直角坐标机器人与关节机器人对比分析

直角坐标机器人与关节机器人对比分析
直角坐标机器人与关节机器人对比分析

直角坐标机器人与关节机器人对比分析

作者:沈阳莱茵机电有限公司

摘要:本文主要介绍直角坐标机器人和关节机器人的特性,以及两种机器人的应用对比。

关键字:直角坐标机器人关节机器人

前言:现今工业机器人主要分两大类——直角坐标机器人和关节机器人,这两类机器人均适合用于诸多工业领域的机械自动化作业,比如,自动装配、喷漆、搬运码垛、焊接等工作。沈阳莱机机电多年从事机器人事业,本文是结合沈阳莱茵机电的经验及知识来主要介绍直角坐标机器人和关节机器人的特性,以及两种机器人的应用对比。这些对比分析来自我们的经验及认识,有其局限性,不充分,仅供朋友们参考。

一、直角坐标机器人

1、概念:

基于空间XYZ直角坐标系编程、有三轴及以上自由度,能够实现自动控制、可重复编程反复应用,适合不同任务的自动化设备。

它能够搬运物体、操作工具,以完成各种作业。关于机器人的定义随着科技的不断发展,在不断的完善,直角坐标机器人作为机器人的一种,其含义也在不断的完善中。

2、特点:

1)任意组合成各种样式,形成两轴到六轴不同结构形式。

2)超大行程:单根最多长度是6米,但可以多根方便地级连成超大行程,例如50米长。

3)负载能力强:通常是到200公斤,但当采用多根多滑块结构时其负载能力可增加到数吨。

4)高动态特性:轻负载时其最高运行速度每秒8米,加速度每秒5米。

5)高精度:重复定位精度可达到0.05mm~0.01mm。

6)扩展能力强:可以方便改变结构或通过编程来适合新的应用。

7)简单经济:编程简单类同数控铣床,易培训员工和维修,使其具有非常好的经济性。

8)寿命长:直角坐标机器人的寿命一般是10年以上,维护好可达40年。

9) 应用范围广:可以方便地装配多种形式和尺寸的手爪,可以胜任许多常见的工作,如焊接、切割,搬运、上下料、包装、码垛、检测、探伤、分类、装配、贴标、喷码、打码和喷涂等任务。

图1是一个典型的3D直角坐标机器人,它由X轴,Y轴,Z轴及驱动电机组成。此外一个完整的机器人系统还需要控制系统和手抓

二、关节机器人

1、概念:

也称关节手臂机器人或关节机械手臂,有很高的灵活度,通常5~6轴,适合于几乎任何轨迹或角度的工作。

2、特点:

1) 有很高的自由度,灵活性,从不同角度不同方位来工作。

2) 速度可达6米/秒,加速度10米/每秒;工作效率高,

3)经常在网络或电视里看到,较为世人所熟悉和接受。

4) 6轴机器人主要应用于汽车点焊,弧焊,装配(拧螺丝),检测类这些轻巧类工作。

5)人们开发了4轴搬运码垛类机器人。

三、特点及应用分析对比

1、工作空间与承载能力:

1)直角坐标型标准单根长度6m,拼装后可达到100m;组合成龙门式机器人,其工作空间可以是非常的三维立体空间。单根承载10~200kg,特殊结构可达2400 Kg。

2)关节型最大工作半径3m,在有效半径内可以任何角度工作。关节机器人工作半径所在的园周内要做安全隔离,所以通常占用更大的空间。不适合大距离空间工作,或放置到直线运动单元上。承载能力有几种规格5~20Kg可选,但最大1300Kg,这时及其昂贵。

说明:常见的关节型机器人的工作半径越大、强度也要大,对于承载能力越强,但为保证其稳定的机械结构,造价会非常高。

直角坐标型的龙门框架结构,承载能力强,可无限扩展,稳定可靠,造价相对低很多。

2、工作精度

1)直角坐标型:由于结构简单,重复定位精度0.05mm,丝杠型可达0.01mm,甚至更高。

2)关节型:重复定位精度0.06mm,轻载荷小半径0.02mm,重载荷精度0.2mm。

说明:在通常情况下,两种机器人均可满足精度要求。其中丝杠型直角坐标机器人更适合对精度要求更加苛刻的行业。

3、组合方式

1)直角坐标型组合方式多样,龙门式、悬臂式、壁挂式等,可根据不同的负载、行程、功能及特殊空间要求,为客户订制所需求产品。同时,X、Y、Z三轴基础上可以扩展旋转轴和翻转轴,构成五自由度和六自由度机器人。

2)关节型可细分为6自由度机器人、Scara机器人、四连杆机器人,种类相对少,选择性和灵活性较直角坐标型小很多。

4、机械安装及维护

1)直角坐标型为模块化产品,在工厂全部预连接运行,然后拆装出厂。现场通过螺栓简单拼装,调水平即可电气调试,用户甚至可以自行完成机械安装。龙门式框架为整个安装空间,其工作空间也在框架范围内。

模块化产品,用户可以自行拆卸、更换或维护,所有机械零件均为通用品,维修维护费用低。

2)关节型集成化程度高,整体性好,但需要专业人员进行机械安装。安装空间较直角坐标型小,但是其工作空间是其整个工作半径,工作区域需要做防护处理,故设备总占地面积不小于直角坐标型。

由于机械化程度高及控制非常复杂,维修和维护必须由厂家或供应商的专业人员完成(国外进口品牌的维护费用在300元/小时左右),用户往往面临两个问题高价维修或报废处理。

