关于化学分析中存在的误差分析

关于化学分析中存在的误差分析
关于化学分析中存在的误差分析

关于化学分析中存在的误差分析

摘要:文章主要论述的是有关化学分析中存在的误差的问题。首先,文章对化学分析中存在的误差进行了简要的分析,继而在此基础上从表示方式以及允许误差两方面对分析结果进行了阐述,最后,文章又提出了提高分析准确度的对策,希望能够为我国化学分析的准确性提高具有参考价值的意见,从而使我国化学领域的发展水平能够得到整体上的提高,鉴于化学领域与社会诸多行业之间的联系,这一研究对于社会各领域的发展都具有重要价值。

关键词:化学;误差;分析

在社会各领域当中,化学的运用均十分普遍,在化学分析过程中,其所应用的分析方法为绝对定量的方法,所谓的化学分析主要指的是通过对物质的化学反应的进行观察,并通过计算以及实验的过程去确定其所消耗的试剂量以及反应的量,从而完成对化学物质的分析的一个过程,在理想的状态下,上述过程均是不受环境以及人为等因素的影响的,但在实际操作过程中,受上述情况的影响,分析结果必定会出现误差,这是正常的现象,同时也是化学分析工作中所允许的,在这一基础上,提高分析的准确性是当前必须要进行研究的一个课题。

一、化学分析中的误差分类

在化学分析中,由于实验环境以及实验操作器具与操作人员等的不同,出现误差是必然的,总的来说,化学分析中所包含的误差有很多种,按照误差产生的原因及其特征可以将其分为不同的种类,具体而言,主要包括以下几种:首先,系统误差是化学分析中的一个主要误差。所谓的系统误差主要指的是由于固定的原因所引起的误差,这一误差往往具有一定程度的规律性,可以出现分析结果较正常结果高的现象,也可以出现分析结果较正常结果低的现象。误差的产生并不是可以通过实验的次数去控制的,在每一次实验当中,其结果的偏差也会存在差距。

其次,所谓的随机误差主要指的是由于偶然的原因对化学分析的误差所造成的影响,由于这一原因所造成的误差其结果是波动的,但其波动均会保持在一定的范围之内,但需要注意的是,即使在一定的范围内,其结果也是无法被预测的。环境误差以及湿度误差均属于随机误差中的重要部分,这一误差可以避免,但并不能完全避免。

最后,所谓的粗差主要指的是由于人为原因所造成的误差,造成这一误差产生的原因除了操作的不规范之外,还包括对试剂的选择错误等很多种,由于认为原因所造成的误差是可以避免的,在操作过程中,必须要严格按照操作规定步骤进行,这样才能最大程度的避免误差的出现。

二、分析结果

以下文章主要分析结果的表示方式以及允许的误差两个角度对分析结果的有关问题进行了阐述,主要体现在以下方面:

(一)表示方式

在分析结果中,准确度以及精密度是必须要保证的两点问题。首先,所谓的准确度是对分析结果以及误差的一个综合评价,通常情况下,准确度需要用相对误差来表示。所谓的精密度主要指的是对分析结果以及误差的一个较为细致的评价,通常情况下,在对精密度进行分析的过程中,都需要将多次的结果结合起来进行比较,其结果往往用偏差来表示。在实验室以及化学分析人员等外在条件相同,只有分析时间不同的条件下,针对同一个实验进行分析而得出的结果必定会存在差距,而各结果互相之间的符合程度便被称为重复性。与上述实验条件相反,在分析方法相同的情况下,分析人员以及时间等均不同,而此时所得出的分析结果也是不同的,此时,各结果互相之间的符合程度便被称为再现性。通常情况下,精密度以及准确度两者是会存在差距的,换句话说,精密度较高的实验,其准确度不一定能够得到保证,这一点必须要得到有关人员足够的重视。

(二)允许误差

实验过程中是允许出现一定的误差的,但允许的误差也

是在一定的范围内的。通常情况下,所允许的误差需要在化学规律的范围内进行,同时,针对样品的不同以及所需要测试的项目的不同,实验方式之间也会存在差距,且对于实验中诸多方面的要求也不尽相同。对于误差的记录与分析需要通过对公差的计算来完成,通常情况下,公差的数值的得出均是需要在多次实验的情况才能完成的,单次的实验不仅无法求出公差,同时也无法从根本上满足化学分析的要求。为了使分析的结果能够达到合格的标准,可以通过两次测定来完成,将两次测定的结果进行对比,如果两者之间的差距在允许的范围内,那么这一公差便可以被采纳,而如果两者之间的差距超出了允许的范围,那么这一公差则被看作是不可以被采纳的。允许的公差差距范围针对每一个领域的不同而有所差别,以工业领域为例,工业领域对于公差结果的误差是允许在百分之几的范围内的,这一情况下的误差均属于可以接受的范围。

三、提高分析准确度的对策

分析的准确度的提高即意味着化学分析过程中误差的减小,因此,为了使化学分析的结果更加具有可信性以及可利用性,必须要通过相应对策的实施去提高分析的准确度,具体而言,可以通过以下措施的实施去使上述目标能够达成:

(一)减少测量误差

在测量过程中,误差很容易产生,而一旦这一过程中出现误差,那么整个实验的结果的准确度必定会受到影响,因此,有必要通过减少测量中出现的误差去使实验的准确度得到保证。针对这一点,在实验过程中规范操作方式十分必要,通常情况下,同一个实验可以通过不同的方法去完成,而此时,为了尽可能的避免测量中误差的存在,可以应用多种方法去完成测量。这一方法从理论上讲是能够为化学分析结果的准确度的保证提供价值的,但在行业内,这一方法的应用还存在一定的争议,在具体应用过程中,工作人员需要慎重考虑。

