摄像头视频采集系统的设计与实现

摄像头视频采集系统的设计与实现
摄像头视频采集系统的设计与实现

摄像头视频采集系统的设计与实现

徐宏亮

2012.07.27

系统采用AD9883a芯片将摄像头视频信号数字化;然后利用FPGA芯片进行信号处理,增加行列场有效信号;最后,采用ADV7123芯片将数字信号转为模拟信号,在本地的显示器输出。

1.系统总体设计

图1所示为视频采集系统框图。

图1 VGA视频采集系统框图

1)VGA输入模块。将RGB模拟信号或YUV信号及行同步信号(H sync)、场同步信号(V sync)输入给A/D转换模块。

2)A/D转换模块。首先根据行、场同步信号确定采样的行频和场频,接着由行频和内部寄存器确定像素同步时钟,然后通过配置AD9883芯片内部的锁相环(PLL)产生同步时钟。该模块可将输入的VGA模拟信号转换为8bit×3路的数字视频信号,并通过一系列寄存器调整图像的采样效果。

3)FPGA转换控制模块。一方面FPGA通过I2C总线向AD9883a的寄存器写入控制信息;另一方面根据输入的行场同步信号生成行场有效信号。内部还有color bar,YUV2RGB, 串口三个模块。

4)D/A输出显示模块。该模块采用ADV7123芯片将8bit×3路RGB数字信号还原为模拟信号,并结合行、场同步信号构成VGA信号,供本地计算机显示输出。

2.A/D转换模块

本系统的A/D转换器采用AD9883a,该芯片专门用于采集模拟R,G,B信号,将其数字化显示或作为中间转换器件使用。该芯片具有采样精度为8bit×3路通道,最高采样率为140MSPS/s,300MB的模拟带宽,支持最高分辨率为SXGA (1280x1024),刷新率为75Hz的视频信号。基于AD9883a的电路可为高清电视提供良好的接口,或作为高性能视频设备的前端扫描转换器,它的内部结构如图3所示,主要包括A/D转换电路、时钟产生电路、同步信号产生电路、I2C总线

接口四个部分。

Rin Gin Bin R[7:0]G[7:0]B[7:0]

REF YPASS

A0

SDA SCL DATACK

USOUT SOGOUT

VSOUT HSYNC COAST CLAMP FILT

图2 AD9883的内部结构图

AD9883a 内部的寄存器通过I 2C 总线完全可编程,芯片按照寄存器设定的模式进行工作。如AD9883支持多种VGA 格式,但不能自动检测实现自适应,需要通过I 2C 接口进行寄存器配置,指定芯片采集的视频格式。

AD9883内部共25个寄存器,其中00H 和14H 为只读寄存器,15~18H 为测试用寄存器,01H~13H 为功能寄存器。 本系统采用的摄像头是索尼的H700,摄入视频格式是1080i/50。根据视频格式,FPGA 芯片对主要功能寄存器的配置如表1所示,具体见程序:

3.FPGA 设计

FPGA 以AD9883输出的像素时钟PCLK 作为全局同步时钟,频率为74.25Mhz 。

3.1 IIC 总线master 的设计

I2C,即Inter-Integrated Circuit ,是一个双线双向串行总线,提供了一种设备之间的数据交换的简单而有效的方法。这种总线最适合多设备之间需要临时的短距离通信的场合。IIC 是一种多向控制总线,也就是说多个芯片可以连接到同一总线结构下,同时每个芯片都可以作为实施数据传输的控制源。

I2C 总线上数据的传输速率有三种模式: ? 标准模式:100kbit/s ? 快速模式:400kbit/s ? 高速模式:3.4Mbit/s 本系统用的是标准模式。 3.1.1 iic 总线协议

通常标准的iic 通信包括4部分: 1) 开始信号 2) Slave 地址 3) 数据传输 4) 结束信号

SCL SDA

3.1.2 IIC 模块的结构

IIC 模块由控制单元和数据通道单元两部分组成。控制单元的状态机根据外部控制信号和数据通道的状态信号产生控制信号,组织、协调和同步数据通道单元的的操作。数据通道单元的i2c master byte 模块根据控制信号产生所需的SCL 、SDA 信号。结构框图如下:

SCL

SDA

图3 iic 模块结构图

控制单元使用一段式状态机进行定义,如图4所示。有限状态机的几个状态定义如下:

`define ST_IDLE 7'b000_0000; // 起始状态

`define ST_ADDR_W 7'b000_0001; // slave地址(用于写操作)

`define ST_BSADDR 7'b000_0010; // 基地址

`define ST_WRITE 7'b000_0100; // 写数据到寄存器

`define ST_ADDR_R 7'b000_1000; // slave地址(用于读操作)

`define ST_READ 7'b001_0000; // 从寄存器读数据

`define ST_READ1 7'b010_0000; // 读取最后一位数据

`define ST_STOP 7'b100_0000; // 结束信号

IIC模块在start信号有效后,开始向AD9883a写数据,从01H写到15H; 之后进入读取模式,读取01H到15H的寄存器数据,以检查数据是否写入和AD9883a目前状态。

图4 IIC通信状态机

i2c master byte模块通过把一byte数据操作分解为8个bit操作,通过把对应命令送到Bit command controller实现。具体流程如下:

3.2行场有效信号

hvref根据输入视频格式,产生行场有效信号。当视频输入信号时1080i时,参数配置如下:

parameter ROW_NUM 1920 //行有效数

parameter COL_NUM 540 //列有效数

parameter hre_st 159 //行有效起始计数

parameter vre_st 16 //列有效起始计数

parameter htotal 2640 //总行数

parameter vtotal 562 //总列数

3.3其他模块

1.color bar模块可以生成代替ad9883a输入的彩条信号,用于测试;

2.YUV2RGB模块,当AD9883a输入为YUV信号时,可以转化为RGB

信号;

3.Uart ctrl模块,用于将读取的AD9883a寄存器信号传输到pc机,方便调

试。

4.D/A输出显示设计

本设计采用ADV7123作为视频转换芯片,将数字视频信号转换为VGA模拟信号,供本地计算机显示输出。ADV7123具有三路高速、10位输入的视频DA 转换器,具有330Mhz的最大采样速度,与多种高精度的显示系统兼容,可充分满足本系统的转换需求。ADV7123芯片产生三路模拟输出后,结合FPGA传来的行、场同步信号完成视频的显示。

5. 小结

通过对摄像头视频采集系统的设计,加深了对iic总线的了解,认识到了dft 对设计程序调试和板级测试时解决遇到问题的重要性。另外,通过这次设计,也加强了自己的编程能力和调试经验。

【参考文献】

[1] Analog Devices.AD9883A/AD9883A Data sheet[EB/OL].2007. https://www.360docs.net/doc/ee6434435.html,/static /imported- files/data_sheets/ AD9883A.pdf.

