数模转换器的转换方式

数模转换器的转换方式
数模转换器的转换方式

数模转换器的转换方式

————————————————————————————————作者:————————————————————————————————日期:

数模转换器的转换方式

并行数模转换

数模转换有两种转换方式:并行数模转换和串行数模转换。图1为典型的并行数模转换器的结构。虚线框内的数码操作开关和电阻网络是基本部件。图中装置通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。

输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。位数越多分辨率就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。

串行数模转换

串行数模转换是将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。

随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如

温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。

将模拟信号转换成数字信号的电路,称为模数转换器(简称A/D转换器或ADC,Analog to Digital Converter);将数字信号转换为模拟信号的电路称为数模转换器(简称D/A转换器或DAC,Digital to Analog Converter);A/D转换器和D/A转换器已成为计算机系统中不可缺少的接口电路。

为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。本章将介绍几种常用A/D与D/A转换器的电路结构、工作原理及其应用。

用非线性误差的大小表示D/A转换的线性度。并且把理想的输入输出特性的偏差与满刻度输出之比的百分数定义为非线性误差。

解读高速数模转换器(DAC)的建立和保持时间

解读高速数/模转换器(DAC)的建立和保持时间Oct 10, 2007 摘要:本应用笔记定义了高速数/模转换器(DAC)的建立和保持时间,并给出了相应的图例。高速DAC的这两个参数通常定义为“正、负”值,了解它们与数据瞬态特性之间的关系是一个难点,为了解决这些难题,本文提供了一些图例。 介绍 为了达到高速数/模转换器(DAC)的最佳性能,需要严格满足数字信号的时序要求。随着时钟频率的提高,数字接口的建立和保持时间成为系统设计人员需要重点关注的参数。本应用笔记对建立和保持时间进行详尽说明,因为这些参数与Maxim的高性能数据转换方案密切相关。 定义建立和保持时间 建立时间(t S)是相对于DAC时钟跳变,数据必须达到有效的逻辑电平的时间。保持时间(t H)则定义了器件捕获/采样数据后允许数据发生变化的时间。图1给出了相对于时钟上升沿的建立和保持时间。特定器件的时钟信号有效边沿可能是上升/下降沿,或由用户选择,例如MAX5895 16位、500Msps、插值和调制双通道DAC,CMOS输入。 图1. 相对于时钟信号上升沿的建立和保持时间 采用CMOS技术设计的数字电路通常将电源摆幅的中间值作为切换点。因此,时间参考点定在信号边沿的中点。图1波形标明了器件在典型条件下的建立和保持时间。注意此时定义的这两个参数均为正值,但在建立或保持时间出现负值时将会令人迷惑不解。 MAX5891 600Msps、16位DAC为这一中间值状态提供了很好的学习实例。该器件的建立时间为-1.5ns,而保持时间为2.6ns。图2给出MAX5891的最小建立时间。注意,实际应用中,数据通常在采样时钟跳变后发生变化。图3给出了相同器件的最小保持时间。

什么是DAC(数模转换器)

什么是DAC(数模转换器) 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模 拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。将模拟信号转换 成数字信号的电路,称为模数转换器(简称A/D 转换器或ADC,Analog to DigitalConverter);将数字信号转换为模拟信号的电路称为数模转换器(简称 D/A 转换器或DAC,Digital toAnalog Converter);A/D 转换器和D/A 转换器已成为计算机系统中不可缺少的接口电路。为确保系统处理结果的精确度,A/D 转换器和D/A 转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D 与D/A 转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D 与D/A 转换器的重要技术指标。随着集成技术的发展,现 已研制和生产出许多单片的和混合集成型的A/D 和D/A 转换器,它们具有愈 来愈先进的技术指标。本章将介绍几种常用A/D 与D/A 转换器的电路结构、 工作原理及其应用。数模(D/A)转换器转换原理数字量是用代码按数位组合起来表示的,对于有权码,每位代码都有一定的位权。为了将数字量转换成模拟量,必须将每1 位的代码按其位权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。这就是组成D/A 转换器的基本指导思想。图11.1.1 表示了4 位二进制数字量与经过D/A 转换后输出的电压模拟量之间的对应关系。由图11.1.1 还可

AD76816高速数模转换器(中文)