(二)增加平行测定的次数

大量的实践发现,平行测定的次数与实验结果的准确度存在关联,两者呈正相关。平行测定的次数越多,其所得出的实验结果的准确度也就越高,而在这样的情况下,实验结果的可信度也就能够得到最大程度的保证。需要注意的是,想要通过这一手段去增加实验结果的准确度,有必要增加实验次数,实践证明,将实验次数控制在两次到四次的范围内,对于准确度的保证具有重要价值。每一次实验都会得出具体的结果,工作人员需要做的便是对实验结果进行总结,并通过求平均值的方式去使实验误差能够达到最小。在此过程中,需要强调的是,两到四次实验指的是人均的数量,每一个工作人员所做的平行测定实验的次数的总数不能小于8,

也就是说,平行测定的次数必须要大于8次,这样才能使实验结果的准确度得到更大程度的保证。

(三)选择合适的分析方法

不同的分析方法其得出的具体结果也不尽相同,每一次化学实验以及分析,其所适用的方法也是存在差距的,因此,为了使准确度能够得到最大程度的保证,有必要选择合适的方法去做好分析工作。对此,在实践过程中,可以通过将每一种实验结果进行对比的方式选择出最佳的分析方法,这对于今后的化学分析结果准确性的保证具有重要价值。

结束语:

通过上述文章可以看出,在化学分析当中,误差的出现会导致实验结果出现较大的偏差,误差的存在的被允许的,但要在一定的范围内。将为化学实验的误差能够降到最低能够为结果的可利用性提高更大程度的保证,这对于我国化学领域的长远发展具有重要价值。为降低误差,以更好的保证试验结果的准确度,必须要通过相应的措施的实施才能完成。减少测量误差以及增加平行测定的次数的方式均能够为准确度的提高提供基础性的保证,因此,在具体的化学分析过程中,工作人员一定要对其加以重视。

参考文献

[1] 吴南群.关于消除化学分析系统误差的校正系数法[J].化工地质,1984(01):154-158.

[2] 曹晓娟.关于颗粒分析试验的误差分析和对策研究[J].铁道工程学报,2014(02):155-184.

[3] 占永革;龚剑;黄湘燕.关于化学分析回收率不确定度评估公式的思考[J].广州大学学报(自然科学版),2014(03):234-235.

分析化验中的误差

第一节准确度和精密度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多次测定,但是测定结果总不会是完全一样。这说明在测定中有误差。为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。 一、真实值、平均值与中位数 (一)真实值 物质中各组分的实际含量称为真实值,它是客观存在的,但不可能准确地知道。 (二)平均值 1.总体与样本 总体(或母体)是指随机变量x i 的全体。样本(或子样)是指从总体中随机抽出的一组数据。 2.总体平均值与样本平均值 在日常分析工作中,总是对某试样平行测定数次,取其算术平均值作为分析结果,若以x 1,x 2,x 3, …,x n 代表各次的测定值,n 代表平行测定的次数,x _ 样本平均值,则 样本平均值不是真实值,只能说是真实值的最佳估计,只有n x n x x x x n i i n ∑==+???++=12 1

在消除系统误差之后并且测定次数趋于无穷大时,所得总体平均值(μ)才能代表真实值 μ=n x n i i ∑=1lim 在实际工作中,人们把“标准物质”作为参考标准,用来校准测量仪器、评价测量方法等,标准物质在市场上有售,它给出的标准值是最接近真实值的。 (三)中位数(x M ) 一组测量数据按大小顺序排列,中间一个数据即为中位数x M 。当测定次数为偶数时,中位数为中间相邻两个数据的平均值。它的优点是能简便地说明一组测量数据的结果,不受两端具有过大误差的数据的影响。缺点是不能充分利用数据。 二、准确度与误差 准确度是指测定值与真实值之间相符合的程度。准确度的高低常以误差的大小来衡量。即,误差越小,准确度越高;误差越大,准确度越低。 误差有两种表示方法———绝对误差和相对误差: 绝对误差(E)=测定值(x)-真实值(T) %100T T RE ?-=) 真实值()真实值()测定值()相对误差(x 由于测定值可能大于真实值,也可能小于真实值,所以绝对误差和相对误差都有正、负之分。

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

分析化学中的误差及其数据处理

分析化学中的误差 定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。这表明,在分析过程中,误差是客观存在,不可避免的。因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。 2.6.1 误差与准确度 分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。误差又可分为绝对误差(absolute error )和相对误差(relative error )。绝对误差(E )表示测定值(x )与真实值(x T )之差,即 E =x - x T (2-13) 相对误差(E r )表示误差在真实值中所占的百分率,即 %100T r ?= x E E (2-14) 例如,分析天平称量两物体的质量分别为 g 和 g ,假设两物体的真实值各为 g 和 g ,则两者的绝对误差分别为: E 1= g E 2= g 两者的相对误差分别为: E r1=%1006381 .10001.0?-= % E r2=%1001638 .00001.0?-= % 由此可见,绝对误差相等,相对误差并不一定相等。在上例中,同样的绝对误差,称量物体越重,其相对误差越小。因此,用相对误差来表示测定结果的准确度更为确切。 绝对误差和相对误差都有正负值。正值表示分析结果偏高,负值表示分析结果偏低。 定量分析误差产生的原因 误差按其性质可以分为系统误差(systematic error )和随机误差(random error )两