基于LabVIEW的摄像头视频图像实时采集

基于LabVIEW的摄像头视频图像实时采集 指导老师:李茂奎 小组成员:李化松李雷李成康乐 [摘要] 介绍了USB摄像头视频图像实时采集系统的基本原理及组成。该系统以LABVIEW为核心,通过调用windows平台的OCX控件完成系统的数据采集任务。整个系统结构清晰,构思新颖,具有一定的可操作性。 [关键词] USB摄像头;LabVIEW;视频图像实时采集 一、设计任务 1设计目标 设计一个基于LabVIEW的USB摄像头视频图像实时采集系统 2设计基本要求及发挥 1.能够实时地采集视频,并在电脑上显示出来 2.可以进行录像,拍照 3.美化程序界面,添加同步时间数码管显示功能。 二、方案论证 1.视频采集部分 方案一:采用vb语言编写的ovfw.ocx控件实现视频的实时获取,优点是使用方便,设置简单明了,同步性好,无延迟。缺点是无法实现录像功能。 方案二:采用windows平台的ezvidcap.ocx控件实现视频的实时获取,可以实现录像功能,缺点是设置繁琐,程序复杂。 鉴于此,我们选用了方案二。 https://www.360docs.net/doc/ee6434435.html,BVIEW程序设计 采用usb接口的摄像头读入数据,并在程序中显示出来。利用控件本身的摄像录像功能实现数据的采集存储。 3.界面美化 增加了数码管样式的时间同步显示功能,同时增加了界面透明度可调旋钮,是界面产生玻璃状的美妙效果。 三、总体方案 1.工作原理: 利用现有的摄像头获取图像,通过调用windows平台的ezvidcap.ocx控件实现图像实时显示采集存储。 2.程序设计 LABVIEW从摄像头读入数据,通过空间调用,使图像在程序界面显示,并进行拍照录像等功能。

XX公司远程视频监控方案

XX燃气远程视频监控 设 计 方 案

书 设计单位: 设计人: 前言 本方案针对新澳燃气监控子系统的具体要求,我们特向用户推荐具有强大本地录像、检索和远程监控功能的,基于压缩格式的DS-7800系列硬盘录像机数字监控系统。产品采用稳定的嵌入式平台,用户界面友好。系统实时采集音视频信号(PAL制或NTSC制)压缩成标准的文件,并可在多个硬盘上实现循环录像。同时可存贮多个通道的音视频信号,并保证音视频的同步。支持各种网络传输介质,能在internet上做实时流畅传输,完全满足客户需求。 一、系统设计依据 1. GB50198-94(民用闭路监视电视系统工程技术规范)。 2. GA/T75-94(安全防范工程程序和要求)

3. GA/T70-94(安全防范工程费用概预算编制办法)。 4. GA/T74-94GA(安全防范系统通用图形符号) 5. GB50054-95(低压配电设计规范) 6. 中华人民共和国<<社会公共安全标准汇编1、2>> 7. 中华人民共和国<<国家电气工程施工规范汇编>> 8. GA/T27-1992<<中华人民共和国公安部行业标准>> 9. GA/T75-1994<<安全防范工程程序与要求>> 10. QB/T50198-1994<<民用闭路电视监控系统工程技术规范>> 11. QB/T9813-2000<<微型计算机通用规范>> 12. QB15207-1994<<视频入侵报警其标准汇编>> 13. 甲方的实际需求。 二、系统设计原则 本套监控系统的设计须严格按照甲方的要求且遵守以下原则: 先进性:本监控系统采用国际上技术先进、性能优良、工作稳定的监控设备,使整个系统的应用在相当长的一段时间内保持领先的水平。 可靠性:系统的可靠性原则应贯穿于系统设计、设备选型、软硬件配置到系统施工的全过程。只有可靠的系统,才能发挥有效的作用。 方便性:监控系统的操作应具有灵活简便,人机界面友好,易于掌握的特点,操作人员能够方便物进行使用及维护,使整个系统的功能得以最大实现。 扩展性:系统设计留有充分的余地,以便日后比较方便地进行系统扩充。为此,设备采用模块式结构,在需要时可随时补充。增加视频及其它控制模块,使系统具备灵活的扩展性。 三、集中监控系统需求分析: 随着网络通讯技术的发展,对监控管理系统提出了新的要求,集中监控的目标是充分利用现有的网络平台,在较小的投资下,实现监控系统的集中管理。完善原有的本地化安全防范手段,强化本地监控和远程管理中心两层安全防范机制,便于最大化的调动所有资源,处理突发事件,提高处警效率,规范下属网点日常工作。因此我们特向新澳燃气有限公司推荐

数字视频采集系统方案

预处理监控设备方案 概述 传统视频监控系统是通过摄像头等这些数据采集前端获取视频图片信息,仅提供视频的捕获、存储和回放等简单的功能;数据吞吐量大造成数据传输和服务器处理数据的压力大;需要大量的人力且准确度并不高;因此,智能视频监控系统应运而生。 本系统在视频采集前端搭建硬件平台,硬件平台中搭载图像处理算法,将摄像头传入的图片筛选出关键信息,通过物联网传入服务器中进行处理。利用算法提取关键信息可以减少传输的数据,从而能提高传输效率并且减小服务器的压力;同时在传输过程中把数据拆分成多个模块并行处理,也可大大提升传输处理速度,达到实时性、高效性的要求。 1硬件前端功能 1)采集图像信息; 2)实现算法对图像的灵活处理,并行高速传输; 3)提取、分类图像关键信息; 4)采用NB-IoT协议实现无线传输 2方案论述 2.1系统构成 图2.1是系统总体结构框图。

图2.1 系统总体结构框图 用CCD进行图像数据采集后,用视频解码芯片进行A/D转换,从模拟视频输入口输入的全电视信号在视频解码芯片内部经过钳位、抗混叠滤波、A/D转换、最后转换成BT.656视频数据流。 本系统中,对图像的处理分为两个阶段,第一个阶段为ZYNQ的双核ARM处理器部分通过算法对图像的处理;第二个阶段为ZYNQ的FPGA部分对数据的打包分类。为了尽可能提高性能并达到实时性要求,我们以ARM为中央处理核心,由FPGA实现系统控制。系统分为处理器模块、FPGA组模块和各总线接口模块等。其中处理器模块包含双核ARM、内存空间以及相应逻辑。处理器作为最小处理单元模块而存在,可以完成相应的处理子任务。 双核ARM作为从CPU做图像的处理(通过算法实现),两个处理模块在系统核心FPGA控制下并行运行。而FPGA作为系统中心,负责两个微处理器互相通信、互相协调以及它们与外界(通过主从总线和互连总线)的信息交换。同时,系统处理子任务可以由FPGA直接派发给处理器。灵活的FPGA体系结构设计是该系统有效性的保证。在实际应用中,可以根据系统的任务,通过配置FPGA控制两个微处理器按流水线方式运行,缩短系统的处理时间。另外,可以通过FPGA的配置扩展双ARM的工作方式,控制它们按MIMD方式并行处理同一输入图像。 最后经过处理过的图像通过NB-IoT协议发送到服务器端。 2.1.1 FIFO机制 为了加快ZYNQ的处理速度,本系统采用同步FIFO高速缓冲方案。FIFO即先进先出存储器, 也是一种专门用来做总线缓冲的特殊存储器。FIFO没有地址