5、软件编程操控和维护

1)从电气系统到上位机直角坐标型都是开放、灵活的,适用任何品牌的PLC、CNC、伺服驱动系统,甚至可以按用户熟悉品牌选定。编程简单,用户可以随意扩展,操控简单

易操作。

完全的交钥匙工程,简单程序问题和硬件故障,客户可以自行处理,例如更换驱动电机、PLC等,维护费用低。

2)关机型机器人:软件系统集成化,库函数直接调用,是其软件优点。但编程和操控必须由供应商通过专业培训才能完成(厂家软件编程费用300元/小时),而且特殊软件需要收费。

维护和维修完全受制于人,由于品牌互相不兼容,硬件故障必须由供应商或厂家直接提供,非市场通用产品,费用高昂。

6、前期投入成本:不考虑后期维护维修费用,以60Kg负载码垛机器人为例

直角坐标机器人:25~40万

关节机器人:60~80万

7、根据国内外的应用案例,对不同行业的应用情况对比如下:

(end)

多自由度直角坐标型码垛机器人结构毕业设计说明书

多自由度直角坐标型码垛机器人本体结构设计 Body structure design of rectangular coordinate palletizing robot with the multi-degree freedom 学生姓名学号 所在学院班级 所在专业机械设计制造及其自动化 申请学位学士 指导教师职称 副指导教师职称 答辩时间

目录 设计总说明 ............................................................... I INTRODUCTION ............................................................ II 1 绪论 . (1) 1.1 码垛机器人的发展状况 (1) 1.2 研究目的及意义 (1) 2 课题内容及要求 (2) 2.1 研究目标、内容及拟解决的关键问题 (2) 2.2 参数要求 (2) 3 总体机构设计 (3) 3.1 机械抓手设计 (6) 3.1.1 方案选择 (6) 3.1.2 力学分析 (7) 3.1.3 气缸选择 (9) 3.2 丝杆螺母副的计算与选型 (9) 3.2.1 Z轴滚珠丝杠螺母副的计算与选型 (9) 3.2.2 x轴和y轴滚珠丝杠螺母副的计算与选型 (12) 3.3 各轴驱动电机选型 (12) 3.3.1 Z旋转轴电机的选择 (13) 3.3.2 Z轴步进电机的计算与选型 (15) 3.3.3 x轴和y轴步进电机的选用 (17) 3.4 直线滚动导轨副的计算与选型 (18) 3.5 轴承的选用 (20) 3.5.1 Z旋转轴轴承的选用 (20) 3.5.2 Z轴滚珠丝杠下端单向推力球轴承的计算与选型 (20) 3.5.3 其他轴承的选用 (21) 3.6 锥齿轮传动的计算与选型 (23) 4 总体支架的受力分析 (25) 总结 (29) 鸣谢 (30) 参考文献 (31)

水平多关节机器人总体及腰臂部设计

目录 1 前言 (1) 1.1 课题来源与分析 (1) 1.2 国内外发展及研究现状 (1) 1.3 本课题要解决的主要问题及设计总体思路 (3) 2 关节型机器人的总体设计 (4) 2.1 确定基本技术参数 (4) 2.1.1 机械结构类型的选择 (4) 2.1.2 额定负载 (4) 2.1.3 操作机的驱动系统设计 (5) 2.1.4 确定关节型机器人手臂的配置形式 (5) 2.2 关节型机器人本体方案设计 (6) 3 关节型机器人腰部及大臂部设计 (8) 3.1 电动机的选择 ........................................................................... 错误!未定义书签。 3.2 计算传动装置的总传动比和分配各级传动比 ....................... 错误!未定义书签。 3.3 基座及腰部轴的设计计算 ....................................................... 错误!未定义书签。 3.3.1 计算各轴转速、转矩和输入功率 ....................................... 错误!未定义书签。 3.3.2轴的结构设计 ..................................................................... 错误!未定义书签。 3.4 肘关节轴的设计计算 ............................................................... 错误!未定义书签。 3.5 齿轮设计计算 ........................................................................... 错误!未定义书签。 3.5.1基座处齿轮设计计算 ............................................................ 错误!未定义书签。 3.5.2肘关节处齿轮设计计算 ........................................................ 错误!未定义书签。 3.6轴承的选择和计算 .................................................................... 错误!未定义书签。 3.7 壳体设计 ................................................................................... 错误!未定义书签。 3.7.1 箱体的主要功能 ................................................................... 错误!未定义书签。 3.7.2 箱体设计的问题和要求 ....................................................... 错误!未定义书签。 3.7.3 壳体结构的设计 ................................................................... 错误!未定义书签。 3.7.4 箱体结构参数的选择 ........................................................... 错误!未定义书签。 4 关节型机器人的位姿分析..................................................... 错误!未定义书签。 4.1 机器人的位姿与运动分析 ....................................................... 错误!未定义书签。 4.2关节型机器人的广义连杆变换齐次矩阵 ............................... 错误!未定义书签。5结论...................................................................................... 错误!未定义书签。参考文献.................................................................................. 错误!未定义书签。致谢 ................................................................................... 错误!未定义书签。附录.................................................................................. 错误!未定义书签。

