第五章 有限体积法

第五章  有限体积法
第五章  有限体积法

间断有限元方法

2016年夏季学期研究生课程考核 (读书报告、研究报告) 考核科目:间断有限元方法及其应用 学生所在院(系):理学院数学系 学生所在学科: 学生姓名: 学号 学生类别 考核结果阅卷人

1.引言 间断Galerkin(DG)方法兼有有限元与有限体积方法的特征。如同一般有限元方法那样,DG方法利用单元多项式空间作为近似解和检验函数空间,但是与传统的有限元方法不同,有限元函数空间基函数都是完全间断的分片多项式,各个单元之间的通信也需要像有限体积方法那样通过在单元边界上构造合适的数值流通量来实现。因此DG方法既保持了一般有限元方法和有限体积方法的优点,又克服了各自的不足。该方法可采用局部高阶插值的方法构造基函数,具有灵活处理边界条件以及可显式求解间断问题的能力,克服了一般有限元方法不适于间断问题的缺点,以及有限体积方法必须通过扩大模板进行重构来提高精度的不足。因此间断Galerkin(DG)方法的出现拓展了传统有限元方法的应用范围,改 善了人们对传统有限元方法的认识。 2.DG的基本概念 间断Galerkin方法最早由Reed和Hill在1973年为解决中子输运方程问题而提出。随后众多学者对间断有限元方法提出了改进和发展特别是90年代以来,以Cockbum和舒其望为代表提出了Runge-Kutta间断Galerkin(RKDG)方法,该方法结合TVD(TVD:Total Variation Diminishing) Runge-Kutta 时间离散方法和间断有限元求解一维双曲守恒律方程(组)以至于高维双曲守恒律方程(组),能够适合复杂计算区域和边界条件,可以精确的捕捉激波和接触间断。它不但在光滑区域可以保证高精度,而且在间断区域可以保持数值无振荡,分辨率高,可以证明收敛到熵解。这些优点使得RKDG成为计算流体力学流行的方法之一,并被广泛应用到气象学、海洋学、湍流、电磁学、石油勘探、水动力学等离子物理和图像处理等领域。 同样是在20世纪70年代,内惩罚(IP: Interior Penalty)类方法被独立地提出来求解摘圆和抛物方程。内惩罚方法后来也被归为间断Galerkin方法一种,本文记为内惩罚间断Galerkin(IPDG)方法。内惩罚间断有限元的发展与同时代求解双曲守恒律的间断有限元方法保持相对对立,该方法的侧重点在于选择合适的惩罚项保持格式的稳定性,而不在于如何构造数值流通量。基于DG方法求解双曲守恒律的巨大成功,许多学者考虑运用DG方法的思想求解扩散方程,但如果只是简单地将DG方法推广到扩散方程得到的数值格式并不准确。例如考虑一维热传导

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。 (1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法; (2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格; (3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