多路视频数据实时采集系统设计与实现

多路视频数据实时采集系统设计与实现 常永亮王霖萱常馨蓉 ( 中国飞行试验研究院陕西西安 710089) ( 贵州省贵阳市花溪区贵州大学贵州省贵阳市 550025) ( 陕西省榆林市榆阳区榆林学院陕西省榆林市 719000) 摘要面对越来越多的实时视频采集、播放的应用,如何能更加方便的操控视频采集,保证流畅的播放效果,成为近几年实时媒体流的一个重要研究方向。本文介绍了视频数据的采集、记 录、编解码、多路视频数据间的切换,基于多网络协议组合下的多媒体流传输,动态切换四路视 频数据实时传输与播放,从而使远端操控、优质播放有了很大的提高。 关键词视频编解码、媒体流、RTP/RTCP协议、组播协议、TCP协议 0.引言 随着信息技术的不断发展,人们将计算机技术引入视频采集、视频处理领域,用计算机处理视频信息和网络传输数字视频数据在很多领域已有广泛的应用,飞机试飞中现如今也大量的应用。 针对目前分散在多处试飞现场视频传入监控大厅后监测设备多而分散的问题,提出了将多处试飞现场视频引入监控大厅后用一台高性能服务器管控,客户端通过网络请求服务器端检测关心的现场场景,达到集中管理优化监控的目的。 视频图像采集的方法较多,基本可分为2大类:数字信号采集和模拟信号采集。前者采用图像采集芯片组完成图像的采集、帧存储器地址生成以及图像数据的刷新;除了要对采集模式进行设定外,主处理器不参与采集过程,我们只要在相应的帧存储器地址取出采集到的视频数据即可得到相应的视频数据,这种方法,无论在功能、性能、可靠性、速度等各方面都得到了显著的提高,但成本高。后者采用通用视频采集卡实现图像的采集,并用软件进行实时编码,其特点是数据采集CPU占用率较高,对处理器的速度要求高,成本低、易于实现,能够满足某些图像采集系统的需要。此系统使用第二类视频采集方法。 如何将各处试飞现场视频信号通过VGA持续接收?传统方式是将模拟的VGA信号引到指定显示器显示,这样即浪费资源且多占空间。多路视频实时采集使用的是VisionRGB- PRO板卡(英国Datapath公司),此卡可同时实时采集两路视频数据,基本达到了本系统的要求,再用一台VGA矩阵切换器将前端数据源的四路视频数据进行人为切换采集,用H.264格式编解码,保存为H.264格式,通过RTP/RTCP 与组播协议将编码后视频流传输给请求客户端,而且可在客户端通过TCP协议选择关心的VGA采集通道。

基于ARM嵌入式的视频采集系统的设计

摘要 基于ARM嵌入式技术的视频采集以其灵活性、高集成性、便捷性等诸多优点必将取代传统的有线视频采集。针对目前视频监控的实际需求,结合嵌入式技术、图像处理技术,设计并实现了一种可靠性高、成本低的嵌入式视频采集及编码系统。它是视频监控的前端,是无线视频监控系统的一个子系统。系统选用SAA7113H进行视频采集与压缩,选用S3C44BOX微处理器作为核心板的控制器,利用S3C44BOX的硬件编解码模块进行编码。 关键词:ARM嵌入式,视频采集,SAA7113H,S3C44BOX

目录 1绪论 (1) 1.1课题研究的背景 (1) 1.2课题研究的现状与发展前景 (1) 1.3课题研究的意义 (2) 1.4课题主要内容 (2) 2ARM微处理器概述 (3) 2.1ARM介绍 (3) 2.2ARM处理器主要的特点 (3) 2.3ARM微处理器应用 (4) 3系统方案设计 (4) 3.1系统的解决方案 (4) 3.2视频采集 (5) 3.3视频压缩 (6) 3.4基于ARM的嵌入式系统开发平台 (6) 3.5系统总体设计结构图 (7) 4系统硬件设计 (8) 4.1系统硬件结构 (8) 4.2系统硬件各模块设计 (9) 4.3PCB设计 (10) 4.3.1PCB布局 (10) 4.3.2PCB布线 (11) 5系统软件设计 (12) 5.1系统初始化程序设计 (12) 5.1.1ARM初始化过程 (12) 5.1.2SAA7113H初始化配置 (14) 5.2应用程序设计 (17) 6结论 (18) 参考文献 (19)

1绪论 1.1课题研究的背景 近年来,随着通信技术、微电子技术和计算机技术的飞速发展,网络带宽和存储容量得以大幅度的提高,而电子、通信、广播之间愈来愈紧密的相互交叉联系,世界进入了全数字化网络时代。与此同时,数字多媒体技术也得到了迅速发展,已逐渐渗透至人们生活、工作和学习的各个方面,改变着人们传统的生活方式。人们对视频会议、可视电话、数字电视广播等多媒体技术的需求越来越广泛。然而,在多媒体技术[1]中,尤其是数字视频领域,其信息数据量庞大,对处理能力和存储容量的要求极高,如不进行有效的压缩编码则会给通信和传输带来极大的困难,从而无法满足人们的需求。 1.2课题研究的现状与发展前景 根据图像处理技术[2]发展的不同阶段,视频采集[3]系统大致可分为三个阶段: 1)模拟视频采集系统 模拟视频采集系统一般由图像摄像部分、系统控制部分(视频矩阵切换、云台和镜头控制等)和显示记录部分组成,模拟视频采集系统一般采用模拟方式传输,传输距离较短,主要应用于小范围内的视频图像采集。 2)数字化本地视频采集系统20世纪80年代,随着数字化技术的发展,图像采集的方式出现了由模拟处理方式向数字处理方式的转变。人们开始使用PC机来处理图像信号,借助计算机强大的数据处理能力与显示器的高清晰显示度,通过视频采集卡将视频信号采集到计算机中,并显示在显示器上,从而大大提高了图像的画质。基于PC的采集系统一般在采集现场有若干个摄像机、各种检测、报警探头与数据设备,通过各自的传输线路,汇接到多媒体终端上,多媒体终端通过通信网络,将信息传到一个或多个监控中心。基于PC的多媒体采集系统功能较强,但功耗高,需要有专人值守。 3)嵌入式网络视频采集系统

