. 设定进气入口气压为5psi(0.345 bar, 34.5 kPa)到10 psi (0.7 bar, 70 kPa)。 3.仪器满量程气(标准气)使用AL8钢瓶气,纯度为980ppmNO/N2. 设定进气入口气压为5psi (0.345 bar, 3 4.5 kPa)到15 psi (1.03 bar, 103 kPa). 4.样本气体入口气压为-5psi(-0.345 bar, -34.5 kPa)到10 psi (0.7 bar, 70 kPa)之间。 5.仪器需使用T40钢瓶装的空气或氧气(99.995%)生成臭氧臭,需提供提供露点低于-12 oC的空气或氧气生成臭氧臭,进气入口气压为0 psi (0 bar, 0 kPa) 到 20 psi (1.4 bar, 140 kPa)。 6.仪器正常工作时需要保持真空泵和样气泵的开启。 7.仪器进气流量低于0.5l/min或高于5l/min,仪器将自动启动报警功能,液晶屏提示“STATUS warning”,此时请检查仪器进气量是否符合仪器进气要求。可能是由于过滤器堵塞、变湿通透性较差造成的,过滤器变色变脏请及时更换过滤器,滤料进行干燥,有条件的话直接更换滤料。(见图1 样品气进口样品气出口 硅胶颗粒 活性炭颗粒 纤维棉 气液分离器 PTFE过滤器 输水阀 图 1. 注意:作为一种预防措施变色硅胶颗粒,活性炭颗粒,纤维棉必须每周更换一次! 气液分离器内有明水时请及时打开输水阀,将液体排出。 PTFE过滤器应经常检查发现变黑/变色请及时更换,建议每月更换一次。 仪器由于堵塞或腐蚀的损坏行为不在保修之列!

pH计和溶氧分析仪的原理及特点

pH计和溶氧分析仪的原理及特点 1、pH计的工作原理 水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。pH 值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10~7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。 pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。该厂采用了CPS11型pH 传感器和CPM151型pH变送器。测量电极上有特殊的对pH反应灵敏的玻璃探头,它是由能导电、能渗透氢离子的特殊玻璃制成,具有测量精度高、抗干扰性好等特点。当玻璃探头和氢离子接触时,就产生电位。电位是通过悬吊在氯化银溶液中的银丝对照参比电极测到的。pH值不同,对应产生的电位也不一样,通过变送器将其转换成标准4~20mA输出。 2、溶氧分析仪的工作原理 水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池和氧化沟的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。

测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。该厂采用了COS4型溶氧传感器和COM252型溶氧变送器。氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。 以COS4氧量测量传感器为例,其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入而导致污染和毒化。 相反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: O2+2H2O+4e-? 4OH-。 电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-? 4AgCl+4e-。对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测同污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。COS4溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低流速要求为0.5cm/s。 3、 pH计的特点

便携式微量氧分析仪说明书

保修说明 我公司负责本仪器(包括传感器)12个月的保修期,保修期从出厂之日算起。用户在使用中,应遵守使用说明,由于用户使用不当,或工作环境恶劣而造成仪器损坏,不在保修范围之内。 重要提示 1.在使用仪器之前,请仔细阅读说明书。 2.本仪器需由经过培训的人员使用。 3.本仪器的使用必须按照说明书确定的规则操作。 4.仪器的维修和部件的更换由我公司或各地维修站处理。 5.如果用户不依照以上说明擅自开机修理或更换部件,仪表的可靠性由操作者负责。 6.本仪器的使用还应遵守国内有关部门及工厂内仪器管理方面的法令和规则。NK-101A型便携式氧量分析仪- 1 -

目录 一、概述 (1) 二、主要技术参数 (1) 三、工作原理和仪器的面板结构 (2) 四、仪器的安装 (3) 五、仪器的使用 (3) 六、充电管理 (8) 七、仪器的标定 (9) 八、常见故障与维修 (9) 九、注意事项 (9) NK-101A型便携式氧量分析仪- 2 -