直角坐标机器人结构设计

直角坐标机器人结构设计 摘要 随着现代工业的不断发展,不但使传统工业的生产发生了根本性的变化,而且也对人类社会的生产产生了重大的影响。机器人作为现代工业生产的一种工具,不仅大大的提高了生产力,而且把人从各种生产环境中解放出来。目前,许多国家的工业机器人技术得到很好的发展,我国也在进行深入的研究和开发。本文主要是设计一个搬运工件的直角坐标机器人,它可以应用在自动化生产线上与人工相比具有速度快、定位精度准确的特点,具有很强的实用性能。作为直角坐标机器人结构设计,本文用了第二、三、四章详细阐述了设计过程,第五章简要介绍了机器人的控制部分,第六对机器人进行了效果分析,并总结了直角坐标机器人的特点。设计不拘泥于常规,使产品具有更广阔的发展空间,必将成为机器人的发展趋势。

Cartesian Robot Design Abstract With the continuous development of modern industry,not only the production of traditional industries has undergone a fundamental change, but also the production of human society has had a major impact. Robot as a tool of modern industrial production, not only greatly increase the productivity and the production environment from a variety of liberation. Currently, many countries have very good industrial robot technology development, China is also in-depth research and development. Porters of this paper is to design a piece of the Cartesian coordinate robot, which can be used in automated production lines and artificial compared to fast, accurate positioning accuracy characteristics,with strong practical performance.As the design of the right-angle coordinate robot,the text uses the second the third and the forth chapters to say the process of the design.The five chapter briefly describes some of the robot's control. The sixth chapters carried out effectiveness analysis and summarizes the characteristics of a Cartesian coordinate robot.The design makes the products have much more development,which must be the current of robot's development. Key words: Straight line Cartesian coordinate Structure

一种取件式平面多关节机械手的研究与计算

第1章绪论 1.1 引言 工业机器人的出现和高速发展是社会、经济发展的必然,是为提高社会的生产水平和人类的生活质量,让机器人替人们干那些人们不愿干、干不了、干不好的工作。我国对于工业机器人的定义为:“一种自动化的机器,所不同的这种机器具备一些与人或者生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。1920年捷克作家卡雷尔·查培克在其剧本《罗萨姆的万能机器人》中最早使用机器人一词,剧中机器人“Robot”这个词的本意是苦力,即剧作家笔下的一个具有人的外表,特征和功能的机器,是一种人造的劳力。它是最早的工业机器人设想。 20世纪40年代中后期,机器人的研究与发明得到了更多人的关心与关注。50年代以后,美国橡树岭国家实验室开始研究能搬运核原料的遥控操纵机械手,如图0.2所示,这是一种主从型控制系统,主机械手的运动。系统中加入力反馈,可使操作者获知施加力的大小,主从机械手之间有防护墙隔开,操作者可通过观察窗或闭路电视对从机械手操作机进行有效的监视,主从机械手系统的出现为机器人的产生为近代机器人的设计与制造作了铺垫。 1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1959年,美国发明家英格伯格与德沃尔制造出世界上第一台工业机器人Unimate以来,从此工业机器人在现代化社会工业生产的环节中的占比与日俱增。同时伴随着新一轮工业革命及科技革命的到来,各国对于工业现代化都提出了更高的要求,德国提出了“工业4.0”美国提出了“先进制造业国家战略计划”,并采取多种措施“吸引制造业回流”,英国提出了“高价值制造业战略”,日本提出了“产业复兴计划”、法国提出了“新工业法国”等。中国作为全球制造业中心,更要做好充分准备,提升中国制造业的国际竞争新优势,打造中国的工业现代化、做大做强中国制造,对此,我国提出了“中国制造2025”战略。在这场全球聚焦的科技革命中,机器人由于其安全,高效,智能,高精度及稳定性必将在这场革命中发挥巨大的作用。

机器人控制原理_百度文库概要

第二章机器人系统简介 2.1 机器人的运动机构(执行机构 机器人的运动机构是机器人实现对象操作及移动自身功能的载体,可以大体 分为操作手(包括臂和手和移动机构两类。对机器人的操作手而言,它应该象人的手臂那样,能把(抓持装工具的手依次伸到预定的操作位置,并保持相应的姿态,完成给定的操作;或者能够以一定速度,沿预定空间曲线移动并保持手的姿态,并在运动过程中完成预定的操作。移动机构应能将机器人移动到任意位置,并保持预定方位姿势。为此,它应能实现前进、后退、各方向的转弯等基本移动功能。在结构上它可以象人、兽、昆虫,具有二足、四足或六足的步行机构, 也可以象车或坦克那样采用轮或履带结构 2.1.1 机器人的臂结构 机器人的臂通常采用关节——连杆链形结构,它由连杆和连杆间的关节组 成。关节,又称运动副,是两个构件组成相对运动的联接。在关节的约束下,两连杆间只能有简单的相对运动。机器人中常用的关节主要有两类: (1 滑动关节 (Prismatic joint: 与关节相连的两连杆只能沿滑动轴做直 线位移运动,移动的距离是滑动关节的主要变量,滑动轴一般和杆的轴线重合或平行。 (2转动关节 (Revolute joint: 与关节相连的两连杆只能绕关节轴做相对 旋转运动,其转动角度是关节的主要变量,转动轴的方向通常与轴线重合或垂直。 杆件和关节的构成方法大致可分为两种:(1 杆件和手臂串联连接,开链机 械手 (2 杆件和手臂串联连接,闭链机械手。