USB摄像头视频采集与QT界面显示要点

USB摄像头视频采集与Qt界面显示 一.Q t界面制作 1.新建Qt工程 启动Qt Creator,新建一个Qt Gui应用。 单击File选择New File or Project出现以下界面: 选择Qt Gui Application,之后选择好工程与路径名,其他默认,一直到设置Class information(类信息)时,Class name设为Widget, Base name选择QWidget,其他默认。设置好这些后,其他默认,直到工程设置结束。如下图所示:

2. 修改ui界面 打开Widget.ui,进入可视化设计界面。默认情况中间的主设计区下只有一个Widget的对象。由于USB摄像头采集到的图像需要显示到一个QLabel的部件上,从右侧的部件列表的“DisplayWidget”中选择“Label”部件拖动到中间;此外,我们需要两个按钮,一个用于启动和终止视频数据的保存,一个用于以后的视频文件的压缩。从右侧的”Buttons”中两次选择”Push Buttion”部件并拖动到Widget中。 从上图可以看出,对象Widget下已经添加了一个label部件,两个push button部件。右上角Object与Class的关系是:Object对应的物体是属于Class对应的类,反映了Qt的继承关系。 接下来设置上面四种部件的属性,Widget的属性按照下面图示设置,其中geometry设置为[(0,0),650*550]说明界面左上角的坐标位于原点,大小为650*550;在window name这一项设置的是你的界面的名字,我设置为USB_YUV_Camera。

IP远程视频监控系统解决方案

IP远程视频监控系统解决方案 作为最近几年崛起的新产品,网络视频服务器已经成为第三代全数字化视频监控系统的核心产品并日益被工程商和用户所熟知。但是,在基于宽带ADSL网 络的应用中,如何低成本地实现在动态 IP地址环境下监控中心对监控前端的实时访问,仍是困扰诸多工程商和系统集成商的难题之一。本文将就此问题提出完 整的解决方案。 随着网络技术的快速发展,宽带的普及以及宽带使用成本的日趋低廉,利用网络作为传输媒介的远程视频监控也得到日益普及的应用。 目前,利用网络作为传输媒介的远程视频监控系统的核心技术产品可分为数字硬盘录像机和网络视频服务器两大类。数字硬盘录像机通常被行内人士称为第二代准数字化监控系统产品,主要以在本地局域网监控应用为主。在远程网络视频监控应用领域,以数字硬盘录像机为核心的监控系统由于无法实现多路全实时监控、集成性差等缺陷,正逐步被基于网络视频服务器的第三代全数字化监控系统所取代。 网络视频服务器能够充分满足客户对远程视频监控方面的需求,在技术性能 上体现了目前视频监控领域中数字化和网络化两大趋势,具有高可靠性、高集成 度的鲜明特点,可广泛应用于诸如对电力无人驻守变电站、电信机房、银行、道路交通、学校、海关、连锁营业场所的远程视频监控以及本地局域网络方式下的监控。原则上,在任何网络通达的地方(包括企业专网和以ADSL接入为代表的 INTERNE公网),通过网络视频服务器均可以实现远程同步的视频监控应用。 除了诸如电力、电信、银行等大企业的远程视频监控应用会考虑利用其自身的专线网络媒介外,中小规模企业多会采用 ADSL宽带网络作为传输媒介,尤其是那些视频数据采集网点较多而且较分散的应用环境情况。 、基于INTERNET公网的远程监控基本原理 以通过ADSL接入INTERNET公网为例。各监控前端网络视频服务器读取相连的

交通视频采集系统

交通视频采集系统 第一章建设背景 1.1 视频监控系统现状 1.1.1交通应急指挥中心系统职能 威海市交通运输局作为威海市重要的政府主管部门,主要负责:全市公路、水路和地方铁路交通行业管理和运输组织管理,协调道路、水路运输与其它运输方式的衔接;组织实施上级下达的重点物资运输、紧急客货运输和军事运输。作为市交通运输局下属事业单位,威海市交通应急指挥与信息服务中心将负责本次视频采集系统的建设,必将进一步改善城市整体交通环境,提高城市交通管理水平、提升城市形象和品味。 1.1.2 视频在应急指挥中的作用 威海市交通应急视频监控系统通过视频监控布局,可实时反馈监控区域的图像信息,有利于在执法工作中提高现场即时办公效率,提高事件处理的真实性、准确性、实时性及宏观调配能力。 威海市交通应急指挥与信息服务中心的视频采集系统主要负责通过统一视频监控系统对全市二级以上客运站、客运站周边违章行为高发区域、站外广场等客流密集地进行管理。工作人员可通过图像采集来了解各站点的实时状况,实时传输的图像要保证清晰度高、连贯性高,不能出现拖尾、马赛克等情况,保证交通各职能部门的管理员在第一时间掌握实时的、清晰的高品质视频图像。系统一方面要做到事件即时处理,另一方面也要为交通管理职能部门保留数据信息,这就要求在图像实时采集的同时,根据具体需求进行录像存储。 1.2 视频监控系统存在的问题 部署分散,监控系统资源共享性差。交通、公安、交警、公

路、港航等相关部门的各类监控设备部署较为分散,由于之前缺乏实现信息互联互通的技术手段,加之跨域查阅视频的审批手续繁冗,视频信息共享性差,不能对应急事件即时处理、即时响应。 覆盖面广,但仍存在监控的“死角”。在汽车客运站、码头、机场、旅游集散地、景区景点等违章行为高发地、其他人员密集地仍存在诸多应急指挥监控死角,存在打击黑车黑导、即时处理应急事件的隐患,需增加相应监控点位,以确保应急事件的即时指挥与处理。 1.3 视频监控系统升级建设的必要性 1.3.1信息共享缺乏可信验证技术支持 通过最新的高清识别及可信验证技术,较好地解决部署分散,信息共享性差问题,盘活视频监控系统的存量资产,发挥投资建设的应有效应。本次视频采集系统将通过与公安、交警、公路、港航等相关部门协调,计划接入920路视频资源,主要包括市区主要路段、重点路口、治超点、主要道路、高速公路等,进一步提高各系统视频监控资源在交通应急指挥中心中的作用。 1.3.2 监控死角需自建视频设备扫除 为进一步扫除安全隐患,规交通运营秩序,威海市交通应急指挥中心将增加部分自建视频,解决监控死角问题,进一步提升“文明城市”形象的含金量。威海市交通应急指挥中心计划新增视频80路,主要分布在全市二级以上汽车客运站,包括威海站、荣成站、文登站、乳山站、石岛站以及威海北站汽车站,监控点位包括安检、进站口、出站口、站外广场、车站周边等违章行为高发地、其他人员密集地。本次主要建设容有:社会监控的接入、新建前端设备、立杆(含基础施工、路面开挖恢复等)、借杆、防雷地网施工、取电工程等,根据技术功能要求来进行整体综合

