智能天线的优势及应用分析

智能天线的优势及应用分析
智能天线的优势及应用分析

COMMUNICA TION ENGINEERING │通信工程

2018年6期 65

智能天线的优势及应用分析

刘培锋

31131部队,江苏 南京 210000

摘要:智能天线也可以称为自适应天线阵列,由于其能够显著降低时延扩散、瑞利衰落、多径以及信道干扰等所造成的影响,因此能够对频谱资源进行充分的利用。对智能天线的优势进行了比较深入的分析研究,在此基础上进一步论述了智能天线在实际中的具体应用,对于从事相关工作的技术人员具有一定的借鉴意义。 关键词:智能天线;优势;应用

中图分类号:TN821+.91 文献标识码:A

The Advantages and Application Analysis of Smart Antenna

Liu Peifeng

31131 Force, Jiangsu Nanjing 210000

Abstract: Smart antenna can also be called adaptive antenna arrays. Because they can significantly reduce the effects of delay spread, Rayleigh fading, multipath and channel interference, they can fully utilize spectrum resources. The advantages of smart antenna are analyzed in depth. On the basis of this, the specific application of smart antenna in practice is further discussed, which has certain reference significance for technicians engaged in related work. Keywords: smart antenna; advantage; application

作者简介:刘培锋(1984—),男,江苏南通人,汉族,本科学历,毕业于解放军理工大学,现有职称为助理工程师,研究方向为通信工程。

引言

对于通信设备而言,天线是非常重要的组成部分,对通信质量具有决定性的影响。随着人们对通信质量要求的逐渐提高,传统的天线已无法满足人们对信号传输质量和传输速度的要求,因此需要将智能天线有效地运用于通信中,利用数字信号,产生定向波束,确保用户信号可以通过固定信道到达定向位置,进而为通信质量提供可靠的保障[1]

1 智能天线分析

1.1 智能天线的组成

智能天线在本质上是具有侧向和波束形成能力的一种天线阵列。随着数字处理技术的不断发展,智能天线的应用范围越来越广,被广泛应用于多个领域之中。根据各部分功能的不同,智能天线可以分为三部分,即天线阵列、波束形成单元以及自适应控制单元[2]。智能天线各部分的工作原理不尽相同,每一部分的工作原理如下所示。

(1)天线阵列,该部分的主要功能是负责接收和发射信号,确保信号能够顺利传输。根据使用要求的

不同,天线的阵列形式不尽相同,可以分为圆形和直线两种结构形式。

(2)波束形成单元,该部分的主要功能是对区域所有节点的单元天线进行科学合理的整合,为信号的稳定传输提供可靠保障。

(3)自适应控制单元,该部分是整个智能天线系统的核心部分,对整个天线系统的稳定运行具有十分重要的作用,其主要功能是对智能天线的网络效果进行一定的优化处理,结合用户的实际需求对无线网络建设进行有针对性的优化处理[3]。

1.2 智能天线的工作原理

智能天线是在波束成形技术的基础上发展而来的,通过将无线电信号按照设定的方向进行有效的导向,进而产生一空间定向波束,确保天线主波束的方向与用户信号的到达方向保持一致,旁瓣或零陷与干扰信号的到达方向保持一致,进而能够有效避免干扰信号的影响,确保信号的稳定传输。智能天线还能根据不同用户信号空间特征的差异性,有针对性地采取阵列技术,进而在同一个信道上实现信号的接收和发射,有效避免不同用户之间干扰的