一、概述 NK-101A型便携式氧量分析仪,是我公司最新研发的新型高精度便携式氧量分析仪;该仪器采用进口电化学传感器,结合单片机控制技术,具有测量精度高、使用操作简便的特点。 本仪器采用128×64点阵LCD显示器,高亮度,无视角影响,直观醒目,无人职守时,可定时记录氧含量值,最多可以存储3200个数据。采用触摸按键全中文菜单操作,通俗易懂、简单可靠;采用专用充电器充电,直流电池供电,一次充满后可连续工作25~30小时左右(不开气泵时);同时可选配气泵。 NK-101A型便携式氧量分析仪,广泛适用于空分、石油化工、冶金、电子电力、机械制造及其它行业中的各种气体中氧含量的精密检测。 二、主要技术参数 1.测量范围:0-10/100/1000ppm; 2.测量精度:0-10/100ppm:≤±5%F.S 100-1000ppm: ≤±2%F.S ; 3.分辨率:0.01ppm; ≤30 s; 4.响应时间:T 90 5.稳定性:零点漂移≤±1%/7d; 量程漂移≤±1%/7d; 6.重复性:≤±1%F.S; 7.样气流量:300-400mL/ min; 8.样气压力:0.05MPa≤入口压力≤0.1Mpa; (出气口必须为常压) 9.工作环境:运行温度:-5℃~+45℃; 运行湿度:≤90%RH(无冷凝) 10.工作电源:仪器自带的可充电电池; 11.充电电源:~220V±10%,50HZ; 12.重量:约4.0 kg; NK-101A型便携式氧量分析仪- 9 -

氧分析仪说明书

注意事项 !使用及保存注意事项 ●仪器在使用过程中不可打开外壳,避免发生烫伤及触电危险。 ●仪器在使用、存放、及运输过程中应避免强烈震动,以免损坏氧化锆 传感器。 ●仪器在存放期间应保持清洁,要防止仪器受潮,进排气嘴应加盖防尘 帽,以防落入异物及灰尘。 请严格遵守注意事项,否则将造成人为测量误差或重大事故!!! 服务与保证

仪器自出厂之日起,仪器的保修期限为一年。凡在此期限内,工作人员在正常操作的情况下,仪器出现的软件或硬件的故障,我公司均负责免费维修及更换零部件。若由于工作人员违反操作规程、不严格按照使用说明操作仪器以及由于不可抗拒的因素而对仪器造成的损坏,我公司不负责免费维修。如需维修,我公司将根据损坏情况适当收取维修成本费用。 如有用户需要,我公司也可指派技术人员进行现场培训。 如果您对本公司的仪器在使用和操作过程中,还有什么疑问及要求请及时与我们联系,以便我们能给您提供更完善的服务。联系方式见封底。 一、概述

该氧分析仪是利用氧化锆氧浓度差电池作为检测传感器的氧量分析仪器。该仪器测控系统采用了最新型的单片机计算与控制系统,LED显示器;具有技术先进、精度高、响应快、性能稳定、功能齐全、操作方便、气体分析过程连续等特点;它不仅可测量锅炉燃烧过程中残余氧量,而且可以用于热力学研究,气体制造厂氧含量的连续监测、均热炉燃烧过程中的控制、化工、冶金、电子工业、医疗等方面的气体中氧含量的检测。 本公司生产的测量氧探头分为中温型、低温型、高温型,其基本参数及使用性能如下表1所示: 二、工作原理 2.1氧化锆原理图

仪器的工作原理如图1.0所示。它主要由气路系统、氧化锆传感器、微机测控系统三部分组成。 图1.0 测量原理框图 2.2氧化锆传感器 氧化锆传感器是由氧化锆陶瓷材料制成的氧浓度差电池,在高温时氧化锆具有氧离子的传导特性,当氧化锆管的两个电极之间的氧分压不同时,氧浓度差电池产生一个与氧浓度成比例的电势,电势大小按下式计算: E = ln 式中:R ——理想气体常数 F ——法拉第常数 T ——氧化锆加热炉绝对温度(K) n——电极反应的电子交换数目 P 0 ——空气中氧分压(20.9%) P ——样气中的氧分压 通过测量氧浓度差电池的电动势E 与温度T ,就可以计算出样气中的氧分压,即氧含量。浓度差电池的各种干扰电势,如本底电势、渗透效应、 RT 2n P 0 P

EN-500微量氧分析仪说明书

EN-500型微量氧分析仪使用说明书 上海英盛仪器有限公司Shanghai ENCEL Instrument Co.LTD

目录 1. 概述 (2) 2. 技术性能指标 (2) 3. 仪器安装与接线 (3) 4. 面板按键操作说明 (4) 5. 仪器的使用 (4) 6. 仪器调校 (7) 7. 日常使用与维护 (9) 8. 贮存与保修 (10) 9. 成套产品清单 (10)

