关于钛及钛合金板国标体系修定的建议

关于钛及钛合金板国标体系修定的建议
关于钛及钛合金板国标体系修定的建议

《钛及钛合金板》(GB/T 3621-200X)

编制说明

一、任务来源及计划要求;

根据全国有色金属标准化技术委员会《关于下达2006 2008年有色金属国家标准修订计划的通知》(有色标委(2006)第13号)的精神,由宝钛集团有限公司起草《钛及钛合金板》国家标准,本标准是对GB/T3621-1994的修订。

二、编制过程,包括编制原则、工作分工、征求意见单位、各阶段工作过程等;

1、标准编制原则:

1)增加部分新牌号;

2)对原标准的尺寸范围和允许偏差进行调整;

3)对原性能指标进行调整。

2、分工:本标准由宝钛集团有限公司负责起草。

3、工作过程

本标准初稿于2006年5月完成,并在网上征求意见,无返回意见。

2006年9月13至16日,在青岛召开了《钛及钛合金板材》预审会。

4、标准会议

2006年9月13日~16日,全国有色金属标准化技术委员会稀有金属、粉末冶金分标委会在青岛市召开了《钛及钛合金牌号和化学成分》等国家标准、行业标准的审定、预审会。来自宝钛集团有限公司、西北有色金属研究院、遵义钛业股份有限公司、抚顺钛业有限公司、北京有色金属研究总院、西部材料股份有限公司、西部超导材料科技有限公司、北京航空材料研究院、宝钢股份特殊钢分公司、沈阳金池钛业有限公司、上海有色金属研究所、中船重工七二五研究所、陕西省凤翔县钛粉厂、西安宝德粉末冶金有限公司、河北省凯美特特种金属粉末有限公司等16家单位的近30名代表参加了会议。会议对宝钛集团有限公司负责起草的国家标准《钛及钛合金板材》(GB/T3621-200×)讨论稿进行了预审,并形成如下意见:

1.标准名称修改为《钛及钛合金板材》;

2.规范性引用文件中GB/T3620(所有部分)修改为GB/T3620.2;

3.表1中增加一条注:当需方在合同中注明时,可供应消应力状态(m)的板材;

4.表5中TA1板材的规定非比例延伸强度范围由140MPa~310MPa修改为138MPa~310MPa。

表5中TA9的力学性能修改为

5. 表6板材高温力学性能中增加厚度范围一列,“抗拉强度”中增加“不小于”;

6.增加3.3.6条:板材不应有分层;

7.按ASTM B265的规定,在表7增加TA8、TA8-1、TA9、TA9-1的弯曲角指标(见下表),

删除表8中TA9的弯曲角规定;

8.对原5.5.1中的化学成分不合格单独规定:“化学成分不合格时,判该批产品不合格”;

9.增加表9,明确规定取样位置和取样数量等;

表9 取样位置和取样数量

10. 4.3.1 “厚度大于6.0mm的板材取R7试样”修改为“厚度6.0~10.0mm的板材取R8试样,厚度大于10.0mm取R7试样”;

三、调研和分析工作的情况

我国近年生产和新开发应用的钛及钛合金牌号较多,但是很多没有国家标准,如TA8、TA8-1、TA9-1、TA11、TA15、TA17、TA18 、TB5、TB6、TB8、TC4ELI各个工厂内根据不同用户分别签订协议,不利于市场推广应用。所以急需对国家标准GB/T3621-94进行修订,增加新牌号。

钛及钛合金板材大量供货主要按GB/T3621-94,近年来,随着国外设备国产化需求,及国际贸易的扩大,用国外标准ASTM B265标准订货的用户在不断增加。但这两个标准之间无论从化学成分、力学性能、工艺性能到试验方法都存在差异,特别是纯钛板材,成分和性能差异很大。需要进行调整,以适应市场需要。

四、主要技术内容的说明,包括技术参数与指标的确定依据、修订标准的各修订

点及其理由等;

1增加新牌号

本次修订增加了11个比较成熟和应用比较广泛的新牌号,TA8、TA8-1、TA9-1、TA11、TA15、TA17、TA18 、TB5、TB6、TB8、TC4ELI。其化学成分、尺寸允许偏差、力学性能、工艺性能,均根据相应的协议技术条件和企标进行确定的。

2 产品状态及尺寸规格

2.1本次国标修订因增加一些β合金和近β合金,供应状态补充固溶状态(ST)。TB5 TB6 TB8交货状态也补充ST。TB2板材供货状态采用ST、STA替换原来的C、CS状态。

2.2热轧板材供货规格修订为4.75~60.0mm。冷轧板材供货规格修订为0.30~6.0 mm。

2.3纯钛和TC4产品厚度规格修订为0.3~25 mm和0.8~25 mm。

3纯钛牌号变化

本次修订时,对纯钛牌号TA0、TA1、TA2、TA3修订为TA1、TA2 、TA3、TA4,删除了TA0。其室温力学性能和弯曲性能指标分别与国际标准和美国标准中的Gr1、Gr2、Gr3、Gr4相对应,其中延伸率指标高于国际和美标。

对我公司历年纯钛产品的化学成份和力学性能进行了统计分析,供应国内市场的TA0、TA1、TA2、TA3和采用国际标准和美国标准供应的Gr1、Gr2、Gr3、Gr4牌号,均可满足本标准所规定的各项技术指标。

4尺寸偏差

4.1 过去GB3621-94尺寸偏差厚度规格划分太多,本次进行了修订。

4.2 厚度>4.0~20.0规格的板材长度允许偏差修订为0~+20。厚度>20.0~60.0规格的板材长宽尺寸允许偏差修订为0~+20和0~+25。

4.3 补充注释:工业纯钛板材供货的最小厚度为0.3mm,各种牌号钛合金供货的最小厚度见表5,其它牌号供货厚度和尺寸规格可由供需双方协商。

5不平度

对于β合金和近β合金因交货多采用ST状态交货,无法进行矫形处理,对不平度要求进行了修改,TB6板材允许有轻微板面波浪,厚度≤4mm时,其不平度不大于50mm。TB5、TB8、TB2厚度≤4mm时其不平度不大于30mm。