以操作对象为理想刚体为例,物体的位置和姿态各需要 3 个独立变量来描 述。我们将确定物体在坐标系中位姿的独立坐标数目称为自由度(DOF (degree of freedom 。而机器人的自由度是由有关节数和每个关节所具有的自由度数决定的(每个关节可以有一个或多个自由度,通常为 1 个。机器人的自由度是独立的单独运动的数目,是表示机器人运动灵活性的尺度。(由驱动器能产生主动动作的自由度称为主动自由度,不能产生驱动力的自由度称为被动自由度。通常开链机构仅使用主动自由度机器人自由度的构成,取决于它应能保证完成与目标作业相适应的动作。分析可知,为使机器人能任意操纵物体的位姿,至少须 6DOF ,通常用三个自由度确定手的空间位置(手臂,三个自由度确定手的姿态 (手。比较而言,人的臂有七个自由度,手有二十个自由度,其中肩 3DOF ,肘 2 DOF ,碗 2DOF 。这种比 6 还多的自由度称为冗余自由度。人的臂由于有这样的冗余性,在固定手的位置和姿态的情况下,肘的位置不唯一。因此人的手臂能灵活回避障碍物。对机器人而言,冗余自由度的设置易于增强运动的灵活性,但由于存在多解,需要在约束条件下寻优,计算量和控制的难度相对增大。 典型的机器人臂结构有以下几种: (1直角坐标型 (Cartesian/rectanglar/gantry (3P 由三个线性滑动关节组成。 三个关节的滑动方向分别和直角坐标轴 x,y,z 平行。 工作空间是个立方体 (2圆柱坐标型 (cylindrical(R2P 由一个转动关节和两个滑动关节组成。 两个滑动关节分别对应于圆柱坐标的径向和垂直方向位置,一个旋 转关节对应关于圆柱轴线的转角。

机器人的结构形式及各类结构的特点

机器人的结构形式及各类结构的特点 摘要:如今机器人已被广泛应用于机械、印刷机械、汽车工业、食品生产工业、药品生产工业、电子工业、机器制造业和化妆品生产等行业,不同领域因其需要的多样性和特殊性,也导致机器人在结构形式上存在多样性和特殊性。 关键字:结构形式,结构坐标系 2011302590173 刘亚辉 遥感信息工程学院

一、引言 机器人按ISO 8373定义为:位置可以固定或移动,能够实现自动控制、可重复编程、多功能多用处、末端操作器的位置要在3个或3个以上自由度内可编程的工业自动化设备。这里自由度就是指可运动或转动的轴。工业机器人按其结构形式及编程坐标系主要分类为关节型机器人、移动机器人、水下机器人和直角坐标机器人等。按主要功能特征及应用分为移动机器人、水下机器人、洁净机器人、直角坐标机器人、焊接机器人、手术机器人和军用机器人等。机器人学涉及到机器人结构,机器人视觉,机器人运动规划,机器人传感器,机器人通讯和人工智能等许多方面,不同用处的机器人涉及到不同的学科,下面仅对这些机器人的结构和应用进行简单介绍。 机器人按照结构坐标系特点方式分类可分为:直角坐标机器人,圆柱坐标型机器人,极坐标机器人,多关节机器人等。 机器人按照机身结构特点可分为:升降回转型机身结构,俯仰型机身结构,直移型机身结构,类人机器人机身结构等。 二、各种结构坐标系 1、直角坐标系机器人 直角坐标型机器人结构如图所示,它主要是以直线运动轴为主,各个运动轴通常对应直角坐标系中的X轴,Y轴和Z轴,一般X轴和Y轴是水平面内运动轴,Z轴是上下运动轴。在一些应用中Z轴上带有一个旋转轴,或带有一个摆动轴和一个旋转轴。在绝大多数情况下直角坐标机器人的各个直线运动轴间的夹角为直角。 直角坐标型机械手可以在三个互相垂直的方向上作直线伸缩运动,这类机械手各个方向的运动是独立的,计算和控制比较方便,但占地面积大,限于特定的应用场合,有较多的局限性。 2、圆柱坐标机器人 圆柱坐标型机器人的结构如下图所示,R、θ和x为坐标系的三个坐标,其中R、是手臂的径向长度,θ是手臂的角位置,x是垂直方向上手臂的位置。如果机器人手臂的径向坐标R保持不变,机器人手臂的运动将形成一个圆柱表面。

工业机器人的五大机械结构和三大零部件解析

工业机器人的五大机械结构和三大零部件解析 根据国际机器人联合会(International Federation of Robotics;简称IFR)定义,机器人分为工业机器人(Industrial Robots)及服务型机器人(Service Robots)。其中,目前工业机器人又佔全球机器人80%的市佔率,远高于服务型机器人。 若以机械结构来看,工业机器人可区分为单轴机器人、座标机器人、水平多关节机器人(SCARA)、垂直多关节机器人以及并联式机器人(DELTA)等,以下依序就这五种类型来说明。 一、工业机器人之五大机械结构 1. 单轴机器人 单轴机器人一般分为两种传动方式,一为滚珠螺杆传动,二为同步齿形带(简称:同步带)传动,两种皆是以直线导轨做为导向,并配合伺服电机或步进电机,来实现不同应用领域的定位、移载、搬运等等。透过不同的组合样式,还可以实现两轴、三轴、龙门式的组合。单轴机器人的应用领域涵盖半导体、家电、医疗、汽车、包装、点胶机、焊接、切割、检测等自动化应用领域,而台湾的上银科技在单轴机器人的市场名列全球前三。 2. 直角座标机器人 直角座标机器人是基于X、Y、Z直角座标,在各座标的长度范围内进行工作或运动,适用于搬运、取放等作业,可应用的领域包括射出成型机取出用手臂、移动并定位、堆迭、锁螺丝、切割、装夹、压入、插取、装配、自动药房等。 台湾机器人相关业者数量约有80家,现有40家以上的业者可从事座标机器人相关设备的设计开发,所使用的关键零组件国产化程度较高。在射出成型机取出用机械手臂中,天行自动化(Alfa)与台湾精锐(Apex)为该领域之领先业者,并在中国大陆具有一定的市场佔有率。 3. 水平多关节(SCARA)机器人