敬告用户 在使用仪器前请仔细阅读本说明书; ·必须保证仪器的进气压力不大于O.1MPa(0.05MPa最佳); ·必须保证仪器的进气浓度不超过测量范围: ·不通气时,必须将平面进样阀置于“关”位置。 1.概述 EN-500A型微量氧分析仪采用了进口高性能的电化学式气体传感器和微处理机技术,具有LCD显示、上下限报警、标准信号输出及继电器触点报警输出等功能。适用于对氮气、氢气、氩气等还原性气体中的微量氧进行连续检测。 图1仪器外形图 主要特点: ·选用进口燃料电池式微量氧检测元件,具有寿命长,反应速度快等。 ·适用于氮气、氢气、氩气等还原性气体中微量氧的测量。 ·采用全中文人机对话菜单,操作直观方便。 ·采用大屏幕点阵液晶显示,可同时显示氧量、日期、时间等参数。 ·上、下限报警点可在全量程范围内任意设置。 ·具有无纸记录仪功能,自动记录氧浓度随时间的变化曲线 ·输出0~10或4~20mA标准信号。 ·标准的RS232通讯口,可以连接串口打印机或与计算机实现双向通讯。2.技术性能指标: 2.1 测量范围:0~10ppm、0~100ppm、0~1000ppm 2.2 测量精度:>l0ppm±3% FS、≤10ppm±5% FS 2.3 输出:0~10mA (0~1.6kΩ) 或4~20mA (0~800Ω) 2.4 重复性:≤±2% FS

几种氧分析仪原理及应用

1、电化学氧分析仪: 相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类: (1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。 (2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。 (3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。 (4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。 目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。 2、顺磁式氧分析仪: 顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。 物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。因此,我们通常会将被外磁场吸引的物质称为顺磁性物质,或者说该物质具有顺磁性;而把被磁场排斥的物质称为逆磁性物质,或者说该物质具有逆磁性。气体介质处于磁场中也会被磁化,我们根据气体组分对磁场的吸引和排斥的不同,也将气体分为顺磁性和逆磁性。顺磁性气体有:O2、NO、NO2等;逆磁性气体有:H2、N2、CO2、CH4等。 磁性氧气传感器是磁性氧气分析仪的核心,但是目前也已经实现了“传感器化”进程。这种传感器只能用于氧气的检测,选择性极好。大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的! 当然磁氧根据传感器类型,又分为磁力机械式,热磁式氧分析仪,热磁式市场售价略低,

美国ADV埃登威GPR-1200便携式微量氧分析仪

美国AII/ADV埃登威GPR-1200便携式微量氧分析仪 简单介绍 埃登威GPR-1200是一款便携式微量氧分析仪,主要应用:对惰性气体,碳氢气体,He,H2,CO2中的氧含量进行10ppb-1000ppm分析; 便携式微量氧分析仪的详细介绍 便携式微量氧分析仪 埃登威GPR-1200技术规格: 精度:<1%满量程 范围:0-10,0-100,0-1000ppm,0-25% 可调 应用:对惰性气体,碳氢气体,He,H2,CO2中的氧含量进行10ppb-1000ppm分析。 认证:CE,本质安全型 区域等级:本安设计,适用于Class I,Div.I,Goups A,B,C,D 报警:无 标定:使用浓度大约为80%量程或更高的经过认证的标准气体 补偿:温度 接口:1/8”接头 控制:量程选择开关,防水键,标定及系统功能 显示:2.75"×1.375";分辨率:0.001ppm;实时显示温度及压力 外观:NEMA 4X,8.6*9*3"12 lbs 流量影响:0.25-2.5 L/M,推荐流量:1 L/M LED显示灯:低电量和充电模式 线性:>.995超过所有量程 压力:进样5-30 psig;排空-大气压 电源:可充电电池,单电池可持续60天,开泵1天 恢复时间:在空气中暴露60秒钟,用氮气恢复至10ppm的时间为20分钟 响应时间:90%满量程为10秒 采样系统:流量控和样气/旁通阀,流量指示 灵敏度:<0.5%满量程 传感器型号:GPR-12-333,免维护 传感器寿命:24个月,25℃,平均O2<100 ppm 输出:0-1V 温度范围:5-45℃ 质保期:12个月 样气接触部分:不锈钢 可选项: 内置取样泵—通用型或本安型 便携箱 进样过滤器