旅游景区远程视频监控系统

旅游景区远程视频监控系统解决方案

旅游景区网上视音频直播系统研究与实现 随着社会的发展和人民生活水平的提高,我国旅游业已经越来越大众化,旅游人数与日俱增,游客面对如此之多的景区,如何选择满意的景区;以及景区面对如此之多的旅客,又如何能把握商机吸引更多游客?旅游者的需求越来越个性化、多样化,而旅游企业也需要有越来越完善的对外宣传方式来提高了旅游景区的国际知名度,提高对游客服务质量,增加与游客的互动性。近几年来网络媒体的快速发展为景区宣传提供了媒介,而网上音视频直播直观、实时、互动等特点得到了国际知名景区的青睐,在旅游景区中采用网上直播系统,世界各地的游客可以在家中对景区的各种景点风光、会议现场、庆祝活动实时观看,提高游客来现场游览的兴趣。本文结合浙江省科技计划重大项目(2004C13034)“旅游景区网络化综合管理与服务平台研究及应用示范”,以组建第三代旅游网站、增加景区与旅客信息互动、扩大景区对外宣传力度以及提高景区国际知名度为目的,利用计算机领域的流媒体、人工智能、移动Agent、对等网络等理论和技术进行了相关的研究与工程实现工作,其具体工作如下: (1)对该领域的国内外研究现状进行了分析,总结网上音视频直播系统目前存在的技术难题和问题,并阐述本文研究的背景、意义和主要内容。 (2)对网上直播系统进行需求分析,设计了旅游景区网上直播系统的硬件构架和软件构架。硬件设计包括系统硬件总体框架设计以及硬件设备的选取。软件设计实现以下4个功能:音视频采集、数据压缩、流媒体服务和客户端播放。 (3)由于网上直播系统的客户端并发数多并可能处于不同的ISP运营网络下,而音/视频是大流量数据,对网络带宽要求高,音视频直播网的结构直接影响整个系统效率。本课题根据需求分析,研究了基于树形结构流媒体应用层的组网模式,将移动Agent理论引入到流媒体应用层组播网的实现中,以P2P协议作为直播网传输方式,提出了一种基于移动Agent的自组织直播网,使得组播网拓扑结构能够根据网络变化自动重建,流媒体服务的服务内容和格式可以在不需要用户人为参与的情况下动态增加和减少,还能根据一个区域内多个用户的实际情况进行综合优化每个转发节点的负荷。 (4)设计开发了旅游景区历史上大型活动等视音频资料的IPTV网上点播系统,景区多媒体信息点播系统采用VOD方式运行,最后并给出了流媒体服务端和客户端的实现。 景区在线平台(实时视频)解决方案-在线景区 景区风光或城市形象作为旅游产品具有非实体性、无转移性、不规范性、无贮存性、强敏感性的特点。良好的景区风光或城市形象营销策略能为景区或城市吸引更多的游客,带来巨大的商机,推动景区或城市的健康持续发展,因此其营销的重要性是毋庸置疑的,但其当前的营销理念还有些落后陈旧,终端营销模式主要还是依托于比较传统的手段和方法,尚未做到与时俱进。 营销理念落后,内容陈旧

监控摄像头方案_范文

监控摄像头方案 本文是关于范文的监控摄像头方案,感谢您的阅读! 监控摄像头方案(一) 一、学校监控系统需求分析 学校网络监控的主要作用有: (1)学校门岗监控摄像头:对进出校门的人员、车辆进行记录和统计,便于事后追踪和查询。 (2)教学区监控:对教学区的教学秩序以及进出教学区的人员、物流进行记录和监控,通过突发事件的录像,提高处置突发事件的能力。同时兼顾考试时的考场监控。 (3)学校宿舍区监控摄像头:对进出宿舍区的人流、物流进行记录和统计,保护学生的人身、财产不受侵害。 (4)实验室监控摄像头:对进出实验室的人流、物流进行监控和记录,夜间无人时实施布防。 (5)通过对以前的模拟监控系统进行网络化改造,使之能够方便地进行全网管理。 VIP网络视频管理系统,包含VIP6000、VIP6000A系列网络视频服务器,以及KingVision视频管理软件,可以为用户构建一套完整的IP视频监控解决方案。 二、监控摄像机组网 学校网络监控系统从结构上划分,一般可分为三级,从下往上包括: (1)门岗、路口、宿舍区、教学区、图书馆等监控点 (2)各校区监控中心:负责对该校区的监控点进行管理和监控 (3)校监控中心:负责对各校区的监控点进行集中管理和调度 网络人远程监控软件下载——功能最强大的远程控制软件 传统的学校监控采用的是模拟化的解决方案,即利用模拟摄像头对现场图像进行采集,通过视频线或者光端机进行近远距离传输,在监控中心通过模拟矩阵、DVR 等设备进行信号提取、线路切换、图像存储、上监视器。这种解决方案的主要问题在于:

(1)各校区的监控系统彼此分散、独立,无法适应多级网络架构下的集中管理 (2)浪费了传输资源,布线、施工成本高 (3)基于模拟视频的传输易受干扰,难以保证图像传输质量 (4)无法实现远程监控及调度功能 学校采用网络化的视频监控技术,就可以解决模拟监控存在的以上问题,大大提高高校监控效率和管理水平,同时也大大提高了监控系统整体投资的经济性。 三、各监控点: 在各监控点处,根据环境需要,配置不同型号的固定摄像机或者云台摄像机,并将摄像机的视频线接入网络视频服务器的输入端,视频服务器的另一端的RJ45 口就近接入学校网中。这样就完成了对视频信号的采集、编码和压缩,并进入学校网进行传输。如果监控点比较分散,可以使用单路网络视频服务器VIP6000,如果监控点处摄像机比较集中,可以使用多路网络视频服务器VIP6004 或者VIP6504、各监控点只需在设备安装时对设备IP 等信息进行初始设置,此后无需对设备进行设置和管理。该管理功能由各校区监控中心或更上一级的监控中心统一负责。 四、校区监控中心 校区监控中心负责本校区监控设备的统一配置、维护、监控。在校区监控中心,利用KINGVISION 视频管理客户端软件,可以实现对前端设备的配置、图像监控、录像查询、回放、云台、镜头控制等功能。 KINGVISION视频管理系统支持分布式多服务器存储技术。分为主数据库服务器和分路存储服务器。主数据库服务器负责存储管理所有VIP6000设备的配置信息,管理所有用户权限认证信息以及向网络用户提供Web Server服务。分路存储服务器可以根据设置选项管理保存它所负责的监控点的音视频录像数据,并提供这些监控点音视频流的转发服务。考虑到对学校网络资源的占用,本方案中我们建议在各校区监控中心对监控图像进行统一的录像和保存,校监控中心可以远程查询、调用各校区的录像信息。 在校区监控中心,可以利用PC 式监视器对前端监控点的图像实时监控,也