机器人地组成系统

一.工业机器人组成系统 工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括腰部、肩部、肘部和手腕部,其中手腕部有3个运动自由度。驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作。控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。 几个问题: (1)巨轮机器人JLRB20KG机器人是点位型还是连续轨迹型? (2)能不能编写一个简单程序,使机器人能够的末端能够走一个圆? (3)能不能控制机器人中每一个电机的输出功率或扭矩? (4)机器人每一个关节从驱动电机到执行机构的传递效率有没有? 二.工业机器人的主体 机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。机器人采用电机驱动,电机分为步进电机或直流伺服电机。直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。 各部件组成和功能描述如下:

水平多关节机器人设计 毕业设计开题报告

本科生毕业设计(论文) 开题报告 学生姓名: 沈维堂 学号: 14021217 班级: 140212 专业: 机械工程及自动化 指导教师: 张宏颖

开题报告 课题名称:水平多关节型工业机器人设计 ——机身与大臂结构及控制系统设计一、课题介绍: 课题背景: 据有关专家介绍,机器人充分体现了人和机器的各自优长,它比传统机器具有更大的灵活性和更广泛的应用范围。机器人的出现和应用是人类生产和社会进步的需要,是科学技术发展和生产工具进化的必然。 在制造业中诞生的工业机器人是继动力机、计算机之后而出现的全面延伸人的体力和智力的新一代生产工具,作为现代制造业的主要自动化装备在制造业中广泛应用,并将在未来的制造企业中扮演越来越重要的角色。 机器人及其自动化成套装备已成为目前国内外极受重视的高新技术应用领域。机器人及其自动化成套装备是指以机器人为核心,以信息技术和网络技术为媒介,将所有设备连接到一起而形成的大型自动化生产线。它是先进制造装备的典型代表,是发展先进制造技术实现生产线的数字化、网络化和智能化的重要手段。 据介绍,机器人及其成套设备的应用将使现代制造业产生变革,对改变传统生产模式,全面提升企业的综合竞争力具有重大作用。机器人及其自动化成套装备的拥有量和水平是衡量一个国家制造综合实力的重要标志之一。 在机器人中,人(操作者)是不可缺少的重要组成部分,在用这种装置完成一项操作任务的整个过程中,自始至终都必须有人的参加。同时,人通过观察系统对从动部件的工作情况及其周围环境保持直接或间接的视觉监视,从而能充分的依靠人的感觉和智力及时做出判断和决策,以适应工作对象或其周围环境的变化,随机应变地完成那些较为复杂的、或者事先难以预料的操作任务。 目前,机器人已经越来越多、越来越广泛地应用于生产生活的各个方面。金字塔探密,机器人功不可没。美国攻打伊拉克,机器人也发挥了重要作用。中国神州五号的成功发射,充分显示了我国在机器人某个领域的实力。 我国现代工业机器人技术发展现状的研究 1、工业机器人技术概念 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。

六轴关节机器人机械结构

六轴关节机器人机械结构 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般较大。采用空心轴电机的优点是:机器人各种控制管线可以从电机中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋转的影响,是一个值得深入考虑的问题。 机器人的腕部结构常见有如下几种结构:

在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等. 关节设计: 对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美.而国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走.而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段.由于国内做这个行业的很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会^_^),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊^_^毕竟我也是做机械的)少走点弯路,做出更好的机器. 六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动.小型的六轴关节机器人的腕部关节主要采用谐波减速器.下面的图片较为详细的描述了常见的六轴关节机器人的腕部结构.

直角坐标机器人

直角坐标机器人 直角坐标机器人主要由一些直线运动单元,驱动电机,控制系统和末端操作器组成。针对不同的应用,可以方便快速组合成不同维数,各种行程和不同带载能力的壁挂式、悬臂式、龙门式或倒挂式等各种形式的直角坐标机器人。从简单的二维机器人到复杂的五维机器人就有上百种结构形式的成功应用案例。从食品生产到汽车装配等各行各业的自动化生产线中,都有各式各样的直角坐标机器人和其它设备共同严格同步协调的工作。可以说直角坐标机器人几乎能胜任所有的工业自动化任务。下面是其主要特点: 1任意组合成各种结构样式,带载能力和尺寸的机器人, 2采用多根直线运动单元级连和齿轮齿条传动,可以形成几十米的超大行程机器人。 3采用多根直线运动单元平连及各带多滑块结构时其负载能力可增加到数吨。 4 其最大运行速度可达到每秒8米,加速度可达到每秒4米。 5 重复定位精度可达到0.05mm~0.01mm。 6 采用带有RTCP功能的五轴或五轴以上数控系统能完成非常复杂轨迹的工作。 直角坐标机器人的选型 1 使用要求分析 对于选型的人员首先要有物理运动学基础,材料力学基础,伺服驱动使用和数控系统的应用经验,但最主要是把问题和要求等介绍很清楚。对于简单任务和有经验的工程师通过电话和邮件就可以沟通好,而对复杂的任务要到现场双方共同分析和制定任务描述,给出具体合理的要求。下面是主要的数据和信息: 机器人的工作任务, 手抓和负载的总重量, 一个完整的工作周期是多少秒,可能分解成的子运动及对应的时间, 运动和取抓过程中与其它设备的同步/握手要求, 各个运动轴的有效运动长度及允许的最大运行速度, 机器人工作周围空间上的限制, 使用环境有粉末,高温,湿度等特殊防护要求, 2 机器人结构形式选择 根据前面“使用要求分析”中获得的信息资料来选择机器人的结构形式。原则上尽可能选择龙门式直角坐标机器人,但有时受工作空间限制必须选择悬臂式。在食品搬运和玻璃切割等项目中会产生大量粉末,伤害运动轴里面的导轨,此时最好采用吊挂式机器人。有时根据负载及运动距离和空间限制必须选用挂臂式。根据机器人的工作任务来确定负载的运动位置精度要求,要考虑减速时晃动产生的位置误差。根据机器人的工作任务及其工作空间上的限制来确定运动轴数量及各自运动行程。 3 规划运动轨迹及计算运动速度 根据机器人的工作任务和空间限制来规划运动轨迹。尽可能减少运动距离,对工作周期要求严的应用要尽可能运用多轴同时运动来减少运动时间和降低运动速度。抓取负载后运动速度要低,空载返回原始点时要快。负载大时加速度和减速度要小,尽可能避免产生巨大的冲击力。根据上面的原则给出各段运动的速度,加速度和减速度。各个运动段间尽可能平稳变速以保证工作周期,减少冲击力和运行噪音。在运动速度分配时要充分考虑各个运动过程与其它设备间的同步协调时间,而且规划的运动时间要比用户要求的时间短些。 4 受力分析 根据速度分析得出各个轴的最大加速度和减速度。然后再计算出多轴同时运动时产生的合成最大减速度。选择独立运动的减速度和同时运动时合成减速度二者中大的减速度,根据这个