6力学性能

6.1 TA10(Ti-0.3Mo-0.8Ni)主要用于耐腐蚀方面,经常用于钛设备制作,爆炸复合板,因此需要良好的塑性,原标准GB/T 3621-94中TA10的抗拉强度指标太高(σb≧485Mpa),对于有些应用受到限制。本次修订增加了一个级别的TA10性能指标(B类),主要供复合板复材选择和使用。

6.2 GB/T 3621-94中规定板材室温力学性能需检测规定残余伸长应力σr0.2 , σr0.2检测不易得到理想的效果,且精度不好。故改为规定非比例延伸强度R

P0.2

6.3 TA9的力学性能和弯曲性能指标引用了ASTM B265的指标。

7供货状态

由于用户实际使用的需求,板材供货状态在M、R、Y态之外,增加m(消应力)等,其性能可报实测或试样进行热处理后的测试性能。

8表面质量

增加砂光表面交货状态,以提高薄板和厚板板面质量。

五、与国外同类标准水平的对比分析;

本标准修订时参照了国际标准ISO 5832-2和美国标准ASTM B265?钛和钛合金带、薄板和厚板的标准规范?中纯钛的室温力学性能和弯曲性能指标,并完全相同。新增加的TB5、TB6、TB8的力学性能和弯曲性能指标与美国AMS标准一致。TC4ELI的力学性能指标与ASTM标准一致。

本标准的板材厚度允许偏差严于ASTM B265标准和日本JIS H 4600标准。

本标准中的可选项――高温力学性能是国际标准、美国标准和日本标准中均没有要求的。

从标准的整体水平看,等同或严于ISO和ASTM标准,属国际先进水平。

表1 纯钛成分和力学性能比较

六、与现行法规、标准的关系

当前我国板材标准除本标准外,还有国标《板式换热器用钛板》(GB/T14845-1993)和有色行业标准《制表用纯钛板材》(YS/T580-2006),该两项标准均属专用标准,且都只含一个纯钛牌号。

目前国家军用标准还有三项:《航空用钛及钛合金板、带材规范》(GJB2505-95)、《超塑成形用TC4钛合金板材规范》(GJB2921-97)和《潜艇用TA5-A钛合金板》(GJB944-90)。

GJB2921和GJB944是专用标准,且均仅有一个牌号;GJB2505所含牌号较多,但其用途是航空等系统军用标准,与国家标准用途不同,而且有些指标比国家标准要求要严格一些。

虽然,目前国家标准和军用标准有好几个,但其测重点不同,用途不同,所包含的牌号也不同。所以本标准与其他标准无冲突。

七、实施标准的要求和措施的建议

本标准修订时,纯钛牌号及性能指标进行了大幅度调整,与原牌号有很大的区别,订货时应注意区分和正确选择牌号。特别是设计部门应认真研究标准,正确选择和使用。

八、参考资料清单

略。

《钛及钛合金板》(GB/T 3621-200X)编制组

2006-9-30

钛合金结构件制造

原题:让“近净成形”结构件飞上蓝天--北航教授王华明 王华明,北京航空航天大学材料学院材料加工工程系主任、材料加工工程学科责任教授、“长江学者特聘教授”。开辟“快速凝固激光材料制备与成形”研究新领域,建成先进的“激光材料加工制造技术实验室”,在先进材料快速凝固激光制备加工与成形制造领域取得多项原创性成果并在航空发动机及飞机上得到应用。2000年来主持“国家自然科学基金重点项目”、“国家863计划课题”“教育部跨世纪优秀人才计划基金”、“总装武器装重点基金”、“国防基础科研重点项目”等科研项目10余项,发表论文被SCI及EI收录137篇次、授权与申请发明专利7项、获得“北京市教学成果一等奖”及“国家教学成果二等奖”。2013年入选国家“万人计划”第一批科技创新领军人才。 当前,“绿色浪潮”席卷全球,推行绿色制造技术,实现制造过程的环保、绿色化已是题中之义。而“增材制造”在这一浪潮的影响下受到日益广泛的关注。北京航空航天大学的王华明教授及其带领的科研团队在大型钛合金结构件激光直接制造技术领域取得令人瞩目的成绩,并且在航空航天装备应用中取得了重要突破。 从“减法”到“加法” 实现质的飞跃 高性能金属构件激光成形技术是以合金粉末为原料,通过激光熔化逐层堆积(生长),从零件数模一步完成高性能大型复杂构件的“近净成形”。这一技术1992年在美国首先提出并迅速发展。由于高性能金属构件激光成形技术对大型钛合金高性能结构件的短周期、低成本成形制造具有突出优势,在航空航天等装备研制和生产中具有广阔的应用前景,受到政府和业界的高度关注。 在王华明教授看来,从传统的大型钛合金结构件制造方法,如整体锻造、切削技术,到这种新型的激光直接制造技术,实现了加工技术由“减法”到“加法”的质的飞跃。采用整体锻造等传统方法制造大型钛合金结构件,是一个做“减法”的过程。零件的加工除去量非常大。例如,美国的F-22飞机中尺寸最大的Ti6Al4V 钛合金整体加强框,所需毛坯模锻件重达 2796千克,而实际成形零件重量不足144千克,材料的利用率不到4. 90%,这势必造成大量的原材料损耗。与此同时,在铸造毛坯模锻件的过程中会消耗大量的能源,也降低了加工制造的效率。

钛及钛合金牌号和化学成分汇总

《钛及钛合金牌号和化学成分》(2009/11/30 15:05) (引用地址:未提供) 目录:行业知识 浏览字体:大中小 《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗 TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。

钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。

国内及国外钛及钛合金标准

国内及国外钛及钛合金标准

国内及国外钛及钛合金标准 序号标准名称标准号代替标号 1 海绵钛ASTM B299-2008 2 外科植入物用钛及钛合金加工材ASTM F67:2006 3 钛及钛合金网篮YS/T 577-2006 4 工业流体用钛及钛合金管YS/T 576-2006 5 冷凝器和热交换器用无缝和焊接钛及钛合金管ASTM B338:2010 ASTM B338:1999 7 无缝和焊接钛及钛合金管ASTM B337:1995a 8 钛及钛合金线材ASTMB863:1999 9 钛及钛合金标准焊接管ASTMB862:2009 ASTMB862:1999 10 钛及钛合金标准无缝管ASTMB861:2010 ASTMB861:1999 11 钛及钛合金锻件ASTMB381:2010 ASTMB381:2009 12 钛及钛合金铸件ASTMB367:1993 13 无缝和焊接纯钛及钛合金焊接配件ASTMB363:2006a ASTMB363:1999 14 钛及钛合金棒和坯锭ASTMB348:2010 ASTMB348:1995 15 冷凝器和热交换器用无缝和焊接钛及钛合金管ASTMB338:1999 1 钛及钛合金牌号和化学成分GB/T 3620.1-2007 GB/T 3620.1-1994 2 钛及钛合金加工产品化学成分允许偏差GB/T 3620.2-2007 GB/T 3620.2-1994 3 钛及钛合金饼和环GB/T 16598-1996 4 外科植入物用钛及钛合金加工材GB/T 13810-2007 GB/T 13810-1997 5 钛及钛合金铸锭GB/T 26060-2010 6 钛及钛合金铸件GB/T 6614-1994 GB/T 6614-1986 7 换热器及冷凝器用钛及钛合金管GB/T 3625-2007 GB/T 3625-1995 8 钛及钛合金无缝管GB/T 3624-2010 GB 3624-1995 9 钛及钛合金焊接管GB/T 26057-2010 10 钛及钛合金挤压管GB/T 26058-2010 11 钛及钛合金丝GB/T 3623-2007 GB/T 3623-1998 12 钛及钛合金带、箔材GB/T 3622-1999 GB 3622-1983 13 钛及钛合金板材GB/T 3621-2007 GB/T 3621-1994 14 板式换热器用钛板GB/T 14845-2007 GB/T 14845-1993 15 钛及钛合金网板GB/T 26059-2010 16 钛及钛合金棒材GB/T 2965-2007 GB/T 2965-1996 17 钛铜复合棒GB/T 12769-2003 GB/T 12769-1991

钛合金轧制影响因素资料

轧制压力的影响因素 影响轧制压力的主要因素有: (1)绝对压下量在轧辊直径和摩擦系数相同的条件下,随着绝对压下量的增加,轧件与轧辊的接触面积加大,轧制压力增加。同时接触弧长增加,外摩擦的影响加剧,平均单位压力增加,轧制压力也随之增大。 (2)轧辊直径在其他条件一定时,随着轧辊直径的加大,接触面积增加,同时接触弧长增加,外摩擦的影响加剧。因而,轧制压力增大。 (3)轧件宽度随着轧件宽度的增加,接触面积增加,轧制压力增大。 (4)轧件厚度随着轧件厚度的增加,轧制压力减小;反之,轧件愈薄,轧制压力愈大。 (5)轧制温度随着轧制温度的升高,变形抗力降低,平均单位压力降低,轧制压力减小。 (6)摩擦系数随着摩擦系数的增加,外摩擦影响加大,平均单位压力增加,轧制压力增大。 (7)轧件的化学成分在相同条件下,轧件的化学成分不同,金属的内部组织和性能不同,轧制压力也不同。 (8)轧制速度热轧时随着轧制速度的增加,变形抗力增加。冷轧时随着变形速度的增大、轧件温度的升高变形抗力有所降低。 轧制压力 轧制压力:辊加于轧件使之产生塑性变形的力。但通常把轧件作用于轧辊上并通过压下螺丝传递给机架的力称为轧制力,即是轧件加于轧辊的反作用力的垂直分量。轧制力在我国习惯称为轧制压力或轧制总压力。正确测定和计算轧制力,对于设计和使用轧机有重大意义。 影响轧制力的因素有两类:(1)影响轧件材料在简单应力状态下变形抗

力σ0的因素,如化学成分、组织、轧制温度和速度、加工硬化等。(2)影响变形应力状态的因素,如轧辊直径、轧件尺寸、表面摩擦、外力(张力或推力)等。确定轧制力的方法有理论计算、经验公式计算和实测法三种。 在熔炼TiNiCr低温超弹性合金(形状记忆合金)时,对Ti、Ni、Cr、C、H、O、N成份的控制,是获得理想合金的关键。首先O含量的增加不仅使相变温度下降,而且使记忆性能和力学性能恶化。O在高温下与Ti发生反应,熔炼时尤为剧烈,同时O和Ti生成的化合物一般是不可逆的,所以要严格控制熔炼时材料中的氧平衡量。还有Ti和耐火材料几乎都会发生反应。其次C含量对TiNiCr低温超弹性合金的力学性能影响不明显,但对热弹性马氏体的相变有影响,C在Ni中有大的溶解度,形成的TiC会阻碍孪晶界的运动及马氏体的再取向,使相变滞后扩大,回复率下降,对形状记忆效应和超弹性都不利。而且,C和单质Ti和Ni均反应,使TiNi合金中的C含量增加,然而C和TiNi合金的反应并不剧烈,可使C质量分数控制在0.05%左右。碳质量分数控制在0.05%左右。所以通常使用三高石墨坩埚真空感应熔炼制备合金锭,这样可降低熔炼时碳的污染,保证碳和氧的含量小于500p。g/L。 固溶热处理:

