FGD湿法脱硫工艺流程

FGD湿法脱硫工艺流程

动力波烟气脱硫工艺(湿法)

动力波烟气脱硫工艺(湿法) 现有的湿法烟气脱硫工艺均为外置塔体式,即在锅炉后部的烟道上加装脱硫塔,经过碱液在塔体内部对烟气的的喷淋、洗涤达到脱除烟气中二氧化硫的目的。一般塔体高度约8m以上,甚至更高(此高度为保证烟气在塔内的停留时间)。 其缺点: 1、浪费材料:由于锅炉烟气温度过高,加上二氧化硫具有强烈的腐蚀作用,所以在塔体的结构、强度方面要求都比较高,一般外塔体用碳钢或用麻石砌筑用以增加强度,内衬防腐材料用以防腐。 2、一次性投资高:单独设立塔体,要延长烟道,一次性投资费用高。 3、运行不可靠:传统的湿法脱硫工艺,采用的是塔体内喷淋工艺,即通过高压水泵将碱液输送到塔体内,通过喷嘴的雾化,使液滴与烟气中的二氧化硫接触达到脱硫的目的,为保证脱硫效果、保证碱液与二氧化硫气体的充分接触,就需要碱液的雾化程度很高,这样对喷嘴的要求就高,喷嘴使用寿命短。喷嘴一旦损坏,维修不方便。 4、运行液气比大,脱硫效率低:由于采用喷淋吸收,为保证烟气和碱液的充分接触,必须大量的碱液,液气比通常为1.5—2,脱硫效率最高达80%。 5、系统阻力大,运行费用高:由于单独设立塔体,增加、改动

烟道,增加脱水器,造成系统阻力增大,影响锅炉出力,同时高效雾化也需要高压泵的运行功率增大,所以运行费用就增大。 6、管路结垢严重,影响系统运行:由于脱硫液采用石灰水,所以在运行过程中会产生硫酸钙附着在管路和喷嘴内部,导致管路堵塞,影响系统运行。 动力波烟气湿法脱硫塔 动力波脱硫塔是通过设计适当的洗涤器喉管,来控制烟气在管内的速度,使烟气与碱液在喉管内形成一个泡沫区,在泡沫区内气液充分接触,强烈的湍动使混合强化并使接触面更新,从而获得极高的反应效率。动力波洗涤器不需要碱液的雾化程度过高,而靠洗涤器内部形成的湍流达到气、液的充分接触,这样就减少了喷嘴的堵塞了影响脱硫效果,同时也减少碱液泵的运行功率。烟气在动力波洗涤器喉管内流速设计为25—30米/秒。动力波洗涤塔长度为6---8m,其中湍动区长度为2.5m。 动力波脱硫塔根据现场需要,可水平安装,也可竖直安装,作为烟道的一部分,直径仅为烟道的1.3倍。 循环液: 循环液采用“双碱流程”工艺,主要是是为了克服循环液系统容易结垢的弱点和提高SO2的去除率。 系统运行前,将循环池中灌满一定浓度的NaOH和Ca(OH)2溶液,系统运行时,烟气中的SO2与循环液中的Ca2+和OH-反应,生成 Ca(SO4)2和水,其中硫酸钙沉淀在循环池中,可定期打捞,只有OH-