智能天线技术原理及其应用

智能天线技术原理及其应用 一、智能天线技术的原理 智能天线原名自适应天线阵列(AAA,Adaptive Antenna Ar-ray)。最初的智能天线技术主要用于雷达、声纳、抗干扰通信等,用来完成空间滤波和定位,后来被引入移动通信系统中。智能天线通常包括波束转换智能天线(Switched Beam Antenna)和自适应阵列智能天线(Adaptive Array Antennal。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向DOA(DirectionofArrlnal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。总之。自适应阵列智能天线利用基带数字信号处理技术,通过先进的算法处理,对基站的接收和发射波束进行自适应的赋形,从而达到降低干扰、增加容量、扩大覆盖和提高无线数据传输速率的目的。 移动通信信道传输环境较恶劣。实际环境中的干扰和多径衰落现象异常复杂。多径衰落、时延扩展造成的符号间串扰ISI、FDMATDMA系统(如GSM)由于频率复用引入的同信道干扰、CDMA系统中的MAI等都使链路性能、系统容量下降。使用自适应阵列天线技术能带来很多好处,如扩大系统覆盖区域、提高系统容量、提高数据传输速率、提高频谱利用效率、降低基站发射功率、节省系统成本、减少信号间干扰与电磁环境污染等。自适应阵天线一般采用4-16天线阵元结构,在FDD中阵元间距1/2波长,若阵元间距过大,则接收信号彼此相关程度降低:太小则会在方向图形成不必要的栅瓣,故一般取半波长。而在TDD 中,如美国Ar-rayComm公司在PHS系统中的自适应阵列天线的阵元间距为5个波长。间距宽而波束更窄,而PHS系统中采用TDD模式,因而更容易进行定位处理。即使旁瓣多,但由于用户和信道都比较少,因而不会带来不利的影响。阵元分布方式有直线型、圆环型和平面型。自适应天线是智能天线的主要类型,可以实现全向天线,完成用户信号接收和发送。自适应阵天线系统采用数字信号处理技术识别用户信号到达方向,并在此方向形成天线主波束。自适应阵天线根据用户信号的不同空间传播方向提供不同的空间信道,等同于信号有线传输的线缆,有效克服了干扰对系统的影响。虽然天线阵列是射频前端的很重要的设备,但自适应阵列天线技术最重要的部分还在于基带处理部分。基带部分将自适应天线阵接收到的信号进行加权和合并,从而使信号与干扰加噪声比最大。 二、智能天线在移动通信中的应用 第三代移动通信标准组织已经认识到智能天线在降低网络干扰方面的重要作用,因此,在3G标准如WCDMA和CDMA2000中,支持智能天线的条款已经出现,智能天线已成为3G的重要组成部分。

微波天线论文..

通信工程专业系统实验 RZ9905型 《微波与天线综合实验系统》 论文 学院:信息工程学院 专业:通信工程 组长:00 组员:0 00 通信工程教研室

摘要 在3G通信时代,微波通信系统建设成本低、建设速度快、部署灵活的优点将在3G网络建设中得以充分发挥,从而扩大微波天线在我国的应用范围,形成快速增长的国内市场需求。与此同时,随着无线通信技术PDH,SDH系统与wireless通讯的迅速发展,微波通信天线目前已经在电力、交通、铁路等行业的专用通信网中开始大量使用,微波天线应用范围愈加广泛。在这样的条件下,研究微波通信是非常重要。本次实验《微波与天线实验系统》就是研究微波发送、接收系统的工作原理。实验中对微波系统的每个组件进行测试,最后,完成了微波电视信号单向传输系统的调试。 关键字:微波通信微波天线组件系统

目录 第一部分绪论-------------------------------------------------------------------------------------------------3 (一)背景介绍-----------------------------------------------------------------------------------3 (二)系统特点-------------------------------------------------------------------------------------3 (三)实验目的-------------------------------------------------------------------------------------3 (四)实验内容-------------------------------------------------------------------------------------3 (五)准备知识七管收音机组合电路原理----------------------------------------------------4 第二部分实验准备---------------------------------------------------------------------------------------------5 (一)微波测量仪器介绍---------------------------------------------------------------------------5 (二)系统所含组件原理---------------------------------------------------------------------------5 1 140MHZ 中频振荡器---------------------------------------------------------------------------6 2 微波锁相信号源---------------------------------------------------------------------------------6 3 变频器---------------------------------------------------------------------------------------------6 4 振荡器---------------------------------------------------------------------------------------------7 5 放大器---------------------------------------------------------------------------------------------8 6 滤波器---------------------------------------------------------------------------------------------8 7图像/数据中频调制器---------------------------------------------------------------------------9 第三部分微波系统测试----------------------------------------------------------------------------------------9 (一)微波发送系统-----------------------------------------------------------------------------------9 1原理图----------------------------------------------------------------------------------------------9 2原理简单介绍-------------------------------------------------------------------------------------9 3实验结果-------------------------------------------------------------------------------------------9 4实验分析------------------------------------------------------------------------------------------10 (二)微波接收系统-----------------------------------------------------------------------------------11 1原理图---------------------------------------------------------------------------------------------11 2原理简单介绍------------------------------------------------------------------------------------11 3实验结果------------------------------------------------------------------------------------------11 4实验分析------------------------------------------------------------------------------------------12 (三)微波电视信号单向传输系统-----------------------------------------------------------------12 1原理图---------------------------------------------------------------------------------------------12 2实验结果比较与分析---------------------------------------------------------------------------13 3有线电视与无线电视的主要区别-----------------------------------------------------------13 第四部分微波与天线的应用----------------------------------------------------------------------------------14 1 微波技术的应用与发展-----------------------------------------------------------------------15 2 天线技术的应用与发展-----------------------------------------------------------------------15 第五部分结束语-------------------------------------------------------------------------------------------------16