钛及钛合金的分类

钛及钛合金的分类 市场供货的钛产品主要有工业纯钛和钛合金两大类: 一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。由于存在着杂质,所以工业纯钛中也存在着少量的B相。基本上是沿着晶界分布。 工业纯钛按GB/T3620.1—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七个标准)。并且与ISO和美国的ASTM标准相对应,例如TA1对应Gr1, TA2对应Gr2, TA3对应Gr3, TA4对应Gr4。这样有利于各个行业在选材和应用上明晰各国标准的参照,也有利于在技术和商贸上与国际上的交流。 表1 钛及钛合金牌号和化学成分

钢管公称直径外径壁厚和理论重量表

依据《给水排水制图标准》(GB/T50106-2001)第节管径中有关规定: 1、水煤气输送钢管(镀锌和非镀锌)、铸铁管等管材,管径标注为DN(mm); 2、无缝钢管、焊接钢管(直缝或螺旋缝)、铜管、不锈钢管等管材,管径标注为外径Dx壁厚; 3、钢筋混凝土(或混凝土)管、陶土管、耐酸陶瓷管等管材,管径标注为d; 4、塑料管材,管径宜按产品标准的方法标注;当设计用DN标注管径时,应有DN 与相应产品规格对照表。 塑料管管径按产品标准的方法标注一般以外径表示,如UPUC管标注为de,HDPE管标注为De。 1. 总则 本标准规定了石油化工企业用DN10-DN2000的碳钢素钢、合金钢、奥氏体不锈钢无缝钢管及焊接钢管的尺寸系列。 本标准适用于石油化工企业中的一般钢制管道。本标准不适用于仪表用管道。 本标准代替《钢管的公称直径、外径和壁厚》(BA3-4-1-92)。 2. 引用标准

GB8163 输送液体用无缝钢管 GB9948 石油裂化用无缝钢管 GB6479 化肥设备用高压无缝钢管 GB5130 高压锅炉用无缝钢管 GB/T14976 流体输送用不锈钢无缝钢管 GB/T3091 低压流体输送用镀锌焊接钢管 GB/T3092 低压流体输送用焊接钢管 GB/T14980 低压流体输送用大直径电焊钢管 SY/T5037 普通流体输送管道用螺旋埋弧焊钢管 SH3405 石油化工企业钢管尺寸系列 GB3274 普通碳素结构钢和低合金结构钢热轧厚钢板技术条件GB912 普通碳素结构钢和低合金结构钢薄钢板技术条件 GB6654 压力容器用碳素钢和低合金钢厚钢板 GB3531 低温压力容器用低合金厚钢板技术条件

我国钛及钛合金板材未来发展趋势

我国钛及钛合金板材未来发展趋势 智研数据研究中心网讯: 内容提要:随着我国石油、化工等行业对设备的要求越来越高,以及制造业整体水平的快速提升,加之国内需求拉动与国际产业转移的“双重动力”带动下,我国钛材制造业从中长期市场上看,将继续保持快速稳定增长的良好势头。钛板带材作为钛材的重要支柱,产量将会进一步扩大。生产企业要紧抓这一机遇,并逐渐向新产品新业务转移,获得更大的发展空间。 内容选自智研数据研究中心发布的《2012-2016年中国钛行业运营态势及投资前景分析报告》 近年来,我国钛材的需求量迅速增加,已成为继美国和欧洲之后的第三大钛产品消费国。另据相关统计数据分析目前整个钛及钛合金板带材市场应用情况,最大用户是石油化工领域,约占钛板带材消耗总量的60%,其他依次为航空航天领域,约占15%,体育用品行业占6%,海水淡化、核电领域占5%,舰船及海洋工程装备领域占5%,其它领域约占9%。 2007 年我国钛加工材产量为23 640 t,其中钛板材产量为10 552 t,占44. 6%;2008 年我国钛加工材产量为27 737 t,其中钛板材产量为14 707 t,占53%,比上年产量上升了39. 4%;2009 年我国钛加工材产量为24 965 t,其中板材产量为12 067 t; 保守估计2010 年我国钛加工材生产量将达到30 000 t,其中板材产量为16 000 t,板材产量的增长率远高于整个钛加工材的产量增长率。今后,国内各应用领域对钛材需求仍将持续快速增加,继续保持两位数增长态势。 我国的大飞机计划、嫦娥登月计划、太空站计划、核电发展计划以及国家“十二五”发展规划对新型能源开发、高端装备制造业扶持与鼓励,这些为钛板带材提供了前所未有的发展空间和历史契机,同时又对钛板带材提出了更高的要求。 具体表现在: ①在品种方面,对钛带及焊管用薄钛板带需求增大; ②在规格方面,对于宽幅厚钛板( 宽2 000 ~2 500 mm,厚4 ~10 mm) 、宽幅薄钛板( 宽 1 000 ~1 500 mm,厚0. 4 ~3. 5 mm) 及10 ~70 mm 厚的宽幅( 2 400 mm 以上) 厚钛板材的需求日趋增长,而目前我国大部分的钛板生产企业,其装备能力无法满足这些超大、超厚规格的要求,因此未来的两年内,宽幅、超厚钛板材的市场前景良好; ③在化学成分方面,要求均匀化,且铁、氧等杂质含量控制范围窄幅化; ④表面光洁,组织细小均匀,力学性能优异,可满足航空航天、石油化工和核电等行业的苛刻要求。