工业机器人的基本组成结构

工业机器人的基本组成结构 工业机器人是面向工业领域的多关节机械手或者多自由度机器人,它的出现是为了解放人工劳动力、提高企业生产效率。工业机器人的基本组成结构则是实现机器人功能的基础,下面一起来看一下工业机器人的结构组成。工业机器人,现代工业机器人大部分都是由三大部分和六大系统组成。 1.机械部分 机械部分是机器人的血肉组成部分,也就是我们常说的机器人本体部分。这部分主要可以分为两个系统: (1)驱动系统 要使机器人运行起来,需要各个关节安装传感装置和传动专治,这就是驱动系统。它的作用是提供机器人各部分、各关节动作的原动力。驱动系统传动部分可以是液压传动系统、电动传动系统、气动传动系统,或者是几种系统结合起来的综合传动系统。 (2)机械结构系统 工业机器人机械结构主要由四大部分构成:机身、臂部、腕部和手部,每一个部分具有若干的自由度,构成一个多自由的机械系统。末端操作器是直接安装在手腕上的一个重要部件,它可以是多手指的手爪,也可以是喷漆枪或者焊具等作业工具。 2.感受部分 感受部分就好比人类的五官,为机器人工作提供感觉,帮助机器人工作过程更加精确。这部分主要可以分为两个系统: (1)感受系统 感受系统由内部传感器模块和外部传感器模块组成,用于获取内部和外部环境状态中有意义的信息。智能传感器可以提高机器人的机动性、适应性和智能化的水准。对于一些特殊的信息,传感器的灵敏度甚至可以超越人类的感觉系统。 (2)机器人-环境交互系统 机器人-环境交互系统是实现工业机器人与外部环境中的设备相互联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。也可以是多台机器人、多台机床设备或者多个零件存储装置集成为一个能执行复杂任务的功能单元。 3.控制部分 控制部分相当于机器人的大脑部分,可以直接或者通过人工对机器人的动作进行控制,控制部分也可以分为两个系统: (1)人机交互系统 人机交互系统是使操作人员参与机器人控制并与机器人进行联系的装置,例如,计算机的标准终端、指令控制台、信息显示板、危险信号警报器、示教盒等。简单来说该系统可以分为两大部分:指令给定系统和信息显示装置。 (2)控制系统 控制系统主要是根据机器人的作业指令程序以及从传感器反馈回来的信号支配的执行机构去完成规定的运动和功能。根据控制原理,控制系统可以分为程序控制