Cahn-Hilliard方程的隐显BDF2方法

Cahn-Hilliard 方程的隐显BDF2方法 饶 婷, 王晚生 (长沙理工大学 数学与统计学院, 长沙 410114) 摘 要: Cahn-Hilliard 方程作为一类重要的四阶扩散方程已成为偏微分方程研究领域一个倍受关注的问题. 本文考虑带有Neumann 边界的Cahn-Hilliard 方程的隐显BDF2半离散格式和全离散格式, 并证明了该格式是质量守恒的. 关键词: Cahn-Hilliard 方程; 质量守恒; 隐显BDF2格式; 全离散 中图分类号: O241.8 文献标识码: A 文章编号: 1672-5298(2018)02-0009-03 IMEX-BDF2 Method for Cahn-Hilliard Equation RAO Ting, WANG Wansheng (School of Mathematics and Computational Science, Changsha University of Science and Technology, Changsha 410114, China) Abstract : The Cahn-Hilliard equation, as an important class of fourth-order diffusion equations, has become a major concern in the field of partial differential equations. In this paper, the Cahn-Hilliard equation with Neumann boundary is considered to be discretized by implicit-explicit BDF2 method. It is proved that the scheme preserves the property of mass conservation. Key words : Cahn-Hilliard equation; mass conservation; implicit-Explicit BDF2; full-discrete schemes Cahn-Hilliard 方程是一个描述两种金属物质混合时随温度变化发生亚稳相分离现象的四阶非线性抛物方程. 最初是由 Cahn 和Hilliard [1]于1958年在研究热力学中两种物质(如合金、聚合物等等)之间相互扩散现象时提出的. 后来用于描述生物种群竞争与排斥现象, 固体表面上微滴的扩散等许多扩散现象的研究中也提出了同样的数学模型. 近些年来, 越来越多的学者关注Chan-Hilliard 方程, 对Chan-Hilliard 方程的解的性质做了大量的研究工作, 获得了比较丰硕的成果. 例如, 在1996年Chen [12]等人得到了Chan-Hilliard 方程解的摄动性质; Carlen 和Bricmont [8,9]分别研究了Chan-Hilliard 方程解的稳定性质; Chen 和Zheng [10,11]等人在研究Chan-Hilliard 方程解的渐进性质方面做了大量的工作, 等等. 关于Chan-Hilliard 方程的数值解法方面的研究也越来越受到重视. 例如, Elliott 和Larsson [4]在1992 年考虑Cahn-Hilliard 方程的有限元方法, 并给出了有限元逼近的误差估计. 1998年, Chen 和Shen [5]提出Cahn-Hilliard 方程的谱方法格式, 并证明了该格式独有的高精度与数值稳定性. 2008年, He 和Liu [13]考虑 Cahn-Hilliard 方程的Galerkin 谱方法格式, 并证明了该格式的稳定性和收敛性. Feng 和Karakashian [15,16]等人在2007年提出采用局部间断Galerkin 方法(LDG)和全离散动态网格的间断Galerkin 方法研究Cahn-Hilliard 方程. 2016年, Wang 、Chen 和 Zhou [1721],采用混合有限元方法的后处理技术求解Cahn-Hilliard 方程, 且数值解继承了原有的质量守恒性质和能量递减性质, 最后还获得了相应的误差估计 以及负范数的误差估计等等. 本文在上述研究的基础上, 采用隐显BDF2方法研究Cahn-Hilliard 方程, 并讨论该格式是否保留了方程原有的质量守恒性质. 1问题和记号 首先考虑Cahn-Hilliard 模型方程: 收稿日期: 2018-03-24 基金项目: 国家自然科学基金项目(11771060, 11371074) 作者简介: 饶 婷(1994? ), 女, 湖南常德人, 硕士研究生. 主要研究方向: 微分方程数值解 通讯作者: 王晚生(1977? ), 男, 湖南株洲人, 教授. 主要研究方向: 微分方程数值解 第31卷 第2期 湖南理工学院学报(自然科学版) Vol.31No.2 2018年6月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Jun. 2018

fluent-有限体积法

第4章 有限体积法 1.1 积分方程 守恒方程的形式为积分方程。 ???+?=?Ω S S Ωq S ΓS d d grad d φφρφn n v ( 4-1 ) 4.1 控制体积 求解区域用网格分割有限个控制体积(Control V olumes, CVs )。同有限差分不同的是,网格为控制体积的边界,而不是计算节点。为了保证守恒,CVs 必须是不重叠的,且表面同相邻CVs 是同一个。 i. 节点为中心 CVs 的节点在控制体积的中心。先定义网格,任何找出中心点。优点:节点值代表CVs 的平均值,可达二阶精度。 ii. 界面为中心 CVs 的边界线在节点间中心线上。先定义节点,再划分网格。优点:CV 表面上的CDS 差分精度比上面方法高。 两个方法基本一样,但在积分时要考虑到位置。但第一个方法用得比较多。 节点为中心 界面为中心

∑?? =k S S k fdS fdS ( 4-2 ) - 对流:n v ?=ρφf 在垂直于界面的方向 - 扩散:n ?=φgrad Γf 在垂直于界面的方向 如果速度也是未知的,则要结合其它方程一起求解。 考虑界面e ,通过表面的总通量为: 1. 基于界面中心值 中间点定理:(midpoint rule) 表面积分为格子表面上的中心点的值和表面积的乘积。 e e e S e e S f S f fdS F e ≈==? ( 4-3 ) 此近似为2阶精度。 由于f 在格子界面没有定义值,它必须通过插值来得到。为了保证原有的2阶精度,插值方法也须采用2阶精度的方法。 2. 基于界面顶角值 当已定义角上的值时,2阶精度的方法还有: ()?+= =e S se ne e e f f S fdS F 2 ( 4-4 ) 3. 高阶精度近似 ()?++= =e S se e ne e e f f f S fdS F 46 ( 4-5 ) 4阶精度Simpson 法。 4.3 体积积分近似 ??≈?==Ω P P Ωq Ωq qd ΩQ ( 4-6 ) q p 为CV 中心节点值。高阶精度要求为节点的插值或形状函数来表示。如 ),(),(y x f y x q =。然后对体积积分。