TEMUNGB化学分析中不确定度评定与表示方法规程

一、应用范围和领域 本规程给出了定量化学分析中评估和表述不确定度的详细指导。也适应于仪器校准中不确定度的评定,它是基于“ISO测量不确定度表述指南”〔〕中所采用的方法,适用于各种准确度和所有领域—从日常分析到基础研究、经验方法和合理方法。需要化学测量和仪器校准并可以使用本规程原理的一些常见领域有: (1)制造业中的质量控制和质量保证; (2)判定是否符合法定要求的测试; (3)使用公认方法的测试; (4)标准和设备的校准; (5)与标准物质研制和认证有关的测量活动; (6)研究和开发活动。 本规程未包括化学分析样品的取样和制样操作中不确定度评估。 本规程说明了应该如何使用从下列过程获得的数据进行测量不确定度评估: (1)实验室作为规定测量程序〔〕使用某种方法,对该方法所得分析结果的已识别来源的不确定度影响的评价; (2)实验室中规定的内部质量控制程序的结果; (3)为了确认分析方法而在一些有能力的实验室间进行的协同试验的结果; (4)用于评价实验室分析能力的水平测试项目的结果; (5)本系统内部比对样品的定值; (6)标准和设备的校准结果。 二、引用标准 2.1JJF 1059-1999《测量不确定度评定与表示》 2.2《化学分析中不确定度的评估指南》――中国实验室国家认可委员会 三、术语和定义 3.1不确定度(uncertainty) [测量]不确定度定义 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。 注: 1此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 2测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,也可用标准差表征。称为A类评定。另一些分量,则可用基于经验或其他信息的假定概率分布计算。也可用标准差表征,称为B类评定。 3测量结果应理解为被测量之值的最佳估计,全部不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 4不确定度恒为正值。当由方差得出时,取其正平方根。

检测系统中测量不确定度评定及合格判定方法

自动化检测系统中测量不确定度评定及合格判定方法 摘要:自动化检测系统以自动检测软件为中心,自动检测软件完成仪器设置,数据读取,各种计算,进行合格判定等多种工作。讨论自动检测软件中测量不确定度的计算方法及其在合格判定中的应用。 关键词:自动化检测不确定度合格判定 引言 随着传感器技术以及微电子技术的迅速发展和广泛使用,国内外厂家不断推出带有IEEE488和RS232通讯接口可自动控制的仪器,广泛应用于科研、生产及计量测试领域。自动化检测系统具有始终如一的高准确度,减少人为干预、在短时间内进行更多的测量、大量工作的能力、保持检测基本观点一致性、大量的数据管理能力、工作人员的高效率使用等优点,在各计量单位得到越来越广泛的应用。 自动化检测系统以自动检测软件为中心,自动检测软件完成仪器设置,数据读取,各种计算,进行合格判定等多种工作。讨论自动检测软件中测量不确定度的计算方法及其在合格判定中的应用。 1.测量不确定度的评定 1.1测量不确定度的评定 自动检测软件中的测量不确定度评定应按照《JJF1059-1999 测量不确定度的表示及评定》进行。步骤如下图所示。各步骤在设计自动检测软件时固化在自动检测软件中。在执行自动检测软件时对采集到的数据进行计算。得到测量不确定度。 自动检测系统一般工作在实验室中,环境条件较好,电磁干扰较弱。被测量定义完整、可复现。不确定度来源一般考虑被测量观测值的随机变化,标准

设备(稳定性、分辨力、检测证书)、传递标准(分辨力、短期稳定性)等因素的影响,尽量做到不遗漏、不重复。 1.2 不确定度的A类评定 按照《JJF1059-1999 测量不确定度的表示及评定》要求,应根据有关准则(如格拉步斯准则)判断并剔除测量数据中可能存在的异常值。在自动检测系统中,对某一测量值进行多次测试一般不进行换线等人工操作。而且实验室环境条件较好,温度相对较稳定,电磁干扰较少,在此条件下,测量值变化一般为被校仪器本身的影响。因此在自动检测软件中不应该包含异常值剔除。可包含通断判断模块,判断测试线连接是否正常。 根据实际选择合适的实验标准偏差计算方法,一般采用贝塞尔法进行计算。

第3章分析化学中的误差与数据处理(精)

第三章 分析化学中的误差与数据处理 一、选择题: 1.下列论述中错误的是 ( ) A .方法误差属于系统误差 B .系统误差具有单向性 C .系统误差又称可测误差 D .系统误差呈正态分布 2.下列论述中不正确的是 ( ) A .偶然误差具有随机性 B .偶然误差服从正态分布 C .偶然误差具有单向性 D .偶然误差是由不确定的因素引起的 3.下列情况中引起偶然误差的是 ( ) A .读取滴定管读数时,最后一位数字估计不准 B .使用腐蚀的砝码进行称量 C .标定EDTA 溶液时,所用金属锌不纯 D .所用试剂中含有被测组分 4.分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称 A: 0.1000克以上 B: 0.1000克以下 C: 0.2克以上 D: 0.2克以下 5.分析实验中由于试剂不纯而引起的误差叫 ( ) A: 系统误差 B: 过失误差 C: 偶然误差 D: 方法误差 6.定量分析工作要求测定结果的误差 ( ) A .没有要求 B .等于零 C .在充许误差范围内 D .略大于充许误差 7.可减小偶然误差的方法是 ( ) A .进行仪器校正 B .作对照试验 C .作空白试验 D .增加平行测定次数 8.从精密度就可以判断分析结果可靠的前提是( ) A .偶然误差小 B .系统误差小 C .平均偏差小 D .标准偏差小 9.下列结果应以几位有效数字报出 ( ) A .5 B .4 C . 3 D .2 10.用失去部分结晶水的Na 2B 4O 7·10H 2O 标定HCl 溶液的浓度时,测得的HCl 浓度与实际浓度相比将 ( ) A .偏高 B .偏低 C .一致 D .无法确定 11.pH 4.230 有几位有效数字 ( ) A 、4 B 、 3 C 、 2 D 、 1 12.某人以差示光度法测定某药物中主成分含量时,称取此药物0.0250g ,最后计算其主成分含量为98.25%,此结果是否正确;若不正确,正确值应为( ) A 、正确 B 、不正确,98.0% C 、不正确,98% D 、不正确,98.2% 13.下列情况中,使分析结果产生负误差的是( ) 1000) 80.1800.25(1010.0-?