监控摄像头方案_计划方案.doc

校监控中心负责对全校各区视频图像的监控和调度。基于网络化的视频监控技术,可以使得校监控中心的 调度能力大大加强。在校监控中心的管理主机上,装有KINGVISION 视频管理软件,不但可以对任意一个 监控点的信息进行实时监控、查询、回放,还可以实现统一的用户管理、设备管理、故障管理、存储管理 等功能,真正实现分布式监控,集中化管理。 在监控中心的服务器,还负责对用户统一进行帐号生成、授权、认证,杜绝非法用户对网络的入侵和非法 监视。利用VIP6000R视频解码器,可以将以太网传输过来的图像进行解码,接入模拟监视器或者电视墙进 行监控。

监控摄像头方案(二) 一、概述 计算机数字电视监控系统,是集实时图像监控和录像、图像技术处理、报警信号处理、多媒体技术和数字硬盘录像为一体的综合监控管理系统,它的建立和使用,使安保人员和主管人员不必亲临现场,就可将现场情况尽收眼底,极大地提高了工作效率,并能事后查找当时发生的情况,为领导决策提供准确、及时、有效的信息服务。 本方案主要就设计要求、设计依据进行了确认,同时根据要

求和依据对现场位置、器材和控制室的配置和实现的目的进行组合设计来完成方案的设计主体,同时确定系统的主要设计依据、技术指标,并对机房的控制台根据实际需要进行设计。根据设计我们对产品的选用要求、功能进行描述,同时就方案的实施估算整个工程费用。 二、设计要求 1、采用了当今世界最先进的计算机全数字化压缩监控系统和传统的监控系统相结合,形成一套合理的安保闭路电脑监控系统。 2、安装在超室的摄像机,能较清楚的看到现场人员的状况。

3、系统对图像记录应采用计算机数字硬盘进行全实时录像,清晰而无遗漏。 4、系统具有可扩展性。系统可靠性高、寿命长、维修方便。 三、设计依据 《工业电视系统工程设计规范》(GBJ115-87)

视频采集系统功能手册

关于建筑工地DS-9000视频采集系统操作介绍

(一)建筑工地监控主要操作功能介绍: 本地监控: a.1/4/6/8/9/16画面预览,预览通道顺序可调 b.预览分组切换、手动切换、或自动轮巡预览,自动轮巡周期可 设置 c.预览电子放大 d.屏蔽指定的预览通道 e.视频移动侦测、视频丢失检测、视频遮档检测、视频输入异常 检测 f.视频隐私遮盖 g.云台控制、预置点、巡航、轨迹设置、3D跟踪控制 录像与回放设置: a.录像触发:手动、定时、报警、移动侦测报等 b.按事件(报警输入、移动侦测、智能报警)查询录像文件 c.按通道号、录像类型、文件类型、起止时间等条件进行录像资 料的检索和回放 d.录像文件倒放、暂停、快放、慢放、前跳、后跳鼠标拖动定位 e.同步回放 资料备份: https://www.360docs.net/doc/ee6434435.html,B 、eSATA盘进行备份 b.按文件进行批量备份 c.回放时进行剪辑备份 d.报警与异常管理: e.统一管理设备与IP通道的视频遮挡报警、视频移动侦测、视 频丢失报警 f.各种报警可触发弹出报警画面、声音警告等 g.系统运行异常时自恢复 其它功能: a.三级权限用户管理,管理员可创建多个操作用户并设定其权限,

权限可细化到通道 权限说明 “本地配置” 本地查看日志:查看系统的日志、系统信息。 本地参数设置:设置参数、恢复默认参数、导入/导出参数。 本地通道管理:可以“启用”/“禁用”模拟通道,增加/删除IP通道。 本地高级管理:可以进行硬盘管理(初始化、设置硬盘属性)、升级系统程序、清除IO报警输出。 本地关机/重启:可以进行重启/关机操作。 “远程配置” 远程查看日志:远程查看记录在硬盘录像机上的日志。 远程参数设置:远程设置参数、恢复默认参数、导入/导出参数。 远程通道管理:远程“启用”/“禁用“模拟通道,增加/删除IP通道。 远程控制串口:建立透明通道,发送/接收RS232/RS485端口的数据。 远程控制本地输出:可以发送远程按键。 语音对讲:可发起对硬盘录像机的语音对讲。 远程请求报警上传、报警输出:远程可以布防(即要求将报警/异常状态发送给远程客户端)和控制设备报警输出。 远程高级管理:远程进行硬盘管理(初始化、设置硬盘属性)、升级系统程序、清除IO报警输出。 远程关机/重启:远程进行重启/关机操作。 “通道配置” 远程预览:远程预览各通道的现场画面,此权限细化到每一个通道。 本地手动录像:本地手动启动/停止录像,此权限细化到每一个通道。 远程手动录像:远程手动启动/停止录像,此权限细化到每一个通道。 本地回放:本地回放硬盘录像机上记录的录像文件,此权限细化到每一个通道。 远程回放:远程回放、下载硬盘录像机上记录的录像文件,此权限细化到每一个通道。 本地云台控制:本地控制云台,此权限细化到每一个通道。 远程云台控制:远程控制云台,此权限细化到每一个通道。 本地备份:本地备份硬盘录像机上记录的录像文件,此权限细化到每一个通道。具有本地备份权限的通道一定具有本地回放权限。 b.完备的操作、报警、异常及信息日志记录和检索 客户端应用网络功能: a.分级用户管理(二级),管理员可创建多个操作用户并设定其 权限,权限可细化到通道 权限说明: 1)网络预览——权限可细化到通道 2)云镜控制——权限可细化到通道 3)视频调节——权限可细化到通道