脱硫工艺过程介绍及控制方法

石灰石-石膏湿法烟气脱硫 脱硫工艺过程介绍及控制方法 摘要:从煤燃烧中降低SO2的排放的方法包括流化床燃烧(CFB)和整体气化燃烧循环(IG CC)发电。常规的火力电厂主要通过加装烟气脱硫装置(FGD)进行烟气脱硫。基于对烟气脱硫工艺过程和自动化控制的认识变得迫切,本文重点介绍几种常用电厂脱硫工艺原理和控制方法。 1.常用烟气脱硫工艺原理: 目前,几种常用成功的电厂烟气脱硫工艺原理介绍如下。 1.1石灰/石灰石洗涤脱硫工艺:(后面详细介绍) 石灰/石灰石洗涤器一般用于大型的燃煤电厂,包括现有电厂的改造。湿法石灰/石灰石是最广泛使用的FGD系统,当前流行的石灰/石灰石FGD系统的典型流程如图所示。石灰石的FGD几乎总能达到与石灰一样的脱硫效率,但成本比石灰低得多。 从除尘器出来的烟气进入FGD吸收塔,在吸收塔里S02直接和磨细的石灰石悬浮液接触并被吸收去除。新鲜的石灰石浆液不断地喷人到吸收塔中,被洗涤后的烟气通过除雾器,然后通过烟囱或冷却塔释放到大气中。反应产物从塔中取出,然后被送去脱水或进一步进行处理。 湿法石灰石根据其氧化方式不同一般可以分为强制氧化方式和自然氧化方式。氧化方式由化学反应,吸收浆液的PH值和副产品决定。其中强制氧化方式(PH值在5—6之间)在湿法石灰石洗涤器中较为普遍,化学反应方程式如下: CaCO3+SO2+1/2O2+2H2O=CaSO4·2H2O+CO2 图示是石灰石洗涤器中最简单的布置,目前已成为FGD的主流。所有的化学反应都是在一个一体化的单塔中进行的。这种布置可以降低投资和能耗,单塔结构占地少,非常适用于现有电厂的改造。因其投资低,脱硫效率高,十分普及。 1.2 海水洗涤脱硫工艺: 由于海水中含有碳酸氢盐,因而是碱性的,这说明在洗涤器中有很高的SO2脱除效率。被吸收的SO2形成硫酸根离子,而硫酸根离子是海水中的一种自然组分,因而可以直接排放到海水中。此工艺设备简单,不需要大量的化学药剂,基建投资和运行费用低。脱硫率高,可连续保持99%的二氧化硫除去率,能够满足严格的环保要求。

HPF脱硫工艺流程图

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 HPF法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O 吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S (NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应: 2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡

氨法脱硫工艺

氨法脱硫 氨法脱硫工艺是用氨水吸收SO2的成熟的脱硫工艺。不同的氨法工艺,区别仅在于从吸收溶液中除去二氧化硫的方法。不同的方法可获得不同的产品。 氨法工艺主要有氨-硫酸铵法、氨-亚硫酸氢铵法、氨-酸法和氨-石膏法。 氨-硫酸铵法 一、工艺原理: 该工艺利用氨液吸收烟气中的SO2生成亚硫酸铵溶液,并在富氧条件下将亚硫酸氨氧化成硫酸铵,再经加热蒸发结晶析出硫酸铵,过滤干燥后得化肥产品。主要包括吸收过程、氧化过程和结晶过程。 (1)吸收过程 在脱硫塔中,氨和SO2在液态环境中以离子形式反应: 2NH3+H2O+SO2 → (NH4)2SO3 (NH4)2SO3+H2O+SO2 → 2NH4HSO3

随着吸收进程的持续,溶液中的NH4HSO3会逐渐增多,而NH4HSO3已不具备对SO2的吸收能力,应及时补充氨水维持吸收浓度。 (2)氧化过程 氧化过程主要是利用空气生成(NH4)2SO4的过程: (NH4)2SO3+O2 → (NH4)2SO4 NH4HSO3 +O2 →NH4HSO4 NH4HSO4 +NH3 → (NH4)2SO4 (3)结晶过程 氧化后的(NH4)2SO4经加热蒸发,形成过饱和溶液,(NH4)2SO4从溶液中结晶析出,过滤干燥后得到化肥产品硫酸铵。 二、工艺流程

三、运行参数对脱硫效率的影响 (1)氨水量;(2)氨水浓度;(3)反应温度。 四、值得注意的问题 氨-硫酸铵法脱硫工艺存在的主要问题是存在二次污染的隐患,净化后的烟气含有微量的NH3和亚硫酸铵、硫酸铵气溶胶。 氨法脱硫中的氨损失主要包括液氨蒸气损失和脱硫塔雾沫夹带损失两部分。亚硫酸铵、硫酸铵气溶胶一旦形成,很难去除。所以国外公司(如美国GE公司等)在脱硫塔出口设置电除雾器,以消除逃逸的氨损耗和亚硫氨气溶胶。 本公司采用独特的MW微雾净化系统可高效去除逃逸的氨损耗和亚硫氨气溶胶。

火电厂脱硫的几种方法

火电厂脱硫的几种方法(总12 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

火电厂脱硫的几种方法(1) 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD 技术中,按脱硫剂的种类划分,可分为以下五种方法:1、以CaCO3(石灰石)为基础的钙法,2、以MgO为基础的镁法,3、以Na2SO3为基础的钠法,4、以NH3为基础的氨法,5、以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。A、湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。B、干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。C、半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 1脱硫的几种工艺 (1)石灰石——石膏法烟气脱硫工艺