AD768 16-Bit 高速数模转换器 特性 刷新率:30 MSPS 分辨率:16-Bit 线性度: 1/2 LSB DNL @ 14 Bits 1 LSB INL @ 14 Bits 最快建立时间: 满量程25 ns ,精度0.025% SFDR @ 1 MHz 输出: 86 dBc THD @ 1 MHz 输出: 71 dBc 低干扰脉冲: 35 pV-s 功率消耗: 465 mW 片上基准源:2.5 V 边沿触发锁存器 乘法参考能力 应用 任意波形发生器 通信波形重建 矢量图形显示 产品描述 AD768是16-Bit高速数模转换器(DAC)提供优良的交流和直流性能。AD768是ADI公司的先进双极CMOS制造(abcmos)处理,结合双极晶体管的速度,激光微调薄膜电阻的精度和有效CMOS逻辑。一个分段电流源架构与专有开关技术相结合,以减少毛刺能量来获得最大化的动态精度。边沿触发输入锁存器和一个温度补偿的带隙基准源已集成,提供一个完整的单片DAC解决方案。 AD768是电流输出DAC标称满量程输出电流20mA和一个1K 的输出阻抗。差分电流输出提供支持单端或差分应用。电流输出可以绑接输出电阻提供电压输出,或连接到高速放大器的求和点提供一个缓冲电压输出。同时,差分输出可以连接到变压器或差分放大器。 片上基准源和控制放大器配置为最大的准确性和灵活性。AD768可以通过芯片上的基准源或由一个外部基准电压基于一个外部电阻的选择驱动。外部电容器允许用户优化变换参考带宽和噪声性能。 AD768采用±5 V电源运行,典型的消耗功率465毫瓦。该芯片采用28引脚SOIC封装,规定工作在工业温度范围。

可编程双路12位数模转换器TLC5618

可编程双路12位数模转换器TLC5618及其C51高 级语言编程 2007-1-19 来源:阅读:799次我要收藏 1概述 1.1一般说明 TLC5618是美国TexasInstruments公司生产的带有缓冲基准输入的可编程双路12位数/模转换器。DAC输出电压范围为基准电压的两倍,且其输出是单调变化的。该器件使用简单,用5V单电源工作,并包含上电复位功能以确保可重复启动。 通过CMOS兼容的3线串行总线可对TLC5618实现数字控制。器件接收用于编程的16位字产生模拟输出。数字输入端的特点是带有斯密特触发器,因而具有高的噪声抑制能力。 1.2特点 (1)可编程至0.5LSB的建立时间; (2)两个12位的CMOS电压输出DAC; (3)单电源工作; (4)3线串行接口; (5)高阻抗基准输入; (6)电压输出范围为基准电压的两倍; (7)软件断电方式; (8)内部上电复位; (9)低功耗,慢速方式为3mW,快速方式为8mW; (10)1.21MHz输入数据更新速率; (11)在工作温度范围内单调变化。 1.3引脚排列与引脚功能 TLC5618的引脚排列如图1所示,各个引脚的功能如下所述: (1)DIN(1):数据输入; (2)SCLK(2):串行时钟输入; (3)CS(3):芯片选择,低电平有效;

(4)OUTA(4):DACA模拟输出; (5)AGND(5):模拟地; (6)REFIN(6):基准电压输入; (7)OUTB(7):DACB模拟输出; (8)VDD(8):正电源。 图1TLC5618 的引脚排列 图2TLC5618的典型运用电路 2应用介绍 2.1一般功能 TLC5618使用由运放缓冲的电阻串网络把12位数字数据转换为模拟电压电平(见图2),其输出极性与基准电压输入相同(见表1)。 表1二进制代码表(0V至2VREFIN输出,增益=2) 输入+输出111111111111 2(VREFIN)4095/4096 … … 100000000001 2(VREFIN)2049/4096 对全部高中资料试卷电气设备,在安装过程中以及安装结束后

低功耗满幅输出12位串行数模转换器DAC7512及其应

低功耗满幅输出12位串行数模转换器 DAC7512及其应 低功耗满幅输出12位串行数模转换器DAC7512及其应 DAC7512是TI公司生产的具有内置缓冲放大器的低功耗单片12位数模转换器。其片内高精度的输出放大器可获得满幅(供电电源电压与地电压间)任意输出。DAC7512带有一个时钟达30MHz的通用三线串行接口,因而可接入高速DSP。其接口与SPI、QSPI、Microwire及DSP接口兼容,因而可与intel系列单片机、Motorola系列单片机直接连接而无需任何其它接口电路。由于DAC7512串行数模转换器可选择供电电源来作为参考电压,因而具有很宽的动态输出范围,此外,DAC7512数模转换器还具有三种关断工作模式。正常工作状态下,DAC7512在5V电压下的功耗仅为0.7mW,而省电状态下的功耗为1μW。因此,低功耗的DAC7512无疑是便携式电池供电设备的理想器件。1主要特性DAC7512的主要特点如下:●微功耗,5V时的工作电流消耗为135μA(DAC7512);●在掉电模式时,如果采用5V电源供电,其电流消耗为135nA,而采用3V供电时,其电流消耗仅为50nA;●供电电压范围为