机器人的分类

机器人的分类 经过几十年的发展,机器人的技术水平不断提高,应用范围越来越广,从早期的焊接、装配等工业应用,逐步向军事、空间、水下、农业、建筑、服务和娱乐等领域不断扩展,结构形式也多种多样。因此,机器人的分类也出现了多种方法、多种标准,本章主要介绍以下三种分类法。 1.按照机器人的技术发展水平分 按照机器人的技术发展水平可以将机器人分为三代。 第一代机器人是“示教再现”型。这类机器人能够按照人类预先示教的轨迹、行为、顺序和速度重复作业。示教可以由操作员“手把手”地进行,比如,操作人员抓住机器人上的喷枪,沿喷漆路线示范一遍,机器人记住了这一连串运动,工作时,自动重复这些运动,从而完成给定位置的喷漆工作。这种方式即是所谓的“直接示教”。但是,比较普遍的方式是通过控制面板示教。操作人员利用控制面板上的开关或键盘来控制机器人一步一步地运动,机器人自动记录下每一步,然后重复。目前在工业现场应用的机器人大多属于第一代。第二代机器人具有环境感知装置,能在一定程度上适应环境的变化。以焊接机器人为例,机器人焊接的过程一般是通过示教方式给出机器人的运动曲线,机器人携带焊枪走这个曲线,进行焊接。这就要求工件的一致性很好,也就是说工件被焊接的位置必须十分准确。否则,机器人走的曲线和工件上的实际焊缝位置会有偏差。为了解决这个问题,第二代机器人采用了焊缝跟踪技术,通过传感器感知焊缝的位置,再通过反馈控制,机器人就能够自动跟踪焊缝,从而对示教的位置进行修正,即使实际焊缝相对于原始设定的位置有变化,机器人仍然可以很好地完成焊接工作。类似的技术正越来越多地应用在机器人上。 第三代机器人称为“智能机器人”,具有发现问题,并且能自主地解决问题的能力。作为发展目标,这类机器人具有多种传感器,不仅可以感知自身的状态,比如所处的位置、自身的故障情况等等;而且能够感知外部环境的状态,比如自动发现路况、测出协作机器的相对位置、相互作用的力等等。更为重要的是,能够根据获得的信息,进行逻辑推理、判断决策,在变化的内部状态与变化的外部环境中,自主决定自身的行为。这类机器人具有高度的适应性和自治能力。尽管经过多年来的不懈研究,人们研制了很多各具特点的试验装置,提出大量新思想、新方法,但现有机器人的自适应技术还是十分有限的。 2.按机器人的机构特征来分 机器人的机械配置形式多种多样,典型机器人的机构运动特征是用其坐标特性来描述的。按机构运动特征,机器人通常可分为直角坐标机器人、柱面坐标机器人、球面坐标机器人和关节型机器人等类型。 图7-1 直角坐标机器人 (1)直角坐标机器人。直角坐标机器人具有空间上相互垂直的两根或三根直线移动轴(见图7-1),通过直角坐标方向的3个独立自由度确定其手部的空间位置,其动作空间为一长方体。直角坐标机器人结构简单,定位精度高,空间轨迹易于求解;但其动作范围相对较小,设备的空间因数较低,实现相同的动作空间要求时,机体本身的体积较大。主要用于印刷电路基板的元件插入、紧固螺丝等作业。 (2)柱面坐标机器人。柱面坐标机器人的空间位置机构主要由旋转基座、垂直移动和水平移动轴构成(见图7-2),具有一个回转和两个平移自由度,其动作空间呈圆柱形。这种机器人结构简单、刚性好,但缺点是在机器人的动作范围内,必须有沿轴线前后方向的移动空间,空间利用率较低。主要用于重物的装卸、搬运等作业。著名的Versatran机器人就是一种典型的柱面坐标机器人。 图7-2 柱面坐标机器人 (3)球面坐标机器人。如图7-3所示,其空间位置分别由旋转、摆动和平移3个自由度确定,动作空间形成球面的一部分。其机械手能够作前后伸缩移动、在垂直平面上摆动以及绕底座在水平面上转动。著名的Unimate就是这种类型的机器人。其特点是结构紧凑,所占空间体积小于直角坐标和柱面坐标机器人, 但仍大于多关节型机器人。

三自由度直角坐标工业机器人设计论文

沈阳工程学院 课程设计 设计题目:三自由度微型直角坐标工业机器人模型设计 中文摘要 直角坐标机器人具有空间上相互垂直的两根或三根直线移动轴,通过直角坐标方向的3个独立自由度确定其手部的空间位置,其动作空间为一长方体。直角坐标机器人结构简单,定位精度高,空间轨迹易于求解;但其动作范围相对较小,设备的空间因数较低,实现相同的动作空间要求时,机体本身的体积较大。 大型的直角坐标机器人也称桁架机器人或龙门式机器人是能够实现自动控制的、可重复编程的、多自由度的、运动自由度建成空间直角关系的、多用途的操作机。其工作的行为方式主要是通过完成沿着X、Y、Z轴上的线性运动。近年来随着工业机器人的不断发展,工业机器人不断在工业领域得到广泛的应用,尤其是结构简单的直角坐标机器人,本次设计我主要是对三自由度的直角坐标机器人进行设计,完成一个大概的设计,在设计中我采用了各种光电传感器,还采用了C8051F系列单片机作为本次设计的主控芯片,各种算法的实现就是使用这款芯片实现的。随着直角坐标机器人的应用越来越广泛,直角坐标机器人的设计工作日益显得重要。成功的设计一台直角坐标机器人涉及到很多方面的工作,包括机械结构、动力驱动、伺服控制等等。 关键词:三自由度直角坐标机器人单片机硬件软件 - I -

目录 中文摘要...................................................................................................................................................... I 目录 .................................................................................................................................................................. I I 1设计任务描述.. (1) 2 设计思路 (2) 2.1系统总体结构的设计 (2) 2.2系统各环节设计 (2) 3 设计方框图 (3) 4 直角坐标机器人的硬件设计 (4) 4.1单片机最小系统电路设计............................................................................. 错误!未定义书签。 4.2单片机稳压电源设计...................................................................................... 错误!未定义书签。 4.3直流电机驱动设计 ........................................................................................ 错误!未定义书签。 4.4步进电机驱动设计 (6) 4.5机械结构部分 (7) 4.6传感器选择 (8) 5直角坐标机器人的控制设计 (10) 5.1 示教再现功能 (10) 5.2运动控制功能 (10) 6 主要元器件介绍 (11) 7 小结 (12) 8 致谢 (13) 9.参考文献 (14) 附录 (15) - II -

直角坐标机器人说明书

中南大学直角坐标机器人用户手册

目录第一章概述 一、机械部分 二、驱动部分 三、控制系统 第二章设备操作流程 一、设备操作流程 二、常用人机界面说明 第三章驱动器参数设置及报警显示 一、驱动器参数设置 二、报警显示及处理 第四章异常情况及处理 第五章附件 码垛机器人易损件清单