现运行的各种脱硫工艺流程图汇总

现运行的各种脱硫工艺流程图汇总 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、 干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态 下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等 优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水 废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、 设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗 活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾

干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫 海水脱硫技术

烟气脱硫之氨法烟气脱硫技术

烟气脱硫之氨法烟气脱硫技术 氨回收法符合世界FGD发展趋势 氨法脱硫技术在化学工业领域应用普遍,用氨吸收硫酸生产尾气中的SO2, 生产亚硫铵和硫铵。 80-90年代,在我国硫酸和磷肥厂,具有氨法脱硫装置高达100余套。 美国和德国的脱硫石膏已成为一个突出的环境问题,正着力研究转化为硫铵的技术。 据不完全统计,全世界目前使用氨法脱硫的机组大约在10000MW · 专家论点 美国Ellison 咨询公司:采用硫铵过程,烟气脱硫可以实现自负盈亏。 美国John Brown工程师和建筑师有限公司:通过大量、高价值的副产品生产,烟气脱硫可以获得卓越的投资效益。 美国GE公司:氨法烟气脱硫时代已经到来了。 Krupp公司:经过二十多年一步一步地漫长的发展,如今,氨法已进入工业化应用阶段。 ·氨法特点 氨法是高效、低耗能的湿法。氨法是气液相反应,反应速率快,吸收剂利用率高,能保持脱硫效率95-99%. 氨在水中的溶解度超过20%.氨法具有丰富的原料。氨法以氨为原料,其形式可以是液氨、氨水和碳铵。目前我国火电厂年排放二氧化硫约1000万吨,即使全部采用氨法脱硫,用氨量不超过500万吨/年,供应完全有保证。 氨法的最大特点是 SO2的可资源化,可将污染物SO2回收成为高附加值的商品化产品。副产品硫铵是一种性能优良的氮肥,在我国具有很好的市场前景。

江南氨回收法是湿式氨法的一种。1995年氨法技术作为国家重点科技攻关项目列入"十五"863计划;1998年公司成立了专门的环保研究所进行技术攻关;2000年我们研制的第1台简易氨法脱硫装置通过江苏省科技成果鉴定。此后公司通过与多家科研院校的密切合作,在简易氨法的基础上逐步发展成现在的氨回收法,并在天津碱厂、云南解化、亚能天元等项目上成功运行1年以上,各项指标均达到了预期效果。 · 技术特点 1、完全资源化--变废为宝、化害为利 江南氨回收法技术将回收的二氧化硫、氨全部转化为化肥,不产生任何废水、废液和废渣,没有二次污染,是一项真正意义上的将污染物全部资源化,符合循环经济要求的脱硫技术。 2、脱硫副产物价值高 江南氨回收法脱硫装置的运行过程即是硫酸铵的生产过程,每吸收1吨液氨可脱除2吨二氧化硫,生产4吨硫酸铵,按照常规价格液氨2000元/吨、硫酸铵700元/吨,则烟气中每吨二氧化硫体现了约400元的价值。因此相对运行费用小,并且煤中含硫量愈高,运行费用愈低。企业可利用价格低廉的高硫煤,同时大幅度降低燃料成本和脱硫费用,一举两得。 3、装置阻力小,节省运行电耗 利用氨法脱硫的高活性,使液气比较常规湿法脱硫技术降低。脱硫塔的阻力仅为850Pa左右,无加热装置时包括烟道等阻力脱硫岛总阻力在1000Pa左右;配蒸汽加热器时脱硫岛的总设计阻力也只有1250Pa左右。因此,氨法脱硫装置可以利用原锅炉引风机的潜力,大多无需新配增压风机;即便原风机无潜力,也可适当进行风机改造或增加小压头的风机即可。系统阻力较常规脱硫技术节电50%以上。另外,循环泵的功耗降低了近70%. 4、防腐先进、运行可靠