大唐LMT-B,LDT常用操作手册

大唐LMT-B,LDT常用操作 指导

目录 一.引言 (3) 1.编写目的 (3) 2.预期读者和阅读建议 (3) 二.软件的安装 (3) 1.LMT-B的安装 (3) 2.LDT的安装 (7) 三.常用操作界面认识和使用 (12) 1.LMT-B常用软件界面 (12) 1.1.告警相关信息的详细查询 (12) 1.2.相关接口的物理和逻辑模式查询 (14) 1.3.天线运行情况查询 (15) 1.4.基站的经纬度和方位角的查询 (16) 2.LDT常用软件界面 (17) 2.1.信令的跟踪 (18) 2.2.CDL文件的分析 (21)

一.引言 1.编写目的 本文旨在给出大唐后台操作软件LMT-B,LDT常用操作部分,包括小区详细告警的查询,小区智能天线运行状态的查询,测试各个接口信令的跟踪,CDL文件的提取和分析等。目的是为了让项目组成员对于后台操作软件LMT-B,LDT有更好的应用,更快捷的学习。2.预期读者和阅读建议 本文用于开始接触后台参数修改操作的人员,作者编辑水平有限,更详细的操作和说明请参阅大唐相关指导书。 二.软件的安装 1.LMT-B的安装 首先需要有LMT-B的安装程序,等拿到安装程序需要先解压,解压后双击安装程序,如下: 图 2-1 双击以后出现询问是否确认继续安装的界面,如下:

图 2-2 点击下一步,出现是否同意协议的界面,如下: 图 2-3 点击“是”,出现客户信息窗口,里面的值可以修改,但一般为默认。如下:

图 2-4 点击下一步,出现询问你所要安装的位置,可以不必保存在系统的C盘,如下: 图 2-5 点击下一步后,出现复制窗口,该窗口时将图2-1里面必须的文件复制到安装的目录下,如下:

智能应用的发展趋势

智能控制研究新进展 人工神经网络,一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。 1. 智能控制的特点 ①、不确定性的模型 智能控制的研究对象通常存在严重的不确定性。这里所说的模型不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可能在很大范围内变化。 ②、高度的非线性 对于具有高度非线性的控制对象,采用智能控制的方法往往可以较好地解决非线性系统的控制问题。 ③、复杂的任务要求 对于智能控制系统,任务的要求往往比较复杂。 2.智能控制与传统控制的关系 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。 传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决。 传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统),要么使输出量跟随期望的运动轨迹(跟随系统),而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处。