+2.7V~+5.5V;●上电输出复位后输出为0V;●具有三种关断工作模式可供选择,5V电压下的功耗仅为0.7mW;●带有低功耗施密特输入串行接口;●内置满幅输出的缓冲放大器;●具有SYNC中断保护机制。2引脚功能采用SOT23-5封装的DAC7512的引脚排列如图1所示。其引脚定义如下:VOUT:芯片模拟输出电压;GND:器件内所有电路的地参考点;VDD:供电电源,直流+2.7V~+5.5V;DIN:串行数据输入;SCLK:串行时钟输入;SYNC:输入控制信号(低电平有效)。3内部结构DAC7512的组成框图如图2所示。图中的输入控制逻辑用于控制DAC寄存器的写操作,掉电控制逻辑与电阻网络一起用来设置器件的工作模式,即选择正常输出还是把输出端与缓冲放大器断开,而接入固定电阻。芯片内的缓冲放大器具有满幅输出特性,可驱动2kΩ及1000pF的并联负载。4接口工作模式DAC7512采用三线制(SYNC,SCLK及DIN)串行接口,其串行写操作时序如图3所示。写操作开始前,SYNC要置低,DIN的数据在串行时钟SCLK的下降沿依次移入16位寄存器。在串行时钟的第16个下降沿到来时,将最后一位移入寄存器,可实现对工作模式的设置及DAC内容的刷新,从而完成一个写周期的操作。此时,SYNC

AD精选高速数模转换器中文

AD76816-Bit高速数模转换器 特性 刷新率:30MSPS 分辨率:16-Bit 线性度:1/2LSBDNL@14Bits 1LSBINL@14Bits 最快建立时间: 满量程25ns,精度0.025% SFDR@1MHz 输出:86dBc THD@1MHz 输出:71dBc 低干扰脉冲:35pV-s 功率消耗:465mW 片上基准源:2.5V 边沿触发锁存器 乘法参考能力 应用 任意波形发生器 通信波形重建矢量图形显示 产品描述 AD768是16-Bit高速数模转换器(DAC )提供优良的交流和直流性能。AD768是ADI公司的先进双极CMOS制造(abcmos )处理,结合双极晶体管的速度,激光微调薄膜电阻的精度和有效CMOS逻辑。一个分段电流源架构与专有开关技术相结合,以减少毛刺能量来获得最大化的动态精度。边沿触发输入锁存器和一个温度补偿的带隙基准源已集成,提供一个完整的单片DAC解决方案。 AD768是电流输出DAC标称满量程输出电流20mA和一个1K :的输出阻抗。差分电流输出提供支持单端或差分应用。电流输出可以绑接输出电阻提供电压输出,或连接到高速放大器的求和点提供一个缓冲电压输出。同时,差分输出可以连接到变压器或差分放大器。 片上基准源和控制放大器配置为最大的准确性和灵活性。AD768可以通过芯片上的基准源 或由一个外部基准电压基于一个外部电阻的选择驱动。外部电容器允许用户优化变换参考带宽和噪声性能。 AD768采用土5V电源运行,典型的消耗功率465毫瓦。该芯片采用28引脚SOIC封装,规定 工作在工业温度范围。 产品亮点 1、低干扰和快速建立时间提供杰出的波形重建或数字动态性能合成的要求,包括通信。

解读高速数模转换器(DAC)的建立和保持时间

解读高速数/模转换器(DAC)的建立和保持时间 摘要:本应用笔记定义了高速数/模转换器(D AC)的建立和保持时间,并给出了相应的图例。高速D AC的这两个参数通常定义为“正、负”值,了解它们与数据瞬态特性之间的关系是一个难点,为了解决这些难题,本文提供了一些图例。 介绍 为了达到高速数/模转换器(DAC)的最佳性能,需要严格满足数字信号的时序要求。随着时钟频率的提高,数字接口的建立和保持时间成为系统设计人员需要重点关注的参数。本应用笔记对建立和保持时间进行详尽说明,因为这些参数与Maxim的高性能数据转换方案密切相关。 定义建立和保持时间 建立时间(t S)是相对于DAC时钟跳变,数据必须达到有效的逻辑电平的时间。保持时间(t H)则定义了器件捕获/采样数据后允许数据发生变化的时间。图1给出了相对于时钟上升沿的建立和保持时间。特定器件的时钟信号有效边沿可能是上升/下降沿,或由用户选择,例如MAX5895 16位、500Msps、插值和调制双通道DAC,CMOS输入。 图1. 相对于时钟信号上升沿的建立和保持时间 采用CMOS技术设计的数字电路通常将电源摆幅的中间值作为切换点。因此,时间参考点定在信号边沿的中点。图1波形标明了器件在典型条件下的建立和保持时间。注意此时定义的这两个参数均为正值,但在建立或保持时间出现负值时将会令人迷惑不解。 MAX5891 600Msps、16位DAC为这一中间值状态提供了很好的学习实例。该器件的建立时间为-1.5ns,而保持时间为2.6ns。图2给出MAX5891的最小建立时间。注意,实际应用中,数据通常在采样时钟跳变后发生变化。图3给出了相同器件的最小保持时间。 图2. MAX5891的最小建立时间