二组分纤维混纺产品定量化学分析的不确定度评定_以涤棉混纺产品为例_金红芳

2011年12月 第4期第6页 doi :10.3969/j.issn.1674-2346.2011.04.002 二组分纤维混纺产品定量化学分析的不确定度评定 ——以涤棉混纺产品为例 金红芳 陈伟峰吴玲飞 摘 要:依据测量不确定度评定与表示的相关要求,本实验室对二组分纤维混纺产品定量测试进行不确定度评定。 检测和评定以涤棉混纺产品为典型代表,按照GB/T 2910.1-2009和GB/T 2910.11-2009进行定量成分测试,并参照CNAS CL01:2006、CNAS GL05:2006和JJF1059-1999等标准规范要求评定检测结果的测量不确定度。经分析,测试结果的不确定度主要来源于测试操作过程中的随机效应和卤素水分测定仪分辨率及校准产生的系统效应。 关键词:二组分纤维混纺产品;涤棉混纺产品;定量分析;测量不确定度中图分类号:TS101.3 文献标志码:C 文章编号:1674-2346(2011)04-0006-05 ————————————收稿日期:2011-09-14 第一作者简介:金红芳,女,奉化出入境检验检疫局,助理工程师(浙江宁波315500) 浙江纺织服装职业技术学院学报测量不确定度对检测实验室测试结果的可信度、可比性和可接受性具有重要影响。因此中国合格评定国家认可委员会(CNAS )要求检测实验室给予测量不确定度评估以足够的重视,满足客户、消费者和其他各方的需求。二组分纤维产品含量分析是本实验室的主要纺织品检测项目之一,对该项目进行测量不确定度评估有助于深入了解该项目的精确度、主要偏差来源等情况,以便有针对性地实施检测质量控制措施。我们选取该类项目中最典型、样品量最大的涤棉混纺产品,按照GB/T 2910.1-2009《纺织品定量化学分析第1部分:试验通则》和GB/T 2910.11-2009《纺织品定量化学分析第11部分:纤维素纤维和聚酯纤维的混合物(硫酸法)》实施检测,同时参照CNAS CL01:2006《检测与校准实验室认可准则》、CNAS GL05:2006《测量不确定度要求的实施指南》和JJF1059-1999《测量不确定度的评定与表示》等标准和规范的要求评定测量不确定度。1测试原理、设备和方法1.1化学测试原理 用硫酸把纤维素纤维从已知干燥质量的混合物中溶解去除,收集残留物,清洗、烘干和称重,用修正后的质量计算其占混合物干燥质量的百分率。由差值得出纤维素纤维的百分含量。其测试程序为:定性分析—定重—化学溶解—剩余纤维洗涤烘干冷却—剩余纤维称重—计算—结果。1.2主要测试设备 卤素水分测定仪:梅特勒-托利多HG-63P ,称量最小分度值0.001g ;电子分析天平:赛多利斯CPA224s ,最小分度值0.1mg ;水浴锅:上海一恒DK-8AB ;烘箱:上海一恒DHG-9240A 。1.3定量测试主要步骤1.3.1取样

分析化学中的误差和分析数据的处理

第一章 分析化学中的误差和分析数据的处理 教学要求: 1、了解误差的意义和误差的表示方法 2、了解定量分析处理的一般规则 3、掌握有效数字表示法和运算规则 重点、难点: 误差的表示方法 随机误差的正态分布 有效数字及运算规则 教学内容: 第一节 分析化学中的误差 一、误差:测定结果与待测组分的真实含量之间的差值。 二、分类: ㈠、系统误差:由某些确定的、经常性的原因造成的。在重复测定中,总是重复出现,使测定结果总是偏高或偏低 1、特点: 重现性:在相同的条件下,重复测定时会重复出现 单向性:测定结果系统偏高或偏低 可测性:数值大小有一定规律 2、原因: ① 方法误差 ② 仪器和试剂误差 ③ 操作误差 ㈡、随机误差(偶然误差):有不固定的因素引起的,是可变的,有时大,有时小,有时正,有时负。 1、特点:符合正态分布 2、规律:对称性:绝对值相同的正、负误差出现的几率相等;单峰性:小误差出现的几率大,大误差出现的几率小。很大的误差出现的几率近于零;有界性:随机误差的分布具有有限的范围,其值大小是有界的,并具有向μ集中的趋势。 第二节 测定值的准确度与精密度 以准确度与精密度来评价测定结果的优劣 一、准确度与误差: 1、准确度:真值是试样中某组分客观存在的真实含量。测定值X与真值T相接近的

程度称为准确度。 测定值与真值愈接近,其误差(绝对值)愈小,测定结果的准确度愈高。因此误差的大小是衡量准确度高低的标志。 2、表示方法: 绝对误差:E a ===x-T(如果进行了数次平行测定,X为平均值) 相对误差:E r === 100×T E a % 3、误差有正、负之分。 当测定值大于真值时误差为正值,表示测定结果偏高; 当测定值小于真值时误差为负值,表示测定结果偏低; 二、精密度与偏差 1、精密度:一组平行测定结果相互接近的程度称为精密度 2、表示方法:用偏差表示 如果测定数据彼此接近,则偏差小,测定的精密度高; 如果测定数据分散,则偏差小,测定的精密度低; ⑴、绝对偏差、平均偏差和相对平均偏差: 绝对偏差:d i =x i -(i=1,2,…,n) ? x 平均偏差:d =n d d d n ±±±…21=∑=n i i d n 1 1 相对平均偏差:d r = 100×x d % ⑵、标准偏差和相对标准偏差 总体:一定条件下无限多次测定数据的全体 样本:随机从总体中抽出的一组测定值称为样本 样本容量:样本中所含测定值的数目称为样本的大小或样本容量。 若样本容量为n,平行测定数据为x 1、x 2、 …、x n ,则此样本平均值为x=∑i x n 1 当测定次数无限多时,所得的平均值即总体平均值μ x n ∞ →lim =μ 当测定次数趋于无限时,总体标准偏差σ表示了各测定值x 对总体平均值 μ的偏离程度: σ= n x i ∑?2 )(μ σ2称为方差