钛及钛合金牌号

钛及钛合金牌号、特性及应用 Ti-6Al-4V 属于热处理强化的钛合金,它具有较好的焊接性薄板成型性和锻造性能。用于制造喷气发动机压缩机叶片,叶轮等。其他如起落架轮和结构件,紧固件,支架,飞机附件,框架、桁条结构、管道,应用非常广泛。 Ti-5Al-2.5Sn 锻造时抗裂纹的能力较好,成型性尚可,焊接性良好,热处理不能强化。用于传动齿轮箱外壳,喷气发动机外壳装置及导向叶片罩,管道结构等。 Ti-8Al-1Mo-1V 成型性及锻造时抗裂纹的能力尚可,焊接性好,但不可热处理强化。用地制作喷气发动机叶片,叶轮和外壳,陀螺仪万向导向叶片罩,喷管装置的内蒙皮和框架等。 Ti-6Al-6V-2Sn 属于可热处理强化的钛合金,锻造时抗裂纹的能力好,但焊接性差。用于制造紧固件,入风口控制导向装置,试验结构件。 Ti-13V-11Cr-3Al 属于可热处理强化的钛合金,成型性良好,锻造时有一定抗裂纹能力,焊接性尚可,用作结构锻件,板状桁条结构,蒙皮,框架、支架、飞机附件,紧固件。 Ti-2.25Al-11Sn-5Zr-1Mo-0.2Si 属于可热处理强化的钛合金,锻造时抗裂纹的能力好,用于制造喷气发动机叶片,叶轮,起落架滚轮,飞机骨架、紧固件等。 Ti-6Al-2Sn-4Zr-2Mo 成型性焊接性好,锻造时有良好的抗裂纹能力,但不热处理强化。用于制造压缩机叶片,叶轮,起落架滚轮,隔圈压气机箱组合件,飞机骨架,蒙皮构件等。 Ti-4Al-3Mo-1V 属于可热处理强化的钛合金,锻造性、成型性好。用于制造飞机骨架构件。 IMI125 IMI130 IMI160 工业纯钛,抗蚀性优异,比强度较高,疲劳极限较好,锻造性好,可用普通方法锻造、成形和焊接。可制成板、棒、丝材。应用于航空、医疗、化工等方面,如排气管,防火墙、受热蒙皮以及要求塑性好、能抗蚀的零件 IMI317 属于α型钛合金,可焊接,在315~593℃具有良好的抗氧化性、强度和高温稳定性,可制造锻件及板材零件,如航空发动机压气机叶片、壳体、支架。 IMI315 属于α+β型钛合金,可热处理强化,用于航空发动机压气机盘和叶片、导弹部件等。IMI318 α+β型合金,锻造性及综合性能良好,是各国普遍使用的钛合金,用于航空发动机压气机盘和叶片等部件。 IMI550 α+β型钛合金,易锻造,室温强度好,蠕变抗力较高(400℃以下),持久强度高,广泛用于制造发动机及机翼滑轨,动力控制装置外壳等。 IMI551 属于α+β型钛合金高强度钛合金,它具有强度高、蠕变极限高(400℃以下),锻造性

钛合金在多领域的应用与发展

上海大学 本科生课程论文论文题目:钛合金在多领域的应用与发展 课程名称: 课程号: 学生姓名: 学生学号: 所在学院:材料科学与工程学院 日期:2015.05.24

摘要:钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。本文综述了钛合金在航空航天飞行器、热氢处理、发动机、高温钛合金、生物医用材料等方面的应用与发展。 关键词:钛合金;航空;氢;发动机;生物医用材料 钛合金在航空方面的应用与发展 钛合金具有比强度高、耐腐蚀性好、耐高温等优点。从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波音777为7%,运输机C-17为10.3%,战斗机F-4为8%,F-15为25.8%,F-22为39%。 高性能航空发动机的发展需求牵引着高温钛合金的发展,钛合金的使用温度逐步提高,从20世纪50年代以Ti-6Al-4V合金为代表的350℃,经过IMI679和IMI829提高到了以IMI834合金为代表的600℃。目前,代表国际先进的高温钛合金有美国的Ti-6242S,Ti-1100,英国的IMI834,俄罗斯的BT36以及中国的Ti-60。表2为600℃主要高温钛合金的成分及性能特点。 Ti-6242S(Ti-6Al-2Sn-4Zr-2Mo-0.1Si)钛合金是美国于20世纪60年代为了满足改善钛合金高温性能的需要,特别是为了满足喷气发动机使用要求而研制的一种近α型钛合金。合金的最高使用温度为540℃,室温的σb=930 MPa。特点是具有强度、蠕变强度、韧性和热稳定性的良好结合,并具有良好的焊接性能,主要应用于燃气涡轮发动机零件,发动机结构板材零件,飞机机体热端零件。 BT36(Ti-6.2A1-2Sn-3.6Zr-0.7Mo-0.1Y-5.0W-0.15Si)合金是俄罗斯于1992年研制成功的一种使用温度在600~650℃的钛合金。合金中加入了5%W和约0.1%Y。加入W对提高合金的热强性有明显作用。加入微量Y可以明显地细化合金的晶粒,改善了合金的塑性和热稳定性。 Ti60(Ti-5.8 Al-4.8 Sn-2.OZr-1.0 Mo-0.35Si-0.85Nd)合金由中国科学院金属研究所在Ti55合金基础上改型设计、宝鸡有色金属加工厂参与研制的一种600℃高温钛合金。Ti60合金的特点之一是合金中加入了1%Nd(质量分数),通过内氧化方式形成富含Nd、Sn和O的稀土相,降低基体中的氧含量,从而起到净化基体,改善合金热稳定性的作用。Ti60合金已进行了半工业性中试试验(包括压气机盘模锻)和全面性能测定。 根据国内外研究现状,未来高温钛合金的发展趋势是:(1)研制600℃以上的新型高温钛合金。可对现有高温钛合金的成分进行调整,改进加工工艺,或研发新的高温钛合金,提高高温钛合金的使用温度。(2)稀土元素在高温钛合金中的作用尚待进一步研究。我国研制的含稀土元素的高温钛合金其使用温度已达到600℃,其各项性能显示均为良好。但稀土元素在合金