12位TLC2543模数转换总结

TLC2543模数转换总结 ——电信102 龙树东 芯片特性说明 TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN

封装,这两种封装的引脚排列如图1,引脚说明见表1。 图1TLC2543的封装 接口时序 可以用四种传输方法使TLC2543得到全12位分辩率,每次转换和数据传递可以使用12或16个时钟周期。 一个片选()脉冲要插到每次转换的开始处,或是在 转换时序的开始处变化一次后保持为低,直到时序结束。 图2显示每次转换和数据传递使用16个时钟周期和在每次传递周期之间插入的时序,图3显示每次转换和数据传递使用16个时钟周期,仅在每次转换序列开始处插入一次时序。

片选端。在端由高变低时, 端。为高时处于高阻抗状态,为低时处于激活状态

表1T L C2543引脚说明

图2 16时钟传送时序图(使用,M S B在前) 图3 16时钟传送时序图(不使用,M S B在前)制作过程件 硬件:

数模转换电路

数模转换电路 一、概述 数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器DAC。 二、D/A转换器的基本原理 基本原理:将输入的每一位二进制代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。这就是构成D/A转换器的基本思路。D/A转换器由数码寄存器、模拟电子开关电路、解码网络、求和电路及基准电压几部分组成。数字量以串行或并行方式输入、存储于数码寄存器中,数字寄存器输出的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网络上产生与其权值成正比的电流值,再由求和电路将各种权值相加,即得到数字量对应的模拟量。 1、数模转换器的转换方式 (1)并行数模转换 通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。位数越多分辨率就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。 (2)串行数模转换 将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。 三、D/A转换器的分类 1、电压输出型 电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOS D/A转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了运算放大器的延迟,使响应变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。 2、乘算型 D/A转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。 四、D/A转换器的主要性能指标 1、分辨率 指最小输出电压(对应的输入数字量只有最低有效位为“1”)与最大输出电压(对应的输入数字量所有有效位全为“1”)之比。如N位D/A转换器,其分辨率为1/(2N-1)。 2、转换精度 D/A转换器的转换精度与D/A转换器的集成芯片的结构和接口电路配置有关。如果不考虑其他D/A 转换误差时,D/A的转换精度就是分辨率的大小,因此要获得高精度的D/A转换结果,首先要保证选择有足够分辨率的D/A转换器。同时D/A转换精度还与外接电路的配置有关,当外部电路器件或电源误差较大时,会造成较大的D/A转换误差,当这些误差超过一定程度时,D/A转换就产生错误。在D/A 转换过程中,影响转换精度的主要因素有失调误差、增益误差、非线性误差和微分非线性误差。 3、编辑本段温度系数 在满刻度输出的条件下,温度每升高1℃,输出变化的百分数定义为温度系数。 4、失调误差(或称零点误差)

数模转换器的选用

数模转换器的选用

————————————————————————————————作者:————————————————————————————————日期:

数模转换器的选用 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。

为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。 如果CCD的质量能够满足一定色彩位数的要求,为了获得相应的输出效果,就要求有相应位数的数模转换实现数据采样,才能获得满意的效果,如果CCD可以实现36位精度,却使用了三个8位的数模转换器,结果输出出来就只剩下24位的数据精度了,这对于CCD是一种浪费,而如果使用三个16位的数模转换器,是实现了48位的数据输出,但效果与36位比较并无改善,对数模转换器就是一种浪费了。 1. 数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。

数模转换器的选用

数模转换器的选用 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。

为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。 如果CCD的质量能够满足一定色彩位数的要求,为了获得相应的输出效果,就要求有相应位数的数模转换实现数据采样,才能获得满意的效果,如果CCD可以实现36位精度,却使用了三个8位的数模转换器,结果输出出来就只剩下24位的数据精度了,这对于CCD是一种浪费,而如果使用三个16位的数模转换器,是实现了48位的数据输出,但效果与36位比较并无改善,对数模转换器就是一种浪费了。 1. 数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。

根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa 函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。 一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。

数模转换器的转换方式

数模转换器的转换方式

————————————————————————————————作者:————————————————————————————————日期:

数模转换器的转换方式 并行数模转换 数模转换有两种转换方式:并行数模转换和串行数模转换。图1为典型的并行数模转换器的结构。虚线框内的数码操作开关和电阻网络是基本部件。图中装置通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。

输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。位数越多分辨率就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。 串行数模转换 串行数模转换是将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如

数模与模数转换器习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

相关文档
最新文档