有机胺法脱硫工艺流程

有机胺法脱硫工艺 1、工艺流程 本烟气脱硫装置采用湿法有机胺脱硫工艺,装置采用有机胺浓液稀释到一定浓度后作为脱硫剂。该工艺主要分为4个过程,即烟气的预处理、SO2的吸收、SO2的再生和胺液的净化。 烟气预处理的目的是降低进入脱硫塔烟气温度和洗涤烟气中的酸雾及粉尘等杂质,为烟气在脱硫塔采用有机胺脱硫剂高效脱硫奠定基础。烟气预处理设置洗涤塔一座,采用空塔喷雾洗涤降温除尘。 二氧化硫吸收系统是烟气脱硫系统的核心。在吸收装置中吸收剂与烟气相接触,吸收剂与SO2发生可逆性反应。为了达到最大的吸收效果,采用高效耐腐蚀规整填料塔和空喷吸收相结合的形式。烟气经过洗涤塔洗涤降温净化后,将烟气中的粉尘和部分SO3等杂质洗涤下来,烟气温度被降低至约40℃,进入脱硫塔下段,与从喷头处循环喷淋的脱硫液逆流接触,气体中60%的SO2被吸收。未被吸收的烟气进入脱硫塔中部,在两段分布的规整填料中实现气液的逆流接触和SO2的高效吸收,吸收液为再生塔再生后温度35~45℃的贫液。未被吸收的净化气进入脱硫塔上部,经回收液回收夹带的溶液后,从塔顶引出,经塔顶烟囱送至硫酸尾气总管。 SO2再生装置包含一个再沸器、一座再生塔及二氧化硫、蒸汽冷凝冷却系统和二氧化硫真空系统,将吸收了SO2的富液从吸收装置通过换热后进入再生装置,减压再生后返回脱硫塔。从脱硫塔底部出来

的吸收液温度约43~45℃,经富液泵打入再生塔一级冷凝器、贫富液换热器升温至约60~65℃,进入再生塔上部,塔釜经再沸器加热至75~85℃再生。从再生塔底部出来的溶液经贫液泵加压,进入贫富液换热器换热、贫液冷却器冷却后,大部分进入脱硫塔吸收SO2,小部分送溶液净化装置,以除去溶液中的热稳定性盐。 贫液经脱盐前冷却器冷却后,进入脱硫液净化系统除去系统中的SO42-和Cl-。净化后的脱硫液进入系统继续使用。 2、工艺原理 有机胺湿法烟气脱硫技术是一种新兴的烟气脱硫技术、具有处理二氧化硫浓度低、脱硫效率高、吸收剂可以循环利用、不产生二次污染、能有效解决烟气制酸的稳定性问题等优点。 有机胺脱硫化学原理为:在水溶液中,溶解的SO2会发生式(1) 、(2) 所示的可逆水合和电离过程。 在水中加入有机胺缓冲剂,通过和水中的氢离子发生反应,形成胺盐,反应(1)、(2) 方3程式向右发生反应,增大了SO2的溶解量如反应(3),可以增加SO2的溶解量。采用蒸汽加热,可以逆转(1) ~(3) 的方程式,再生吸收剂,得到高浓度的SO2气体,对SO2进行回收利用。 一元胺的吸收功能过于稳定,以至于无法通过改变温度再生SO2,一旦一元胺与SO2或其他的强酸发生化学反应便永久的生成一种非常稳定的胺盐。二元胺在烟气脱硫上具有更大优势,二元胺在工艺过程中首先与一种发生反应:

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

石灰石石膏湿法脱硫原理

石灰石石膏湿法脱硫原理

深度脱硫工艺流程简介 班级:应化 141 姓名:段小龙寇润宋蒙蒙 王春维贺学磊 石灰石- 石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当前国际上通行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆

液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。由于吸收浆液循环利用,脱硫吸收剂的利用率很高。最初这一技术是为发电容量在100MW 以上、要求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10 多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80% 左右。在湿法烟气脱硫技术中,石灰石/ 石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用范围广 4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/ 石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道, 主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO)的基本工艺 过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为: (1) 气态SO2 与吸收浆液混合、溶解 (2)SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SQ在吸收塔中转化,其反应简式式如下:

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关, 2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, -,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO在气流中的扩散,2 2、扩散通过气膜 3、 SO被水吸收,由气态转入溶液态,生成水化合物2 4、 SO水化合物和离子在液膜中扩散2 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO水化合物与溶解的石灰石粉发生反应)2 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。密度比2 空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。SO为酸性氧化物,具有酸性氧化物的通性、2 还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。 ②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫 22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降