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述化学分析是检验检疫工作中使用频率最高的实验方法之一。对化学分析中测量不确定度的评定已进行过广泛的论述。这里,用较为系统的观点对化学分析中测量不确定度评定的一般方法进行讨论,以便为实际工作提供参考。 在总的范围内,化学分析是相对于物理测量等其他测量方法而言的。而在测量的化学方法中,化学分析是相对于仪器分析而言的,这里所涉及的化学分析是指后一种情况。它包括了很多经典的分析方法,如重量法、容量法。同时,为了扩展化学分析方法的分析范围和提高分析水平,可能还包括了某些复杂的样品处理过程等方面。 在不确定度的评定中,化学分析中许多通用的要素的处理方法可以是一致的,本文大体归纳了这些要素,并将它们作为测量不确定度的分量分别考察,探讨各分量不确定度的评定方法及这些分量之间的相互关系。 1.化学分析中的通用分量及其不确定度的评定方法1.1 化学分析中的测量方法和被测量 重量法和容量法是化学分析中的两类基本方法,根据被测量的不同,会采用不同的分析原理或条件,如容量法中有滴定分析、气体容量分析等方法。 但是,化学分析方法具有共同的特点,其被测量都是样品中某特

定元素的含量或纯度。对于含量分析来说,其最终目的是得到该元素的含量值,一般采用直接测量和计算的结果;而纯度是将相关或规定的元素含量扣除后的结果。无论最终结果使用那种单位或形式表示,都可以表示为式1的形式: ()n 21X ,X ,X f Y Λ=, (1) 其中,X i 为对被测量Y 有影响的输入量。这些输入量可以是直接 测量得到的,也可以是从其他测量结果导入的。 1.2 化学分析中涉及的通用分量及其与被测量的关系 大多数情况下,化学分析方法中采用手工方法,对化学分析结果的不确定度产生影响的因素很多,大体可以分为质量、体积、样品因素和非样品因素等。质量因素和样品因素存在于所有化学分析中,而容量分析中必然涉及体积因素。由于测量原理的不完善及测量过程的不同,在化学分析中还可能存在非样品因素。 只要能够明确地给出被测量与对其不确定度有贡献的分量之间的关系(如式1),则这些分量怎样分组以及这些分量如何进一步分解为下一级分量并不影响不确定度的评定。因此,可以将这些通用分量与被测量的关系采用图1所示的因果图表示。

第3章分析化学中的误差与数据处理

第3章分析化学中的误差与数据处理 思考题 1.准确度和精密度有何区别和联系? 答:区别:准确度与真实值相联系,描述测定结果与真实值相接近程度,准确度高,表示分析结果与真实值相接近。精密度描述分析数据之间相互接近的程度,精密度好,表示分析数据之间彼此接近良好。 联系:准确度高,一定需要精密度好;但精密度好,不一定准确度高。即精密度是保证准确度的先决条件,精密度低,说明所测结果不可靠,当然其准确度也就不高;如果一组数据的精密度很差,虽然由于测定次数多可能使正负偏差相抵消,但已失去衡量准确度的前提。 2.下列情况各引起什么误差?如果是系统误差,应如何消除? a.天平零点稍有变动; b.过滤时出现透滤现象没有及时发现; c.读取滴定管读数时,最后一位数字估测不准; d.标准试样保存不当,失去部分结晶水; e.移液管转移溶液之后残留量稍有不同; f.试剂中含有微量待测组分; g.重量法测定SiO2时,试液中硅酸沉淀不完全; h.砝码腐蚀; i.称量时,试样吸收了空气的水分; j.以含量为98%的金属锌作为基准物质标定EDTA溶液的浓度; k.天平两臂不等长。 答:a. 可引起偶然误差,适当增加测定次数以减小误差。 b. c. 可引起偶然误差,适当增加测定次数以减小误差。 d. 会引起试剂误差,是系统误差,应做对照实验。 e. 可引起偶然误差,适当增加测定次数以减小误差。 f. 会引起试剂误差,是系统误差,应做空白实验。 g. 会引起方法误差,是系统误差,用其它方法做对照实验。 h.会引起仪器误差,是系统误差,应校正法码。 i.会引起操作误差,应重新测定,注意防止试样吸湿。

j.会引起试剂误差,是系统误差,应做对照实验。 k.会引起仪器误差,是系统误差,应标准天平校正。 3.下列数值各有几位有效数字? 0.007,7.026,pH=5.36, 6.00×10-5,1000,91.40,p K a=9.26 答:有效数字的位数分别是:0.007——1位;7.026——4位;pH=5.36——2位; 6.00×10-5——3位;1000——有效数字位数不确定;91.40——4位;p K a=9.26——2位。 5.某人以示差示分光光度法测定某药物中主成分含量时,称取此药物0.0350g,最后计算其主成分含量为97.26%。问该结果是否合理?为什么? 答:该结果不合理。因为试样质量只有3位有效数字,而结果却报出4位有效数字,结果的第3位数字已是可疑数字。最后计算此药物的质量分数应改为97.3%。 8.用加热法驱除水分以测定CaSO41/2H2O中结晶水的含量。称取试样0.2000g,已知天平称量误差为±0.1mg。试问分析结果应以几位有效数字报出? 答:通过计算可知,0.2000g试样中含水0.0124g,只能取3位有效数字,故结果应以3位有效数字报出。 习题 1. 根据有效数字运算规则,计算下列算式: (1)19.469+1.537-0.0386+2.54 (2) 3.6×0.0323×20.59×2.12345 (3) 45.00(24.00 1.32)0.1245 1.00001000 ?-? ? (4)pH=0.06,求[H+]=? 解:a. 原式=19.47+1.54-0.04+2.54=23.51 b. 原式=3.6×0.032×2.1×101×2.1=5.1 c. 原式=45.00(24.00 1.32)0.124545.0022.680.1245 0.1271 1.00001000 1.00001000 ?-??? == ?? d. [H+]=10-0.06=0.87( mol/L ) 2. 返滴定法测定试样中某组分含量,按下式计算