第一章概述 BAHR直角机器人实验平台是基于德国BAHR公司的直角坐标机器人定位系统开发的专门进行各种搬运码垛的自动化设备。该设备主要有以下几个特点: 1、运行过程平稳,无冲击; 2、运行速度快,加减速过程平稳; 3、搬运载荷大,过载能力强; 4、实时通讯,灵活性强; 5、定位精确,采用伺服系统驱动; 6、自动化程度高,PLC运动控制; 7、通过触摸屏操作,简单易用。 BAHR码垛机器人系统主要由BAHR直线定位系统及相关机械结构连接件、数字伺服驱动系统(包括伺服驱动器及伺服电机)、三菱PLC运动控制及相关模块、三菱触摸屏操作四个部分组成。 一、机械部分: BAHR码垛机器人系统的机械核心部件是德国BAHR公司生产的同步齿型带驱动直线定位单元。根据码垛需要的情况,我们将整个运动过程分为X方向运动、Y方向运动,Z方向运动。关于德国BAHR直线定位系统的详细技术指标和结构性能请参考相关说明资料《BAHR直线定位系统选型手册》。 1、X轴定位单元: X轴定位系统单元由两根QLZ60系列定位系统组成,其中一根为同步带驱动的主定位系统,另一根是由同步轴连接辅助定位系统,具体技术指标如下: 1)、主定位系统: 型号:QLZ60 长度:1580㎜

运动行程:1300㎜ 滑块长度:152㎜ 同步带规格:5M25 2)、辅助定位系统: 型号:QLZ60 长度:1580㎜ 运动行程:1300㎜ 滑块长度:152㎜ 同步带规格:5M25 2.Y轴定位单元: Y轴定位单元由一根ELZ60系列定位系统组成, 型号:ELZ60 长度:1290㎜ 运动行程:1000㎜ 滑块长度:170㎜ 3、Z轴定位单元: Z轴定位单元由一根EGT40系列定位系统组成, 型号:EGT40 长度:870㎜ 运动行程:700㎜ 滑块长度:118㎜ 3、定位单元的连接: Y轴定位单元和Z轴定位单元之间由法兰机构规格尺寸可参考相关图纸。

机器人机械手的设计要求要点

机械手的设计要求 机械手总体结构的类型 工业机器人的结构形式主要有直角坐标结构,圆柱坐标结构,球坐标结构,关节型结构四种。各结构形式及其相应的特点,分别介绍如下。 1.直角坐标机器人结构 直角坐标机器人的空间运动是用三个相互垂直的直线运动来实现的.由于直线运动易于实现全闭环的位置控制,所以,直角坐标机器人有可能达到很高的位置精度(μm级)。但是,这种直角坐标机器人的运动空间相对机器人的结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机器人的结构尺寸要比其他类型的机器人的结构尺寸大得多。 直角坐标机器人的工作空间为一空间长方体。直角坐标机器人主要用于装配作业及搬运作业,直角坐标机器人有悬臂式,龙门式,天车式三种结构。 2.圆柱坐标机器人结构 圆柱坐标机器人的空间运动是用一个回转运动及两个直线运动来实现的。这种机器人构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。 3. 球坐标机器人结构 球坐标机器人的空间运动是由两个回转运动和一个直线运动来实现的。这种机器人结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。 4. 关节型机器人结构 关节型机器人的空间运动是由三个回转运动实现的。关节型机器人动作灵活,结构紧凑,占地面积小。相对机器人本体尺寸,其工作空间比较大。此种机器人在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这

种类型的机器人。 手臂的设计要求 机器人手臂的作用,是在一定的载荷和一定的速度下,实现在机器人所要求的工作空间内的运动。在进行机器人手臂设计时,要遵循下述原则; 1.应尽可能使机器人手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机器人运动学正逆运算简化,有利于机器人的控制。 2.机器人手臂的结构尺寸应满足机器人工作空间的要求。工作空间的形状和大小与机器人手臂的长度,手臂关节的转动范围有密切的关系。但机器人手臂末端工作空间并没有考虑机器人手腕的空间姿态要求,如果对机器人手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小于上述没有考虑手腕姿态的工作空间。 3.为了提高机器人的运动速度与控制精度,应在保证机器人手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。力求选用高强度的轻质材料,通常选用高强度铝合金制造机器人手臂。目前,在国外,也在研究用碳纤维复合材料制造机器人手臂。碳纤维复合材料抗拉强度高,抗振性好,比重小(其比重相当于钢的1/4,相当于铝合金的2/3),但是,其价格昂贵,且在性能稳定性及制造复杂形状工件的工艺上尚存在问题,故还未能在生产实际中推广应用。目前比较有效的办法是用有限元法进行机器人手臂结构的优化设计。在保证所需强度与刚度的情况下,减轻机器人手臂的重量。 4.机器人各关节的轴承间隙要尽可能小,以减小机械间隙所造成的运动误差。因此,各关节都应有工作可靠、便于调整的轴承间隙调整机构。 5.机器人的手臂相对其关节回转轴应尽可能在重量上平衡,这对减小电机负载和提高机器人手臂运动的响应速度是非常有利的。在设计机器人的手臂时,应尽可能利用在机器人上安装的机电元器件与装置的重量来减小机器人手臂的不平衡重量,必要时还要设计平衡机构来平衡手臂残余的不平衡重量。 6.机器人手臂在结构上要考虑各关节的限位开关和具有一定缓冲能力的机械限位块,以及驱动装置,传动机构及其它元件的安装。 腰座结构的设计要求

相关文档
最新文档