醇胺法脱硫工艺流程图

1.醇胺法脱硫工艺流程图。 (一) 工艺流程 醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是 将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液 (即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃 类通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液 中吸收的酸性组分解吸出来成为贫液循环使用。 图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接 触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气, 经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化 气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG生产 装置。 由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫 液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在 再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部, 溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水 蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽 提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却 和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然后进 入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。 从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出 的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层以 提高原油采收率,或经处理后去火炬等 2.甘醇法吸收脱水工艺流程 1. 工艺流程 图3-5为典型的三甘醇脱水装置工艺流程。该装置由高压吸收系统和低压再生系统两部分组成。通常将再生后提浓的甘醇溶液称为贫甘醇,吸收气体中水蒸 气后浓度降低的甘醇溶液称为富甘醇。

湿法烟气脱硫的原理

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的

氨法脱硫工艺

氨法脱硫工艺流程 随着国家环保政策要求越来越严格,SO2排放指标越来越低,新的排放标准为400mg/mm3,这么低的排放指标,对每一个企业来说不采用高效脱硫设备是很难达到这个指标的,气动浮化脱硫塔具有占地面积少、耐磨耐腐蚀、脱硫效率高、低阻力降等许多优点被国内外许多家企业首选的脱硫设备。脱硫方法国内外有成百上千种,但国内采用最多最实用的方法仍为钙法、钠法和氨法,钙法因需投资庞大的处理系统和堆渣场地、产生新的固废,不能为企业创造利润被越来越少的企业采用;钠法因投资太大,往往投入多回报少也不被大多数企业看中;氨法具有吸收高、投资少、见效快诸多优点被广泛采用。 氨法脱硫的工艺原理是:液氨首先经蒸发变成气氨,氨气与水生成氨水,氨水与烟气中的SO2结合生成亚硫氢铵,亚硫氢铵溶液继续与NH3反映生成亚硫酸铵,不断地通入氨,不断地吸收SO2循环往复,当溶液达到一定的浓度时候,将浓溶液移入中和槽,通氨中和,等反映完全,离心分离亚铵产品。 主要反映的化学方程式: NH3+H2O→NH3·H2O+Q NH3·H2O+ SO2→NH4HSO3+Q NH4HSO3+ NH3→(NH4)2SO3+Q (NH4)2SO3+ SO2→NH4HSO3+Q

分为以下几个系统: 一、氨蒸发系统 液氨由储罐出来经蒸发变为气氨,气氨进入储罐,供中和吸收系统使用。 二、吸收系统 烟气进入吸收塔,经过下部喷淋的含氨母液和浮化层含氨母液充分吸收,反应后,达标排放,母液循环使用,氨气通过控制加入,母液循环到一定浓度,部分移入高倍中和槽,循环槽补充低浓度母液或清水继续吸收。 三、中和系统 母液打入中和槽后,根据比重、母液温度情况决定何时通氨,通氨前将冷却系逐步加大,母液温度适合时通氨,通入氨后定时测PH值和中和温度。根据中和温度控制通氨量,达到终点后,待溶液温度降下后通知包装工离料出产品,并取样,交化验进行质量检定。 四、循环水系统 因为母液吸收和中和过程均有热量,为了移走热量,在循环槽内和中和槽内均加装冷却管束,用循环水移走多余热量,热水经冷却塔降温后循环使用。

湿法烟气脱硫技术及工艺流程

湿法烟气脱硫技术及工艺流程 烟气脱硫技术品种达几十种,按脱硫进程能否加水和脱硫产物的干湿状态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术比较成熟,效率高,操作简单。 湿法烟气脱硫技术 优点: 湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点: 生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法 原理: 是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏

形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 湿法烟气脱硫技术及工艺流程 优缺点: 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 2、间接石灰石-石膏法 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。 原理: 钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 原理: 柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。

各种湿法脱硫工艺比较

电厂各种湿法脱硫技术对比优劣一目了然 北极星电力网新闻中心来源:化工707微信作者:小工匠2016/1/18 8:48:31 我要投稿 北极星火力发电网讯:随着我国环境压力逐年增大,国家排放要求进一步收紧,电厂烟气脱硫技术也得到了快速发展。目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。目前,湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于湿法脱硫技术,一般单想电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法烟气脱硫技术脱硫率高,但不适合大容量燃烧设备。不同的工况选择最符合的脱硫方法才会得到最大的经济效益,接来下小七根据电厂脱硫技术的选择原则来分析各种工艺的优缺点、适用条件。 电厂脱硫技术的选择原则: 1、脱硫技术相对成熟,脱硫效率高,能达到环保控制要求,已经得到推广与应用。 2、脱硫成本比较经济合理,包括前期投资和后期运营。 3、脱硫所产生的副产品是否好处理,最好不造成二次污染,或者具有可回收利用价值。 4、对发电燃煤煤质不受影响,及对硫含量适用范围广。 5、脱硫剂的能够长期的供应,且价格要低廉 湿法烟气脱硫技术 湿法烟气脱硫技术是指吸收剂为液体或浆液的脱硫技术,最大的优点是反应速度快、脱硫效率高,最大的缺点就是前期投资、后期运行成本高和副产品处理困难。湿法烟气脱硫技术是目前技术最为成熟,也是我国使用最广泛的,据不完全统计, 已建和在建火电厂的烟气脱硫项目中, 90 % 以上采用湿法烟气脱硫技术。 1 石灰石—石膏湿法脱硫工艺 工艺流程