智能天线技术的工作原理概要

智能天线技术的工作原理 智能天线技术的工作原理,特征和技术优势分析 智能天线(SmartAntenna或IntelligentAntenna)最初应用于雷达,声纳及军用通信领域.近年来,现代数字信号 处理技术发展迅速,DSP芯片处理能力的不断提高和芯片价格的不断下降,使得 利用数字技术在基带形成天线波束成为可行,促使智能天线技术开始在.采用波束空间处理方式可以从多波束中选择信号最强的几个波束,以取得符合质量要求的信号,在满足阵列接收效果的前提下减少运算量和降低系统复杂度.波束赋型算法概况 智能天线技术研究的核心是波束赋型的算法.从是否需要参考信号(导频序列或导频信道)的角度来划分,这些算法可分为盲算法,半盲算法和非盲算法三类.非盲算法是指须借助参考信号的算法.由于发送时的参考信号是预先知道的,对接收到的参考信号进行处理可以确定出信道响应,再按一定准则(如著名的迫零准则)确定各加权值,或者直接根据某一准则自适应地调整权值(也即算法模型的抽头系数),以使输出误差尽量减小或稳定在可预知的范围内.常用的准则有 MMSE(最小均方误差),LMS(最小均方)和RLS(递归最小二乘)等等;而自适应调整则采取最优化方法,最常见的就是最大梯度下降法.盲算法则无须发送参考信号或导频信号,而是充分利用调制信号本身固有的,与具体承载信息比特无关的一些特征(如恒包络,子空间,有限符号集,循环平稳等)来调整权值以使输出误差尽量小.常见的算法有常数模算法(CMA),子空间算法,判决反馈算法等等.常数模算法利用了调制信号具有恒定的包络这一特点,具体又分最小二乘CMA算法,解析CMA算法,多目标LS-CMA算法等;子空间算法则将接收端包含有其它用户干扰及信道噪声的混合空间划分为信号子空间和噪声子空间,对信号子空间进行处理;判决反馈算法则由收端自己估计发送的信号,通过多次的迭代,使智能天线输出向最优结果不断逼近.非盲算法相对盲算法而言,通常误差较小,收敛速度也较快,但发送参考信号浪费了一定的系统带宽.为此,学者们又发展了半盲算法,即先用非盲算法确定初始权值,再用盲算法进行跟踪和调整.这样做一方面可综合二者的优点,一方面也是与实际的通信系统相一致的,因为通常导频信息不是时时发送而是与对应的业务信道时分复用的.智能天线的优点 智能天线可以明显改善无线通信系统的性能,提高系统的容量.具体体现在下列方面: 提高频谱利用率.采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营商成本. 迅速解决稠密市区容量瓶颈.未来的智能天线应能允许任一无线信道与任一波束配对,这样就可按需分配信道,保证呼叫阻塞严重的地区获得较多信道资源,等效于增加了此类地区的无线网络容量. 抑制干扰信号.智能天线对来自各个方向的波束进行空间滤波.它通过对各天线元的激励进行调整,优化天线阵列方向图,将零点对准干扰方向,大大提高阵列的输出信干比,改善了系统质量,提高了系统可靠性.对于软容量的CDMA系统,信干比的提高还意味着系统容量的提高. 抗衰落.高频无线通信的主要问题是信号的衰落,普通全向天线或定向天线都会因衰落使信号失真较大.如果采用智能天线

基于软件无线电的智能天线技术研究

基于软件无线电的智能天线技术研究 摘要:针对无线通信领域中存在的多种通信体系共存,各种标准竞争激烈等问题提出基于软件无线电的智能天线技术。简述了目前软件无线电的研究状况及无线电的关键技术之一——智能天线,采用软件无线电和智能天线融合的方法研究,较好地解决了体系共存和频带资源使用问题。基于软件无线电技术的智能天线采用开放式结构,系统可重构,通过同时对信号在时间和空间上进行采样和处理,可以更充分地开发信号中蕴含的有用信息。 关键词:软件无线电;智能天线 1. 引言 智能天线是一种用于个人移动通信,能够根据所处的电磁环境智能地调节自身参数,从而使通信系统保持最佳性能的阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,从而对干扰信号进行抑制,提高所需信号的信噪比,改善整个通信系统的性能。 2. 智能天线的基本特点 2.1智能天线与通常的自适应天线的不同点 1)首先,两者的应用目的不同。自适应天线阵是采用迭代自适应算法,应用于军事抗干扰通信的阵列天线,主要用于雷达系统的目标跟踪和干扰抵消;而发展智能天线的初衷是通过抑制干扰和抵抗衰落来增加移动系统的容量,提高频谱利用率,进而实现SDMA。 2)常规自适应天线阵一般接收到的干扰信号具有很强的功率电平,并且干扰源数目与天线阵列单元数相当。而在无线通信系统中,由于多用户通信以及多径传播环境,使得到达天线阵列的干扰数目远大于天线阵列单元数,同时其功率电平一般都小于直射信号。 3)自适应天线只是从干扰中捕获一个源的期望信号,而智能天线是多用户系统,需要从同一信道中提取出各个用户的信号,不仅包括智能化接收,还包括多用户多波束智能化发射。考虑到用户的移动将带来信道的时变性,因此智能天线实现起来更复杂,技术要求更高。2.2.智能天线应用于移动通信具有以下优势: 1)可以大大减少电波传播中的多径衰落。由于无线通信系统的性能很大程度上取决于衰落的深度和速度,因此,降低信号在传播中的变化可以提高通信系统的性能。 2)可以大大提高系统容量。采用智能天线可以提高信号干扰比SlR,而系统容量取决于SIR,SIR的提高意味着容量的增加。 3)可以延长移动台电池的使用寿命。天线波束赋形的结果等效于提高天线的增益,因此