化学光谱分析测量不确定度评估报告(c元素)

德韧干巷汽车系统(上海)有限公司 DURA Ganxiang Automotive Systems(Shanghai)Co.,Ltd 测量不确定度评估报告 HHSB-TR- -2010 A/0 Evaluation of Uncertainty in Measurement Report No. 样品名称Specimen 20# 钢 样品编号 Specimen No 20120313 检测方法 Test method GB/T 4336-2002 检测设备 Test Equipment 全谱直读光谱仪 评估过程 Evaluation Process 1.数学模型的建立 SPECTRO TESTCCD 型直读光谱仪自动化程度高,数据采集和处理能力完善,屏幕直接显示待测数据,故其数学模型为: y=x y —测量值 x —仪器显示值 (对于直接测量c =x y ??/=x x / =1可以不计算灵敏系数,故在下列不确定度分量评定时未提及。 ) 2.不确定度来源的识别 本方法测定化学元素含量的不确定度主要来源于以下分量: a. 测量结果的重复性; b. 标准物质校准仪器的变动性; c. 标准物质标准值的不确定度; d. 仪器变动性、显示分辨力的不确定度分量。 3.碳含量不确定度分量的评定 3.1测量重复性不确定度分量的评定(A 类评定) 重复测量一份样品10次,并计算其重复性标准不确定度u(s)和相对标准不确定度u rel (s),运用实例见表1: 表1 样品碳含量测量重复性的A 类不确定度 测量项目 C 1 0.177% 2 0.176% 3 0.173% 4 0.189% 5 0.173% 6 0.191% 7 0.172% 8 0.195% 9 0.175% 10 0.178% 平均值 0.180% 标准偏差 0.00267% 标准不确定度u(s) 0.00267% 相对标准不确定度u rel (s) 0.0148 3.2 标准物质校准仪器的变动性 根据标准物质证书的信息,碳认定值w (C)=0.217%,并校准该标准物质5次,校准实验数据见表2. 测量项目 C

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法

4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影 响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i

分析化学第六版第3章分析化学中的误差与数据处理及答案

第三章分析化学中的误差与数据处理 一、判断题(对的打√, 错的打×) 1、滴定分析的相对误差一般要求为小于%,滴定时消耗的标准溶液体积应控制在10~15mL。( B ) 2、、分析测定结果的偶然误差可通过适当增加平行测定次数来减免。( A ) 3、标准偏差可以使大偏差能更显著地反映出来。( A ) 4、所谓终点误差是由于操作者终点判断失误或操作不熟练而引起的。( B ) 5、测定的精密度好,但准确度不一定高,消除了系统误差后,精密度好,测定结果的准确度就高。( A ) 6、置信区间的大小受置信度的影响,置信度越大,置信区间越小。( B ) 二、选择题: 1、下列论述中错误的是( D ) A、方法误差属于系统误差 B、系统误差具有单向性 C、系统误差又称可测误差 D、系统误差呈正态分布 2、下列论述中不正确的是( C ) A、偶然误差具有随机性 B、偶然误差服从正态分布 C、偶然误差具有单向性 D、偶然误差是由不确定的因素引起的 3、下列情况中引起偶然误差的是( A ) A、读取滴定管读数时,最后一位数字估计不准 B、使用腐蚀的砝码进行称量 C、标定EDTA溶液时,所用金属锌不纯 D、所用试剂中含有被测组分 4、分析天平的称样误差约为克,如使测量时相对误差达到%,试样至少应该称( C ) A、克以上 B、克以下 C、克以上 D、克以下 5、分析实验中由于试剂不纯而引起的误差是( A ) A、系统误差 B、过失误差 C、偶然误差 D、方法误差 6、定量分析工作要求测定结果的误差 ( C ) A、没有要求 B、等于零 C、在充许误差范围内 D、略大于充许误差 7、可减小偶然误差的方法是( D ) A、进行仪器校正 B、作对照试验 C、作空白试验 D、增加平行测定次数 8、从精密度就可以判断分析结果可靠的前提是( B ) A、偶然误差小 B、系统误差小 C、平均偏差小 D、标准偏差小 9、[×-]/1000结果应以几位有效数字报出( B ) A、5 B、4 C、 3 D、2 10、用失去部分结晶水的Na 2B 4 O 7 ·10H 2 O标定HCl溶液的浓度时,测得的HCl浓度与

化学分析中测量的误差

化学分析中测量的误差 P. De Bièvre, Duineneind 9, 2460 Kasterlee, Belgium H.Gunzler, Bismarckstr.4, 69469 Weinheim, Belgium (Eds.) Measurement Uncertainty in Chemical Analysis 2003, 283pp. Hardcover EUR 69.95 ISBN 3-540-43990-0 人们逐步地认识到,当报道测量本身时,传送与某一特定测量相关的误差是很重要的。如果不知道误差,对于该结果的使用者来说是不可能知道应对它抱有多少信心的。同时也不可能获取相同参数的不同测量的可比性。本书收集了关于这个主题的近50篇杰出论文。它们大多数发表在1999年至2002年的《鉴定及质量保证(ACQUAL)》杂志上。这些论文提供了评估和报道测量结果误差的基本原理,描述了误差的概念,评估误差的方法和使用适当标准物质的优点,考虑了怎样分析实验的结果。