脱硫工艺流程

现运行得各种脱硫工艺流程图汇总

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况得分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫与燃烧后脱硫等3类、 其中燃烧后脱硫,又称烟气脱硫(Flue gasdesulfurization,简称FGD),在FGD技术中,按脱硫剂得种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础得钙法,以MgO为基础得镁法,以Na2SO3为基础得钠法,以NH3为基础得氨法,以有机碱为基础得有机碱法、世界上普 遍使用得商业化技术就是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中得干湿状态又可将脱硫技术分为湿法、干法与半干(半湿)法。湿法FGD技术就是用含有吸收剂得溶液或浆液在湿状态下脱硫与处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术得脱硫吸收与产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法FGD技术就是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)得烟气脱硫技术。特别就是在湿状态下脱硫、在干状态下处理脱硫产物得半干

法,以其既有湿法脱硫反应速度快、脱硫效率高得优点,又有干法无污水废酸排出、脱硫后产物易于处理得优势而受到人们广泛得关注。按脱硫产物得用途,可分为抛弃法与回收法两种、 烧结烟气脱硫

氨法脱硫 计算过程

氨法脱硫计算过程 风量(标态):,烟气排气温度:168℃: 工况下烟气量: 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。 1、脱硫塔 (1)塔径及底面积计算: 塔内烟气流速:取 D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。 底面积S=πr2=3.14×3.252=33.17m2 塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。 (2)脱硫泵流量计算: 液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。) ①循环水泵流量: 由于烟气中SO2较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。裕量为: 119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h, 参考相关资料取泵流量为140 m3/h。配套功率可查相关资料,也可与泵厂家进行联系确定。 (3)吸收区高度计算 吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。 2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为 3.7米-3.8米进行设计。吸收区总高度为13.7米-13.8米。

(4)浓缩段高度计算 浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。总高为10.71米。 (5)除雾段高度计算 除雾器设计成两段。每层除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层(4.13)m 。冲洗水距离2.5米,填料层与冲洗水管距离为2.5米,上层除雾至塔顶距离1.9米。 除雾区总高度为: 如果脱硫塔设计为烟塔一体设备,在脱硫塔顶部需安装一段锥体段,此段高度为 1.65米,也可更高一些。 (6)烟囱高度设计 具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。但是,高度设计必须看当地气候情况以及设备建在什么位置,如果远离市区,且周围没有敏感源,高度可与塔体一并进行考虑。一般烟塔总高度可选60-80米。 (7)氧化段高度设计 氧化段主要是对脱硫液中亚硫酸盐进行氧化,此段主要以计算氧化段氧化时间。 (8)氧化风量设计 1、需氧量A (kg/h )=氧化倍率×0.25×需脱除SO 2量(kg/h )氧化倍率一般取1.5---2 2、氧化空气量(m 3/h )=A ÷23.15%(空气中氧含量)÷(1-空气中水分1%÷100)÷空气密度1.29 (9)需氨量(T/h )根据进口烟气状态、要求脱硫效率,初步计算氨水的用量。 式中: W 氨水——氨水用量,t/h C SO2——进口烟气SO 2浓度,mg/Nm 3 V 0——进口烟气量,Nm 3/h η——要求脱硫效率 C 氨水——氨水质量百分比 (10)硫铵产量(T/h ) W3=W1×2 ×132/17。W3:硫胺产量,132为硫胺分子量,17为氨分子量

湿法烟气脱硫

烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。 世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 工艺介绍 1干式烟气脱硫工艺 该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。 喷雾干式烟气脱硫工艺 喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦NiroAtomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。 粉煤灰干式烟气脱硫技术

相关文档
最新文档