氧氮氢分析仪的常见故障及解决方法

氧氮氢分析仪的常见故障及解决方法 1、氧和氮空白值超过20。这是由于气流小,不能将炉子中的空气驱赶出去。可调节气体流量,调节载气压力在0.2~0.4MPa。接通仪器载气,放一个石墨坩埚在下电极上,打开主电源开关,点击软件上的关炉按钮,关闭炉子并等待10s。调节流量调节器,直到流量计a显示为30L/h,打开炉子。调节调节器直到流量计b显示为50L/h,再次关闭炉子。如果以上设置不稳定,则增加流量至100L/h,反复调节直至仪器稳定。 2、供电正常、通讯正常,点击确认键后分析仪不工作。这是没有水流,炉子温度太高或仪器通道电压不正常。如没有水流,炉子温度太高这些信息会显示在显示器画面上,但没有信息显示说明这两项正常。接下来检查仪器通道零位电压,如果比±3V高出1V以上,可能是因为气瓶空了,或者是空气进入到分析仪中。检查并更换化学试剂,如果有空气进入热导池里,热导池的电压就会<-6V,此时打开右面的门,堵住炉子气体进口,10s后,热导池电压值必然升高。经过逐一排查,*终确认碱石棉有问题,更换后仪器正常。 3、分析过程中电流表显示电流值为零。这是炉子中电极接触**。经观察炉子上部和下部之间有空隙,调整上下部之间的垫片消除空隙,但仪器仍未正常。经进一步观察,确定是电极磨损导致接触**,更换上、下电极后仪器正常。 4、仪器启动时显示。没有水流。系统分析电流切断,分析停止。这是水流探测器不正常,水泵不工作,管道堵塞。将仪器的右面板取下,观察水流探测器,用手挤压补水塑料水瓶,发现水流正常,显示正常,证明水流探测器正常,管道畅通。启动循环水泵,但分析仪显示没有水流,此时可判定水泵不正常。打开水泵转子密封口,启动泵发现电机正常运转,此时关闭进水,拆下水泵,发现叶轮脱落。经了解,判定是由于外部冷却水停水,仪器内循环水温过高(水温应≤70℃),致使叶轮(叶轮材料PVC)热胀并脱轴。用粘合剂粘合叶轮后再粘于叶轮轴上,待粘合剂凝固后试车,仪器运行正常。

氧化锆氧分析仪原理

https://www.360docs.net/doc/ed16770640.html, 氧化锆氧分析仪具有结构和采样预处理系统较简单、灵敏度和分辨率高、测量范围宽、响应速度较快等优点。按检测方式的不同,氧化锆氧探头分为两大类:采样检测式氧探头及直插式氧探头。氧化锆氧分析仪原理,安徽康斐尔电气有限公司告诉您! 安徽康斐尔电气有限公司位于长江之滨的的文明城市天长市,是集科技攻关、新品研发、制造营销、出口为一体的生产型企业。主要产品:电力电缆、控制电缆、计算机电缆、核电站用1E级和非1E 级电力电缆。仪器仪表系列:压力变送器、压力表系列、双金温度计、无纸记录仪、工业热电偶、仪表保护箱、温度传感器等。 氧化锆氧分分析仪可适用于燃气、燃油、燃煤各种炉型。测量温度从室温至1400度均可选择到合适的型号。氧化锆氧分分析仪安装方便,可热安装,对停启炉适应性强。同时,氧化锆氧量分析仪还可用于气氛控制,精确控制燃烧效率。 安徽康斐尔电气有限公司

https://www.360docs.net/doc/ed16770640.html, 氧化锆氧量分析仪主要用于测量燃烧过程中烟气的含氧浓度,同样也适用于非燃烧气体氧浓度测量。它又被称为氧化锆氧分析仪、氧化锆分析仪等。在传感器内温度恒定的电化学电池(氧浓差电池,也简称锆头)产生一个毫伏电势,这个电势直接反应出烟气中含氧浓度值。氧传感器的关键部件是氧化锆,在氧化锆元件的内外两侧涂上多孔性铂电极制成氧浓度差电池。它位于传感器的顶端。为了使电池保持额定的工作温度,在传感器中设置了加热器。用氧分析仪内的温度控制器控制氧化锆温度恒定。氧化锆氧量分析仪的构成是由氧传感器(又称氧探头、氧检测器)、氧分析仪(又称变送器、变送单元、转换器、分析仪)以及它们之间的连接电缆等组成。 公司拥有雄厚的技术力量、精良的制造工艺和科学的管理手段。公司严格执行产品标准及行业标准,按照国内各工矿企业的使用环境条件和工艺要求,制定严格的工艺流程,使产品工艺精良。公司自主研制、开发、生产的产品主要有六大系列,400多个品种。被广泛应 安徽康斐尔电气有限公司