有限差分和有限体积的 有限元等

有限差分和有限体积的有限元等 有限元法、有限差分法和有限体积法的区别 标签:函数有限元插值差分格式 有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函

流体计算理论基础讲解

流体计算理论基础 1 三大基本方程 连续性方程 连续性方程也称质量守恒方程,任何流动问题都必须满足质量守恒定律,该定律可表示为:单位时间内流体微元中质量的增加等于同一时间间隔内流入该微元体的净质量,其形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 可以写成: ()0div u t ρ ρ?+=? 其中ρ密度,t 为时间,u 为速度矢量,u ,v 和w 为速度矢量在x ,y 和z 方向上的分量。 若流体不可压缩,密度为常数,于是: 0u v w x y z ???++=??? 若流体处于稳态,则密度不随时间变化,可得出: ()()() 0u v w x y z ρρρ???++=??? 动量守恒定律 该定律可以表述为:微元体中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和,该定律实际是牛顿第二定律,按照这一定律,可导出x ,y 和z 三个方向上的动量守恒方程: ()()() ()()()yx xx zx x xy yy zy y yz xz zz z u p div uu F t x x y z u p div uv F t y x y z u p div uw F t z x y z τττρρτττρρτττρρ??????+=-++++? ?????????????+=-++++??????? ??????+=-++++???????? 式中,p 为微元体上的压力,xx τ,xy τ和xz τ等是因分子粘性作用而产生的作用在微元体表

面上的粘性应力τ的分量。x F ,y F 和z F 是微元体上的体力,若体力只有重力,且z 轴竖直向上,则:0,0x y F F ==,z F g ρ=-。 对于牛顿流体,粘性应力τ与流体的变形率成比率,有: x yy x 2();==()2();==()2();==()xx xy y xz z zz yz zy u u v div u x y x v u w div u x z x w v w div u x z y τμλττμτμλττμτμλττμ???? =++????? ???? =++????? ???? =++????? 其中,μ为动力粘度,λ为第二粘度,一般可取2 3 λ=- ,将上式代入前式中为: ()()()() ()()()()()u v w u p div uu div gradu S t x v p div uv div gradv S t y w p div uw div gradw S t z ρρμρρμρρμ???+=-+???? ???+=-+? ??????+=-+? ??? 其中: ()()/()/()/grad x y z =??+??+?? μ为动力粘度(dynamic viscosity),λ为第二粘度(second viscosity),一般可取: 2 3 λ=-(参考文献:,Boundary Layer Theory,8th ed,McGraw Hill, New York,1979)。u S ,v S 和w S 为动量守恒方程中的广义源项,u x x S F S =+,v y y S F S =+,w z z S F S =+,而其中 x S ,y S 和z S 表达式为: ()()()(())()()()(())()()()(()) x y z u v w S div u x x y x x x x u v w S div u x x y y x y y u v w S div u x z y z x z z μμμλμμμλμμμλ????????=+++????????????????? =+++????????????????? =+++????????? 一般来讲,x F ,y F 和z F 是体积力在x ,y ,z 方向上的分量。x S ,y S 和z S 是小量,对于粘性为常数的不可压缩流体,0x y z S S S ===,动量守恒,简称动量方程,也称N-S 方程。 关于牛顿体与非牛顿体的定义如下:

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

有限差分、有限元区别

有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 有限体积法(Finite V olume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

有限体积法介绍

有限体积法 1 有限体积法基本原理 上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。 在本章所要学习的有限体积法则采用了不同的离散形式。首先,有限体积法离散的是积分形式的流体力学基本方程: ?d q ds ds S S ? ??Ω Ω+??Γ=?φφρφn n v (1) 计算域用数值网格划分成若干小控制体。和有限差分法不同的是,有限体积法的网格定 义了控制体的边界,而不是计算节点。有限体积法的计算节点定义在小控制体内部。一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。 积分形式的守恒方程在小控制体和计算域上都是成立的。为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。 2 面积分的近似 采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。计算节点用大写字母表示,控制体边界和节点用小写字母表示。为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。 控制体边界上的积分等于控制体个表面的积分的和: ∑?? =k S S k fds fdS (2) 上式中,f 可以表示n u ρφ或n ??Γ φ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。 整个近似过程分成两步 第一步:用边界上几个点的近似积分公式 第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分: e e e e S e S f S fds F e ≈==? (3) 上式中e f 为边界中点出的函数值。近似为方格中心点的值乘以方格的面积。 三阶精度积分: e se ne S e S f f fds F e 2 +≈ =? (4) 四阶精度积分: e se e ne S e S f f f fds F e 6 4++≈ =? (5) 应该注意的是,采用不同精度的积分公式,在相应的边界点的插值时也应采用相应精度的插值函数。积分公式的精度越高,近似公式就越复杂。 3 体积分的近似 和面积分相似,体积分也有不同精度的近似公式 二阶精度积分公式 ?Ω≈==?P e S q S q qds Q e (6) 采用双二次样条函数 228272652423210),(y x a xy a y x a xy a y a x a y a x a a y x q ++++++++= (7)