监控摄像头方案

监控摄像头方案(一) 一、学校监控系统需求分析 学校络监控的主要作用有: (1)学校门岗监控摄像头:对进出校门的人员、车辆进行记录和统计,便于事后追踪和查询。 (2)教学区监控:对教学区的教学秩序以及进出教学区的人员、物流进行记录和监控,通过突发事件的录像,提高处置突发事件的能力。同时兼顾考试时的考场监控。 (3)学校宿舍区监控摄像头:对进出宿舍区的人流、物流进行记录和统计,保护学生的人身、财产不受侵害。 (4)实验室监控摄像头:对进出实验室的人流、物流进行监控和记录,夜间无人时实施布防。 (5)通过对以前的模拟监控系统进行络化改造,使之能够方便地进行全管理。 VIP络视频管理系统,包含VIP6000、VIP6000A系列络视频服务器,以及KingVision视频管理软件,可以为用户构建一套完整的IP视频监控解决方案。 二、监控摄像机组 学校络监控系统从结构上划分,一般可分为三级,从下往上包括: (1)门岗、路口、宿舍区、教学区、图书馆等监控点 (2)各校区监控中心:负责对该校区的监控点进行管理和监控 (3)校监控中心:负责对各校区的监控点进行集中管理和调度 络人远程监控软件下载——功能最强大的远程控制软件 传统的学校监控采用的是模拟化的解决方案,即利用模拟摄像头对现场图像进行采集,通过视频线或者光端机进行近远距离传输,在监控中心通过模拟矩阵、DVR 等设备进行信号提取、线路切换、图像存储、上监视器。这种解决方案的主要问题在于:(1)各校区的监控系统彼此分散、独立,无法适应多级络架构下的集中管理 (2)浪费了传输资源,布线、施工成本高 (3)基于模拟视频的传输易受干扰,难以保证图像传输质量 (4)无法实现远程监控及调度功能 学校采用络化的视频监控技术,就可以解决模拟监控存在的以上问题,大大提高高校监控效率和管理水平,同时也大大提高了监控系统整体投资的经济性。 三、各监控点: 在各监控点处,根据环境需要,配置不同型号的固定摄像机或者云台摄像机,并将摄像机的视频线接入络视频服务器的输入端,视频服务器的另一端的RJ45 口就近接入学校中。这样就完成了对视频信号的采集、编码和压缩,并进入学校进行传输。如果监控点比较分散,可以使用单路络视频服务器 VIP6000,如果监控点处摄像机比较集中,可以使用多路络视频服务器VIP6004 或者VIP6504、各监控点只需在设备安装时对设备IP 等信息进行初始设置,此后无需对设备进行设置和管理。该管理功能由各校区监控中心或更上一级的监控中心统一负责。 四、校区监控中心 校区监控中心负责本校区监控设备的统一配置、维护、监控。在校区监控中心,利用KINGVISION 视频管理客户端软件,可以实现对前端设备的配置、图像监控、录像查询、回放、云台、镜头控制等功能。 KINGVISION视频管理系统支持分布式多服务器存储技术。分为主数据库服务器和分路存储服务器。主数据库服务器负责存储管理所有VIP6000设备的配置信息,管理所有用户权限认证信息以及向络用户提供Web Server服务。分路存储服务器可以根据设置选项管理保存它

卫星传输远程视频监控系统方案

卫星传输远程视频监控系统方案 1.概述 所属矿山分别搭建iPSTAR双向站,在公司总部建立监控中心,通过北京iPSTAR关口站,基于卫星网络和互联网络构建视频监控网络。 网络拓扑结构为星型网,以关口站为中心辐射全国,远端站到关口站是卫星一跳。 系统拓扑图如下: 2.部署方案 远端站 双向远端站搭建在煤矿现场需要进行远程监控的地点,主要设备包括: iPSTAR双向天线 iPSTAR室外单元(包括功率放大器、低噪声变频放大器、L波段电缆等) iPSTAR室内单元(iPSTAR终端,具备一个Ethernet接口) HUB(将iPSTAR的Ethernet接口从一个扩展至多个) 视频服务器(将视频数据转换成编码,以IP格式封装转发给iPSTAR室内单元) 摄像机、镜头、云台、云台解码器等 可根需要据配置音响和麦克一套,用来与中心站语音交流 视频服务器具体参数参见《产品展示》--“IP网络视频产品”。 典型配置如下图: 监控中心 中心站搭建在煤炭公司,主要设备包括: 计算机服务器1台(高端配置计算机也可以) 交换机 软件防火墙 也可以上监视大屏,可以考虑根据投资情况考虑 3.实现功能 电子地图 系统支持电子地图访问,以空间数据库为基础,将应用数据与地图有机结合,提供强大的空间分析和查询功能,丰富的表达方式直观地显示结果。 分层结构管理

本系统采用多级用户管理和分级授权访问的机制。用户分成两类,一类是系统管理员,拥有系统级权限,可以添加、删除和修改用户,进行用户的分配和管理,可以对系统进行安装、配置和检查,保障整个系统的正常运行;另一类是操作用户,在操作用户中设置权限,用户根据权限执行相应的监控范围。 现场的实时视频监控和采集 通过配置高质量的紅外线摄像机,对监控点的监控达到在正常光照条件或夜间光照条件较差甚至是0照度的情况下仍能进行高质量的视频采集以及音频的实时采集。 对关键区域进行24小时全天候监控,现场画面实时显示在本地和监控中心的屏幕上。 发生报警后,联动前端镜头对报警区域进行实时监视。 监视区域内图像的动态变化,检测监视区域内的物体运动。 监控信息的存储和备份 前端摄像的音视频信号经过模数转换,编码压缩,传送到监控中心的中心管理服务器,经视频解码器解码后,给硬盘录像机,录制的文件方式保存在硬盘中,支持长时间连续不间断的录制和存储。 报警信息的采集和联动管理 可以管理报警器的输入节点。当前端有报警发生时,在监控中心,系统会以声音方式通知值班人员,并在监控软件上弹出报警摄像机画面。系统具有同时处理多任务能力,对于多个地方的同时报警情况也可以及时处理。 全方位云台及周边设备的与控制 远程监控系统可对摄像机镜头进行光圈、焦距、景深距离的控制操作,不仅对云台可做全方位控制,而且可以对模拟量、开关量进行实时准确的探测,并做出相应的反应。 现场指挥 挥可以利用监控终端与现场进行实时双向语音对讲,将现场图像转发到指定的分控点,以实现共同分析、决策的实战需求。 设备在线管理 对编码器、转发服务器等关键设备提供注册、检测的管理能力,凭借系统强大的网络管理能力,系统能直观、方便地检测设备和线路的工作状态。