宽幅细晶TC4钛合金薄板的制备及其性能研究

INDUSTRIAL HEATING 2015年第44卷第4期Vol . 44 No . 4 2015 DOI:10.3969/j.issn.1002-1639.2015.04.013 宽幅细晶TC4钛合金薄板的制备及其性能研究 邢秋丽,党 鹏,邓家彬,陈钧伟,谢文龙 (西部钛业有限责任公司,陕西西安710201) 摘要:研究了退火温度对成品板材组织、晶粒尺寸、室温力学性能的影响,并对板材进行了超塑拉伸试验研究。研究结果表明:在普通退火方式下,板材横纵向的抗拉强度和屈服强度随退火温度的升高而减小,延伸率呈现先增大后减小的趋势,在780 ℃时强度和塑性得到了良好的匹配;随退火温度的升高,初生α的晶粒尺寸略有增大。超塑拉伸试验结果表明:在温度为910 ℃,初始应变速率为4×10-4 s -1,板材最大延伸率达到789%。 关键词:TC4钛合金;显微组织;退火温度;超塑性中图分类号:TG166.5 文献标志码:A 文章编号:1002-1639(2015)04-0040-03 Influence of Heat Treatment Process on Structure and Performance of TC4Titanium Alloy Sheet XING Qiuli ,DANG Peng ,DENG Jiabin ,CHEN Junwei ,XIE Wenlong (Western Titanium Technologies Co.Ltd.,Xi ’an 710201,China) Abstract:The influences of annealing temperature on the microstructure ,grain size and room temperature mechanical properties of TC4titanium alloy sheet were studied.Also ,the super plastic tensile test of the alloy sheet was investigated.The experimental results show that the tensile strength and yield strength of alloy sheet decreased with the raising of annealing temperature not only in transverse but also longitudinal.However ,the elongation firstly increased and then decreased with the raising of annealing temperature.Then it can be seen that the optimal annealing temperature is 780℃because that the strength and elongation get a well match at this temperature.The grain size of primary αincreased slightly with the raising of annealing temperature.The maximum elongation of alloy sheet can be up to 789% at the superplastic tensile test conditions of 910℃annealing temperature and 4×10-4s -1initial strain rate.Key words:TC4titanium alloy ;microstructure ;annealing temperature ;superplasticity ——————————————————————————————————————————— —————————————————————————————— 收稿日期:2015-05-06 作者简介:邢秋丽(1968—),女,本科,高级工程师,主要从 事稀有金属加工. 钛合金由于具有高的比强度和良好的耐热、抗腐 蚀性能,在航空、航天、化工、船舶、医疗等行业中得到广泛应用[1-3]。随着航空航天工业的发展,对高强度低密度材料的需要日益迫切,钛合金已成为新型飞机和航天器中不可缺少的结构材料。其中以TC4钛合金应用最为广泛,但是TC4钛合金的加工变形抗力高,屈强比大,加工回弹严重,成形加工较困难,用常规的冲压、弯曲、锻造加工方法很难加工出航空航天所需要的高强度高精度零件[4-6]。利用TC4钛合金超塑成形技术可以克服其常规成形中的一些困难和缺点,成形形状复杂、具有薄腹板高筋的大型航空结构件,而且成形后的零件没有回弹、精度高[7-8]。本文的目的是优化宽幅细晶TC4钛合金板材的热处理工艺,获得综合性能良好的TC4钛合金薄板,同时对该板材进行超塑拉伸试验,获得最佳超塑工艺,为宽幅细晶TC4钛合金薄板的工业生产提供参考。 1试验方案与方法本实验用普通TC4钛合金板坯为原料,相变点为980~985℃。板坯在2800mm 四辊可逆热轧机上进行两火次热轧得到20mm 半成品板坯,两火次的变形量分别为75%和65%,然后进行β淬火,之后再进行两火次热轧得到4mm 半成品板坯,半成品板坯经去应力退火和表面处理后,在1780mm 冷轧机进行2个冷轧程轧制得到尺寸为2mm ×1500mm ×2000mm 的宽幅TC4板材。 实验用到的热处理设备为电阻退火炉。板材经热处理后取样,用微机控制电液伺服万能试验机测试室温力学性能,用OLYMPUS PMG3金相显微镜观察其微观组织。超塑性拉伸试验在SANS-CMT4104型微机控制电子万能试验机上进行,采用的高温实验装置为吉林三度实验设备有限公司制造,均热带长度为30mm ,横梁移动速度在0.001~500mm/min 之间连续可调。为了防止在高温变形时产生氧化,拉伸试样采用BDJ-1玻璃防护润滑剂涂抹保护。 2 试验结果及讨论 2.1 退火温度对TC4薄板力学性能的影响 TC4薄板在电阻炉中进行普通退火,分别经过720、 40