DF310E微量氧分析仪(中文)

氧分析仪实用说明

一.添加电解液 电解液具有腐蚀性,添加时要做好防护 添加步骤: 1.用活扳手把进气管(INLET)上卡套及螺帽卸下。 2.打开前盖,把在氧气探头附近的9针插子从接头处拔开 3.探头前面,两个固定架上的拇指螺丝松开。 4.将探头整体向前拉出一段,可以看到流量计上端连接的软管,软管与流 量计的连接处是快速接头,这时按图示拆下软管。 5.从仪器上把探头整体拿出 6.打开盛装电解液罐的盖子,倒入其中一瓶电解液,使之完全流入罐内。 7.重装完毕,盖上盖子拧紧以防电解液泄露。 8.重新装回探头的顺序为4-1步骤 9.添加电解液完成后需静止60分钟,再通气使用。 二.采样气体连接设备: 1.采样气入口/出口都在仪器的尾端,如下图:

采样气入口和出口提供了可供连接1/8”不锈钢管的接头。在设备上连接任何气管都要充分的连接。别用扳手把背板螺帽不要拧太紧。 2.净化设备 提供给设备的标样氮气含氧量浓度越低越好。如果氧分仪的出口直接通大气,这时在出口处要加压力调节阀,使出口气体流量在1.0 SCFH,这样不会因为过压而损坏探头。仪器的背压不要超1.0psig。如装置输出口的气管安装过长(>1.8m),产生的背压将加在氧气探头上,导致超过允许值。如上述原因,两种方法解决:1)出口换成1/4inch管;2)尽量减少输出管弯迂。 三.电池充电 氧分析仪接通交流电源,打开箱盖前门,把开关打到“1”即开的位置。 (充满电时间为12小时;如泵运行,充满时间为16小时) 1 用电池模式下,LCD显示屏右下方显示“BAT”,电池电量低时,显示屏右下方显示“LOW”另外可以发出滴滴报警,如果电池电量太低,分析仪会自动停机。 2 用交流电模式下,电池电量低时,在屏幕右方显示“CHG”,充满电时,右下方没有任何显示。 四.开机操作 1.开机 设备交流电源电压范围:100-240V AC,送电前,确定仪器内部电源开关OFF(“0”)位置,这时再接交流电源。注意:送电前必须检查电源开关位于OFF位置才能接交流电源。打开氧分仪前盖,将电源开关扳到ON(“1”)位置,这时设备启动,并进行一系列的自诊断程序。大约5秒,显示出Delta F Corporation logo标识,接下来的30秒,一个WAIT字符信息出现在显示屏大约1.5分钟后,一个与下图(显示的是典型的画面)相似的界面出现在显示屏: 刚开机的几分钟,氧分仪可能会显示OVER RANGE(超量程)。这时即使实际氧气浓度并没有没有超量程,这也是正常的。 5分内氧分仪开始测量工作(注意:如果超过30分不工作,自动切断探头工作电压),氧气浓度被显示成百分比%浓度或是ppm,测量会慢慢接近当前氧浓度

热导检测器的原理

热导检测器的原理 热导检测器的原理及注意事项 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(kat herometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。热导检测器的原理及注意事项从以下几个方面给予 阐述。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。

当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温T f,池体处于一定的池温 T w。一般要求T f与T w差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1·R3=R2·R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作微TCD。

氮氧化物分析仪分析原理

氮氧化物分析仪原理 IEM-ME200氮氧分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz 之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供快速、线性、准确、高度稳定和高选择性响应。 IEM-ME200氮氧分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),探测器根据中央处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),中央处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。当氮氧化物和氧含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,中央处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氮氧气体(NO X/02)敏感,所以超高频常温超导谐振探测场只对氮氧气体扰动产生信号反应,而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氮氧化物和氧含量信息,为下一步工作提供了可靠的数据保障。 分析原理 IEM-ME300氨气分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz 之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氨气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。 IEM-ME300氨气分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氨气传感器根据处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。当氨含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氨气(NH3)产生反应,所以超高频常温超导谐振探测场只对氨的微弱扰动产生信号反应。而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氨含量信息,为下一步工作提供了可靠的数据保障。 分析原理 IEM-ME400氮氧/氨气体分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧/氨气体分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。 IEM-ME400氮氧/氨分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氮

相关文档
最新文档