全书收集25篇论文,题目为:根据测量质量保证的分析步骤;化学中的计量学:一个普遍的任务;化学计量学、化学及化学测量中的误差;标准物质误差的评估;使用线性校准函数分析过程测量误差的评估;通过模拟的方法测量误差的传导;微生物培养方法中测量的误差;与可接受极限相比较;校正的误差;在标准物质鉴定中误差计算(1.变量分析的原理,2.均匀性研究,3.稳定性研究);使用标准物质测量误差评估的某些方面;误差――化学中计量学的关键课题;为合作研究方法的验证和方法性能参数的测量误差及它的实质;化学分析的误差与分析方法的验证――石油中酸值的测量;采样误差评估的实用方法;食物中微量元素分析数据的质量保证;评价分析测量中的误差――追求准确性;化学分析中采样的误差;适当地而不是有代表性地采样――依据误差可以接受的水平;来自方法证实研究的测量误差估计;测量误差估计是对证实的一个可行的替代吗?通过原子光谱测定法测量土壤样品中成份的误差评估的证实;用于快速测试与离散判读的误差统计学评估――垃圾与土壤的检测;为准备NO和SO4标准气体混合物的静态测量体积方法的误差计算与实现;钡离子重量分析法误差的研究。 本书可供化学家、化学计量学家及研究生阅读参考。 胡光华,高级软件工程师 (原中国科学院物理学研究所)

金属材料维氏硬度试验检测结果测量不确定度的评定

金属材料维氏硬度试验检测结果测量不确定度的评定 1 概述 1.1 测量方法 依据G B/T 4340.1-2009《金属维氏硬度试验第1部分:试验方法》。 1.2 评定依据 ISO/IEC 17025:2005《检测和校准实验室能力的通用要求》;《JJF 1059.1—2012 测量不确定度评定与表示》;GB/T 4340.2-2009《金属维氏硬度试验第 2 部分:硬度计的检验》;GB/T 3101-1993《有关量、单位和符号的一般原则》;GB/T 8170-2008《数值修约规则》。 1.3 环境条件 根据GB/T 4340.1-2009 试验方法标准的规定,试验一般在室温10 ℃~35 ℃范围进行(除非另有规定)。本例评定的试验温度为26 ℃±2 ℃,湿度为60%RH。 1.4 测量设备 应采用经计量部门检定合格的维氏硬度计,其准确度必须满足G B/T 4340.2-2009 的规定。本例使用经计量单位检定合格的F V-700 型(日本)硬度计。 1.5 被测对象 采用满足国家标准G B/T 4340.1-2009 要求的金属材料维氏硬度试样。 1.6 测量过程 根据G B/T 4340.1-2009,在规定环境条件下,对于满足标准要求的金属材料维氏硬度试样借助于计量合格的维氏硬度计,选用方法标准规定的合适的试验力和压头下降速度,采用标准规定的试验力保持时间及合适的压痕测量装置放大倍数测试压痕对角线平均值,通过查表或计算得到所测硬度值。作为实例,本文选用98.07 N 试验力、力保持时间为15 秒,在自动加力的情况下,测定维氏硬度值(HV10)。 2 建立测量模型 根据G B/T 4340.1-2009 标准,维氏硬度测试原理的测量模型为: (1) 式中 F ―试验力,N d ―两压痕对角线长度d1 和d2 的算术平均值,mm 3 测量不确定度来源的分析 和d2 算术平均值d的测量误差引起的不确定度主要来源:两压痕对角线长度d 1 分量;试验力值误差所引起的不确定度分量;测量结果进行数值修约所导致的不确定度分量。在一些分量中又包括了检测人员测量过程及硬度计测量误差所带来的不确定度分量。 4 标准不确定度分量的评定

分析化学中的误差数据处理及质量保证习题解

第2章 分析化学中的误差、数据处理及质量保证 思考题与习题 1. 指出在下列情况下,会引起哪种误差?如果是系统误差,应该采用什么方法减免? (1) 砝码被腐蚀; (2) 天平的两臂不等长; (3) 容量瓶和移液管不配套; (4) 试剂中含有微量的被测组分; (5) 天平的零点有微小变动; (6) 读取滴定体积时最后一位数字估计不准; (7) 滴定时不慎从锥形瓶中溅出一滴溶液; (8) 标定HCl 溶液用的NaOH 标准溶液中吸收了CO 2。 答:(1)系统误差中的仪器误差。减免的方法:校准仪器或更换仪器。(2)系统误差中的仪器误差。减免的方法:校准仪器或更换仪器。(3)系统误差中的仪器误差。减免的方法:校准仪器或更换仪器。(4)系统误差中的试剂误差。减免的方法:做空白实验。(5)随机误差。减免的方法:增加测定次数。(6)系统误差中的操作误差。减免的方法:多读几次取平均值。(7)过失误差。减免的方法:重做。(8)系统误差中的试剂误差。减免的方法:做空白实验。 2. 如果分析天平的称量误差为±0.2mg ,拟分别称取试样0.1g 和1g 左右,称量的相对误差各为多少?这些结果说明了什么问题? 解:因分析天平的称量误差为0.2mg ±。故读数的绝对误差a 0.0002g =±E 根据100%E E = ?T a r 可得 0.10.0002100%0.2%0.1000±E =?=±r g g g 10.0002100%0.02%1.0000±E = ?=±r g g g 这说明,两物体称量的绝对误差相等,但他们的相对误差并不相同。也就是说,当被测定的量较大时,相对误差就比较小,测定的准确程度也就比较高。 3. 滴定管的读数误差为±0.02mL 。如果滴定中用去标准溶液的体积分别为2mL 和20mL 左右,读数的相对误差各是多少?从相对误差的大小说明了什么问题? 解:因滴定管的读数误差为0.02±mL ,故读数的绝对误差0.02E =±a mL 根据100%E E =?T a r 可得 20.02100%1%2±E = ?=±r mL mL mL 200.02100%0.1%20±E = ?=±r mL mL mL 这说明,量取两溶液的绝对误差相等,但他们的相对误差并不相同。也就是说,当被测定的量较大时,测量的相对误差较小,测定的准确程度也就较高。