有限差分,有限元,有限体积等的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍 1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。 对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高

有限差分,有限元,有限体积等离散方法的区别介绍

https://www.360docs.net/doc/ed7884104.html,/s/blog_501a61220100f9rs.html 有限差分,有限元,有限体积等离散方法的区别介绍 (2009-10-25 22:07:18) 转载 以下介绍是本人从网络上搜集的,供计算数学虫子参考。也许小木虫论坛有,我没搜索到。欢迎大家补充内容。 转自https://www.360docs.net/doc/ed7884104.html,/bbs/viewthread.php?tid=1618917&pid=16196206&page=1#pid16196206 1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分

数值分析之——有限体积法讲义

目录 目录 (1) 第8章有限体积法 (2) §8.1有限体积法的基本概念 (2) 8.1.1几个术语 (2) 8.1.2 控制体积的选择 (3) 8.1.3 结构与非结构网格 (5) §8.2 有限体积法构造 (7) 8.9-1 方程离散及基本格式 (7) 8.9-2物理特性要求 (11) 8.9-3 迎风型通量格式 (14) 8.9-3 TVD格式 (18) §8.3 非结构网格上的有限体积法 (23) 8.3.1 基本方程 (23) 8.3.2离散基本思路 (24) 8.3.3 数值通量近似 (25) 第9章在水力学问题中的应用 (29) §9.1渗流问题中的应用 (29) 9.1.1饱和—非饱和地下水运动基本控制方程 (29) 9.1.2方程的离散 (31) 9.1.3算例【陈扬硕士论文】 (33) §9.2二维明渠非恒定流计算 (38) 9.2.1水流基本方程 (38) 9.2.2控制方程的离散 (39) 9.2.3 计算实例 (53) §9.3三维紊动分层流计算 (64) 9.3.1紊动分层流基本方程 (64) 9.3.2 紊流模型及控制方程离散 (65) 9.3.3压力校正法 (66) 9.3.3边界条件 (69) 9.3.4盐度引起的负浮力流动 (71)

第8章有限体积法 有限差分方法是从描述各种物理现象的基本微分方程出发构造离散方程的,前文已经对其作了翔实、周密的论述。该部分将从基础算法入手分析介绍在计算流体力学界广为应用的有限体积法。基于有限体积法的实用算法在计算流体力学、计算传热学等领域得到了飞速发展 [1-3]。在水力学诸多问题,如水流物质输运模拟,水工水力学模拟以及溃坝洪水波演进等水流模拟中也得到了广泛应用。 §8.1有限体积法的基本概念 有限体积法,又称为有限容积法,它正是从物理量守恒这一基本要求出发提出的。这也是其受计算流体力学界广为称道和喜欢之处。其以守恒型的方程为出发点,通过对流体运动的有限子区域的积分离散来构造离散方程。有限体积法有两种导出方式,一是控制容积积分法,另一个是控制容积平衡法。不管采用哪种方式导出的离散化方程,都描述了有限各控制容积物理量的守恒性,所以有限体积法是守恒定律的一种最自然的表现形式。 该方法适用于任意类型的单元网格,便于应用来模拟具有复杂边界形状区域的流体运动;只要单元边上相邻单元估计的通量是一致的,就能保证方法的守恒性;有限体积法各项近似都含有明确的物理意义;同时,它可以吸收有限元分片近似的思想以及有限差分方法的思想来发展高精度算法。由于物理概念清晰,容易编程;有限体积法成为了工程界最流行的数值计算手段。 8.1.1几个术语 在进行数值计算时,要把计算区域划分成一系列互不重叠的离散小区域,然后在该小区域上离散控制方程求解待求物理量。在有限差分法中只涉及到网格节点的概念,而有限体积法因为物理解释需要,形成了以下几个常用几何要素的相关名词。

相关文档
最新文档