钛及钛合金简介

钛(Ti) 一、简介 钛化学符号Ti,被认为是一种稀有金属,是一种银白色的过渡金属,其特征为重量轻、强度高、具金属光泽。钛具有稳定的化学性质,有良好的抗腐蚀能力(包括海水、王水及氯气,而且钛放入海底20~50年均不会被腐蚀),亦有良好的耐高温、耐低温、抗强酸、抗强碱,以及高强度、低密度等优秀特性。 二、相关参数 1.钛的强度大,纯钛抗拉强度最高可达180kg/mm2,钛合金有好的耐热强度、低温韧性和断裂韧性, 其“比强度”位于金属之首。 2.钛的密度为,熔点1668±4℃,熔化潜热千卡/克原子,沸点3260±20℃,汽化潜热千卡/克原子, 临界温度4350℃,临界压力1130大气压。 3.钛的导热性和导电性能较差,近似或略低于不锈钢,钛具有超导性,纯钛的超导临界温度为。在 25℃时,钛的热容为卡/克[5] 原子·度,热焓1149卡/克原子,熵为卡/克原子·度。 4.金属钛是顺磁性物质,导磁率为。 5.钛具有可塑性,高纯钛的延伸率可达50-60%,断面收缩率可达70-80%。 三、钛的十大特性 1.密度小,比强度高,金属钛的密度为立方厘米,高于铝而低于钢、铜、镍,但比强度位于金属之 首。 2.耐腐蚀性能,不受大气和海水的影响。在常温下,不会被7%以下盐酸、5%以下硫酸、硝酸、王水 或稀碱溶液所腐蚀。 3.耐热性能好,新型钛合金可在600℃或更高的温度下长期使用。 4.耐低温性能好,在-196-253℃低温下保持较好的延性及韧性,避免了金属冷脆性。 5.抗阻尼性能强,钛受到机械振动、电振动后,与钢、铜金属相比,其自身振动衰减时间最长。 6.无磁性、无毒,钛是无磁性金属,在很大的磁场中也不会被磁化,且无毒。 7.抗拉强度与其屈服强度接近,钛的这一性能说明了其屈强比(抗拉强度/屈服强度)高,表示了金 属钛材料在成形时塑性变形差。由于钛的屈服极限与弹性模量的比值大,使钛成型时的回弹能力 大。 8.换热性能好,金属钛的导热系数虽然比碳钢和铜低,但由于钛优异的耐腐蚀性能,所以壁厚可以 大大减薄,而且表面与蒸汽的换热方式为滴状冷凝,减少了热组,钛表面不结垢也可减少热阻, 使钛的换热性能显著提高。 9.弹性模量低,钛的弹性模量在常温时为,为钢的57%。 10.吸气性能,钛是一种化学性质非常活泼的金属,在高温下可与许多元素和化合物发生反应。钛吸 气主要指高温下与碳、氢、氮、氧发生反应。 四、应用领域

高强钛合金的发展与应用

高强钛合金的发展与应用 王鼎春 (宝钛集团有限公司,陕西宝鸡721014) 摘要:高强钛合金已成为钛合金发展和应用的主要方向之一。本文介绍了高强钛合金的发展与应用现状,着重分析了美国、俄罗斯高强钛合金的发展、现状及应用,探讨了高强钛合金的发展方向,最后对高强钛合金的发展趋势进行了展望。 关键词: 高强;钛合金;应用;发展 中图法分类号:TG146.2+3 文献标识码:A The development and application of high-strength titanium alloys Wang Dingchun (Baoti Group Ltd., Baoji 721014, China) Abstract:The history of development and application of high-strength titanium alloys were reviewed.with the emphases on the cases of the United States and Russia. The development trends of those alloys were discussed. Finally the future trends in high-strength research are proposed. Keywords: high-strength, titanium alloys, development, application 1 前言 钛及钛合金由于比强度高、耐蚀性好等特点,在承力结构材料方面得到了越来越广泛的应用。上世纪五十年代初,钛在飞机上获得成功地应用,虽然当时每架飞机的用钛量只占飞机结构重量1%,可是开拓了钛在宇航工业中应用的广阔前景。现在世界上各种高速飞行器(飞机、火箭等)都广泛的采用高强钛合金作为结构材料,尤其是在宇航结构件中应用越来越多,如战斗机的用钛比例已从最初的1%提高到现在的41%。目前高强钛合金[1~4]已成为钛合金发展和应用的主要方向之一。所谓高强钛合金是指经热处理后室温强度大于1100MPa的钛合金,它包括:热处理强化马氏体α+β型合金,近亚稳β型钛合金和亚稳β型钛合金三种类型,主要用来代替飞行器结构中常用的高强结构钢,可减轻结构重量的30~40%,这些合金如美国的Ti-4Al-3Mo-1V、Ti-62222S、Ti-1023、Ti-15V-3Cr-3Sn-3Al、β21S等合金;俄罗斯的BT14、BT15、BT16、BT22、BT23、BT35等合金;中国的TB2、TB3、TB5、TB6、TB8、Ti-62A、TC18、TC21、BTi-6554等合金。 2各国高强钛合金发展现状 单纯靠合金化强化的钛合金,其室温拉伸强度一般不超过1100MPa,如果需要更高强度的结构钛合金,则必须发展可热处理强化的钛合金。热处理强化钛合金,在保持所需塑性的情况下,有可能将室温拉伸强度提高到1500MPa。40余年来,钛合金的发展取得了巨大成就,抗拉强度从300~400MPa提高到1500MPa 左右,从而在航空工业上的应用迅速增加,广泛应用于各种飞机和发动机上,在F-22战斗机和V2500发动机上的的用量分别占到结构重量的41%和31%。可以说,钛合金在现代飞机上的应用,已经成为航空业发展的重要标志之一。 20世纪80年代以来,为满足飞机结构用钛的需求,高强钛合金获得了长足发展,其中对高强钛合金研究最广泛、生产量最大和应用量最多的应属美国和俄罗斯,已形成了各自发展且各具特色的局面。俄罗斯研究人员研究了[Mo]当量对钛合金拉伸强度的影响,如图1所示。从图中可以看出,退火钛合金的强度性能,随着钼当量增加到10~11%而提高,这时合金组织大致为相等数量的α和β相,然后强度下降。固溶时效钛合金的拉伸强度随着钼当量增加到12~14%而提高,然后下降。这种规律性是由以下情况决定的,当钼当量增加到临界浓度时,淬火时形成的亚稳定β相的数量增加,因此,为获得高强度钛合金,