化学分析测量误差,不确定度评定和数据处理

化学分析测量误差、不确定度评定和数据处理 一、化学分析测量误差 1.测量及其分类 1.1 测量就是将待测量与选作计量标准的同类量进行比较得出其倍数的过程。倍数值称为待测量的数值,选作的计量标准称为单位,因此,表示一个被测对象的测量值必须包括数值和单位。 1.2 根据测量方式测量分为直接测量和间接测量。 直接测量:可直接从仪器或量具上直接读出待测量大小的测量。例如:用天平称取样品的质量;从滴定管上读取溶液体积等。 间接测量:待测量的量值是由若干个直接测量量值经过一定的函数关系运算才获得,这样的测量称为间接测载量。 1.3根据测量条件是否相同测量又可分为等精度测量和不等精度测量。 在相同条件下进行的一系列测量是等精度测量。例如:同一个人,使用同一仪器,采用同样方法,对同一待测量连续进行多次重复测量,此时应该认为每次测量的可靠程度都相同,故称为等精度测量。这样一组测量值称为测量列。应该指出:重复测量必须是重复进行测量整个操作过程,而不是仅仅为重复读数。 在对某一被测量进行多次测量时测量条件完全不同或部分不同则各次测量结果的可靠程度自然也不同的一系列测量称为不等精度测量。例如,对同一待测量连续进行多次重复测量时,选用的仪器不同,或测量方法不同,或测量人员不同等,都属于不等精度测量。处理不等精度测量的结果时,根据每个测量的“权重”进行“加权平均”。事实上,在化学分析测试中,保持测量条件完全相同的多次测量是极其困难的,但条件变化对测试结果影响不大时,仍可认为这种测量为等精度测量,等精度的误差分析和数据处理比较容易,所以将绝大多数的化学分析测量都采用等精度测量。 2.误差及其分类 2.1 (量的)真值 与给定的特性量定义一致的值称为真值。 量的真值只有通过完善的测量才有可能获得,真值按其本性是不确定的,与给定的特性量定义一致的值不一定只有一个。 2.2 (测量)误差 测量结果减去被测量的真值称为(测量)误差。 误差之值只取一个符号非正即负。因为它是指与真值之差值常称为绝对误差。绝对误差是一个有量纲的数值,它表示测量值偏离的程度。绝对误差除以真值称为相对误差。相对误差是一个无量纲的量,常常用百分比来表示准确度的高低。 2.3 误差的分类

浅述标准物质在化学分析不确定度中的应用

浅述标准物质在化学分析不确定度中的应用 摘要:在样品均匀性和稳定性都一定的条件下,应用标准物质对化学物质进行定值测试,以此来表示标准物质标准值的不确定度。本文在全面地阐述了标准物质在化学分析不确定度中的重要性,提出估计化学分析中不确定度的相关问题, 并且讲述了应该如何选择标准物质,对标准物质在化学分析中的影响因素及重要性作了阐述。 关键词:标准物质;化学分析;不确定度 标准物质具有准确的计量标准,它常常被用作一个参比标准评估分析实验的操作水平,所以标准物质既是化学分析中数据检验的一个重要依据,同时它也是化学分析体系重要的一个主要组成成分。测量不确定度可以很好地表达被测量之值的分散性,同时衡量测量结果的准确性。在外界干扰条件受到控制的情况下,测量方法和测量数据的估计和假定是确定标准物质的重点,途径可以采用很多测量方法例如重量法或者质谱法等等来进行测量。 1 标准物质在化学分析不确定度定中的作用 标准物质拥有一种或多种均匀的特性量值, 技术上用校准仪器进行测量后给物质确定一个数值。标准物质经常用于仪器的校准、实验比对或者实验条件控制等领域。当工作人员在使用标准物质的时候,最好应该全面地阅读标准物质的相关证书,了解其标准物质制备的方法、测量方法以及用途等用来确保测量结果的准确性。 在进行化学测量结果的不确定度评定工作前, 应该明确标准物质对确定量值的重要性。通过选择合适的标准物质,对所使用的实验仪器例如天平等进行校准, 可以使待测物质的量值向准确化发展。不过, 试验的每一步都会受到很多外来因素的影响, 导致失败。所以,应该对样品的处理条件以及标准物质的控制重视起来,通过重复性实验来减少其误差。总之,可靠的标准物质是具有准确量值的一个计量标准,它在化学分析的整个过程中,既是作为是化学分析工作的基础, 也是评估实验操作水平的一个指标。 2标准物质对于化学分析的贡献 根据国际标准化组织制定的标准,标准物质不确定度的估算方法,是由于标准物质具有准确量值的计量标准, 标准物质在化学分析的过程中, 是确定测量结果不确定度的主要来源。标准物质对于化学分析的贡献可能会来自以下几个方面: 2.1标准物质不确定度的直接引用 标准物质特性量值的不确定度主要由物质的不确定性和实验方法的不确定性两部分组成,不同的标准物质不确定度各有不同, 主要是因为标准物质的确定

相关文档
最新文档