视频采集系统

数字图象处理技术在电子通信与信息处理领域得到了广泛的应用,设计一种功能灵活、使用方便、便于嵌入到监控系统中的视频信号采集电路具有重要的实用意义。 在研究基于DSP的视频监控系统时,考虑到高速实时处理及实用化两方面的具体要求,需要开发一种具有高速、高集成度等特点的视频图象信号采集监控系统,为此监控系统采用专用视频解码芯片和复杂可编程逻辑器件(CPLD)构成前端图象采集部分。设计上采用专用视频解码芯片,以CPLD器件作为控制单元和外围接口,以FIFO为缓存结构,能够有效地实现视频信号的采集与读取的高速并行,具有整体电路简单、可靠性高、集成度高、接口方便等优点,无需更改硬件电路,就可以应用于各种视频信号处理监控系统中。使得原来非常复杂的电路设计得到了极大的简化,并且使原来纯硬件的设计,变成软件和硬件的混合设计,使整个监控系统的设计增加柔韧性。 1 监控系统硬件平台结构 监控系统平台硬件结构如图1所示。整个监控系统分为两部分,分别是图象采集监控系统和基于DSP主监控系统。前者是一个基于SAA7110A/SAA7110视频解码芯片,由复杂可编程逻辑芯片CPLD实现精确采样的高速视频采集监控系统;后者是通用数字信号处理监控系统,它主要包括:64K WORD程序存储器、64K WORD数据存储器、DSP、时钟产生电路、串行接口及相应的电平转换电路等。 监控系统的工作流程是,首先由图象采集监控系统按QCIF格式精确采集指定区域的视频图象数据,暂存于帧存储器FIFO中;由DSP将暂存于FIFO中的数据读入DSP的数据存储器中,与原先的几帧图象数据一起进行基于H.263的视频数据压缩;然后由DSP将压缩后的视频数据平滑地从串行接口输出,由普通MODEM或ADSL MODEM传送到远端的监控中心,监控中心的PC机收到数据后进行相应的解码,并将还原后的视频图象进行显示或进行基于WEB的广播。 2 视频信号采集监控系统 2.1 视频信号采集监控系统的基本特性 一般的视频信号采集监控系统一般由视频信号经箝位放大、同步信号分离、亮度/色度信号分离和A/D变换等部分组成,采样数据按照一定的时序和总线要求,输出到数据总线上,从而完成视频信号的解码,图中的存储器作为帧采样缓冲存储器,可以适应不同总线、输出格式和时序要求的总线接口。 视频信号采集监控系统是高速数据采集监控系统的一个特例。过去的视频信号采集监控系统采用小规模数字和模拟器件,来实现高速运算放大、同步信号分离、亮度/色度信号分离、高速A/D变换、锁相环、时序逻辑控制等电路的功能。但由于监控系统的采样频率和工作时钟高达数十兆赫兹,且器件集成度低,布线复杂,级间和器件间耦合干扰大,因此开发和调试都十分困难;另一方面,为达到精确采样的目的,采样时钟需要和输人的视频信号构成同步关系,因而,利用分离出来的同步信号和监控系统采样时钟进行锁相,产生精确同步的采样时钟,成为设计和调试过程中的另一个难点。同时,通过实现亮度、色度、对比度、视频前级放大增益的可编程控制,达到视频信号采集的智能化,又是以往监控系统难以完成的。关于这一点,在监控系统初期开发过程中已有深切体会[1]。 基于以上考虑,本监控系统采用了SAA7110A作为视频监控系统的输入前端视频采样处理器。 2.2 视频图象采集监控系统设计 SAA7110/SAA7110A是高集成度、功能完善的大规模视频解码集成电路[2]。它采用PLCC68封装,内部集成了视频信号采样所需的2个8bit模/数转换器,时钟产生电路和亮度、对比度、饱和度控制等外围电路,用它来替代原来的分立电路,极大地减小监控系统设计的工作量,并通过内置的大量功能电路和控制寄存器来实现功能的灵活配置。

摄像机方案

.摄像机方案 既然从事安防行业,首先我们来了解摄像机方案,摄像机方案简单说就是指DSP和CCD的搭配(根据DSP的型号和高解或低解的CCD搭配)。摄像机方案目前都弄得神神秘秘的,资料也不多见,相信大家一听说摄像方案就觉得头大,是高手才能掌握的知识,市场也鱼目混珠。现在先弄清楚摄像机的结构:如下图: 图中的每个部分就是一个零器件,组合起来就是一个整体,一个可用的“机器”,也就是一个“方案”。下面解析各个部分的功能: CCD:CCD就相当与人的眼睛,它的主要工作就是把光影像转成电子信号。CCD上有感光点,每一点就像一颗太阳能电池,被光照到后会产生电能,依照光的照度不同,会产生不同的电能。 V-Driver:CCD里头每一点被光照到产生电能,那如何取出来?就是靠这颗V-DRIVER,它会产生不同的脉波,把CCD每点的讯号“打”出来。我们通常说是CCD的驱动。 CDS/AGC:CCD出来的讯号,在这颗晶片内做处理后,送进DSP(数字信号处理器)。 DSP:DSP是DigitalSignalProcessor的缩写,也就是数字信号处理器,主要针对算法运算而产生的一种MCU,不只是在摄像机设计中用到DSP,现在好多行业都用到DSP,特别是在算法方面,DSP的应用是相当广的,是比较流行的MCU。从DS/AGC出来的模拟信号传送到DSP进行处理,顺便说一下,DSP是数字信号处理器,怎么能处理模拟信号呢?因为DSP内部有一个A/DConverter(模数转换器)把模拟转换成数字后再进行运算,在摄像机中主要是进行颜色,亮度,白平衡等运算。运算后又把信号转换成模拟信号输出,也就是视频输出了。 T.G:控制整个处理过程快慢用的,一般都包含在DSP里的,就不多说了。以上部分再加上镜头,就是整个摄像机了。 了解了摄像机结构后,现在来讲讲摄像机的方案,方案主要是针对DSP来说的,把DSP和CCD搭配起来就是我们所说的方案了,目前摄像机市场上应用比较多,占主流地位的是SONY和SHARP生产的DSP。SONY主要有以下几种方案: (1)SS-1;CXD2163BR。 SONY公司推出这颗DSP之前已推出了CXD2163,当初把CXD2163这个方案叫做SS-1,用CXD2163做出来的机子一直有问题,所以不久就推出CXD2163BR,用来代替CXD2163,方案人们也一直叫做SS-1。 SS-1可接高解CCD(ICX408AK/超低照度ICX258AK(NTSC)和ICX409AK/超低照度ICX259AK(PAL)),还可以接低解CCD(ICX404AK(NTSC)和ICX405AK (PAL))(注意:以上CCD尺寸是1/3,还有好多型号的CCD没有列出,可参

相关文档
最新文档