典型钛及钛合金的组织与性能综述

典型钛及钛合金的组织 与性能综述 Document number:BGCG-0857-BTDO-0089-2022

典型钛合金的组织与性能文献查阅总结 1.α型钛合金 α型钛合金中又分为全α型钛合金和近α型钛合金,工业纯钛属于α型钛合金,此外一般α合金含有6%左右的Al和少量中性元素,退火后几乎全部是α相,典型合金包括TA1~TA7合金等;近α型钛合金中除了含有Al和少量中性元素外,还有少量(不超过4%)的稳定元素,如 TA15、TA16、TA17等。 工业纯钛 工业纯钛按杂质元素含量分为TA1、TA1ELI、TA1-1、TA2、TA2ELI、TA3、TA3ELI、TA4、TA4ELI9个牌号,相变点大约为900℃。工业纯钛具有高塑性、适当的强度、良好地耐蚀性以及优良的焊接性能等特点,广泛应用于化工设备、滨海发电装置、海水淡化装置、舰船零部件等,其冷热加工性能好,可生产各种规格的板材、棒材、型材、带材、管材和丝材,一般在退火状态下交货使用。典型的工业纯钛显微组织如图1-3所示:

图1 TA1板材650℃/1h退火态组织:等轴α+少量晶间β 图2 TA2大规格棒材600℃/1h退火态组织:等轴α 图3 TA3板材800℃/1h退火态组织:等轴α+含有针状α转变的β TA1钛管的组织与性能[] []庞继明,李明利,李明强等. 退火温度对TA1钛管材组织和性能的影响[J]. 钛工业进展. 2011, 28(2): 26-28

研究方法:TA1铸锭经过2500t水压机开坯锻造和1600t卧式挤压机热挤压,最终获得φ45×7mm的管坯。管坯经两辊和三辊管材冷轧机轧制成φ12×的管材。将管材置于真空热处理炉中,分别加热至450,475,490,500,550,600,650,700℃,保温90min,随炉冷却。 a)TA1钛管的显微组织 图1为冷加工态及不同的温度热处理后的TA1管材横向显微组织。可以看出,冷加工态的TA1管材组织混乱且有部分晶粒破碎不完全;700℃下的组织已完全再结晶、等轴化,与650℃的相比晶粒已明显长大。在相同的保温时间里,随着退火温度的提升,再结晶晶粒逐渐粗化。

镀锌钢管的国标厚度及上下公差

标准外径公差壁厚公差D<50 ±0.5mm S≤4mm ±12.5% D≥50 ±1% 4mm20mm ±12.5% 焊管及镀锌管重量表(按GB/T3091—2001标准执行)规格外径mm 壁厚mm 最小壁厚mm 焊管(6米定尺)镀锌管(6米定尺)米重kg 根重kg 米重kg 根重kg 公称内径英寸DN15 1/2 21.3 2.8 2.45 1.28 7.68 1.357 8.14 DN20 3/4 26.9 2.8 2.45 1.66 9.96 1.76 10.56 DN25 1 3 3.7 3.2 2.8 2.41 1 4.46 2.554 1 5.32 DN32 1.25 42.4 3.5 3.06 3.36 20.16 3.56 21.36 DN40 1.5 48.3 3.5 3.06 3.87 23.22 4.10 24.60 DN50 2 60.3 3.8 3.325 5.29 31.74 5.607 33.64 DN65 2.5 7 6.1 4.0 3.5 7.11 42.66 7.536 45.21 DN80 3 88.9 4.0 8.38 50.28 8.88 53.28 DN100 4 114.3 4.0 10.88 65.28 11.53 69.18 DN125 5 140 4.5 15.04 90.24 15.942 98.65 DN150 6 168.3 4.5 18.18 109.08 19.27 115.62 DN200 8 219.1 6.0(焊管)31.53 189.18 DN200 8 219.1 6.5(热镀锌)36.12 216.7 更多镀锌管知识请参考:https://www.360docs.net/doc/f212314667.html, 6 回答者:qinghe5211规格

近十年来国内外关于钛合金材料的研究

近十年来国内外关于钛合金材料的研究 赵宙 化学化工学院化学三班兰州 730070 摘要:钛及钛合金因具有优异的综合力学性能在航空、航天、船舶、石油、化工、兵器、电子等行业得到高度重视和广泛应用15年前国外高度重视新型钛合金的研制近几年国外更重视钛合金性能改性和挖潜。国内从钛合金研发开始一直重视新型钛合金研制,10年前重点是仿制,之后是既创新又仿制,目前以创新研制为主。本文介绍近10年国外、国内钛合金研究的发展现状、趋势与差距,及对我国钛合金研制的建议。 关键词:钛合金材料、性能、发展、研究、应用 Research on titanium alloy materials at home and abroad in the recent ten years Zhao Zhou Chemical engineering chemistry class 3 Lanzhou 730070 Abstract: titanium and titanium alloy with excellent comprehensive mechanical properties in the aviation, aerospace, shipbuilding, petroleum, chemical industry, the weapons industry, electronic industry attaches great importance to and widely used 15 years ago abroad attach great importance to the development of new type of titanium alloy in recent years, attaches great importance to the performance of titanium alloy modification and tapping. Domestic starting from the research and development of titanium alloy has always attached great importance to the new titanium alloys developed, focus on generic 10 years ago, after is both innovative and generic, mainly developed at present. In this paper, the recent 10 years on the titanium alloy research home and abroad, the development present situation, trend and gap, and some Suggestions of titanium alloys developed in China. Keywords: titanium alloy materials, performance, development, research, and application 1 钛及其钛合金的简介 1.1 钛的简介 钛是20世纪50年代发展起来的一种重要的结构金属,在地壳中的丰度为0.56%,在所有按元素中居第9位,而在可作为结构材料的金属中居第4位,仅次于Al、Fe、Mg,其储量比常见金属Cu,Pb,Zn储量的总和还多。我国钛资源丰富,储量为世界第一。 钛是一种金属元素,灰色,原子序数22,相对原子质量47.87。能在氮气中燃烧,熔点高。钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。 1.2 钛合金的简介 钛合金是以钛为基加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。 合金元素根据它们对相变温度的影响可分为三类: 1).稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。 2).稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。 3).对相变温度影响不大的元素为中性元素,有锆、锡等。

相关文档
最新文档