微波原理与技术论文

摘要:微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,通过解决微波在传输、处理过程中的遵循的原理,逐渐使微波技术发展成为一门很完整的学科,并在工程上有日新月异的应用。在加热技术上形成一种全新的观念,在通信方面给信息领域带来一场空前的革命。关键词:微波技术;微波加热;通信;电磁波;天线 Abstract The theoretical basis of microwave technique is the classical electromagnetic theory, the goal is to solve the practical problems in microwave engineering. Microwave is a knowledge of a close combination of theory and practice, the theoretical starting point of microwave technology is the Max equations, solved by microwave in transmission, processing process follow the principle, the development of microwave technology has become a very complete discipline, and change rapidly used in engineering. The formation of a new idea in the heating technology in communication, to the information industry brought an unprecedented revolution. 1.引言 随着科学技术的迅速发展和生产工艺的不断改进,微波技术已在许多工业生产领域得到应用。在国内,微波技术已应用于玻璃纤维、化工产品、保温材料、木材等的干燥,食品、医疗的灭菌、干燥和焙烤。并在医疗、环保、农业等领域也有所应用。微波技术的应用,提高了生产效率和产品质量,降低了能耗和环境污染,减轻了人的劳动强度,提高了生产效益。在国际上,许多工业发达国家都对微波的工业应用非常重视,把微波技术作为改进生产工艺和提高产品质量的重要手段。 2.微波的特性 一是似光性。微波波长非常小,当微波照射到某些物体上时,将产生显著的反射和折射,就和光线的反、折射一样。同时微波传播的特性也和几何光学相似,能像光线一样地直线传播和容易集中,即具有似光性。这样利用微波就可以获得方向性好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体反射回来的微弱信号,从而确定该物体的方位和距离,这就是雷达导航技术的基础。 二是穿透性。微波照射于介质物体时,能深入该物体内部的特性称为穿透性。例如微波是射频波谱中惟一能穿透电离层的电磁波(光波除外)。因而成为人类外层空间的“宇宙窗口”;微波能穿透生物体,成为医学透热疗法的重要手段;

智能天线使用手册

1、引言 1.1、智能天线的基本功能 1.1.1)智能天线定义 N 列取向相同的天线按照一定方式排列和激励,利用波的干涉原理形成预定波束的阵列结构天线。 1.1.2)智能天线基本功能 智能天线可以通过改变各天线阵列的激励,其中激励包含幅值和相位,利用波的干涉原理形成预定波束。同时,TD-SCDMA智能天线接入到TD-SCDMA基站后,通过基站的实时自适应信号处理算法,能够自动地产生多个窄波束方向图,实现对移动用户的波束跟踪,并自动地抑制干扰方向的副瓣电平。从而降低了系统的干扰,提高了系统容量,达到空分多址的目的。 1.2、智能天线与GSM天线的区别 1.2.1)结构组成区别 智能天线由两个或以上天线阵列组成,而GSM系统天线只由一个天线阵列构成。如图3、4所示: 8列单极化智能天线 GSM单极化天线 图3

8通道双极化智能天线 GSM双极化天线 图4 1.2.2)功能区别 智能天线可以通过改变各天线阵列的激励,利用波的干涉原理形成预定波束。而GSM天线只有一个阵列,其波束在设计时已确定,出厂后不可改变。 2、智能天线的分类 2.1、全向天线 在360°任意方位上均可进行波束扫描的智能天线阵列。 2.2、定向单极化天线 特指采用单极化辐射单元,组成定向阵列,可以在特定方向内进行波束扫描的天线阵列。 2.3、定向双极化天线 特指采用双极化辐射单元,组成定向阵列,可以在特定方向内进行波束扫描的天线阵列。 2.4、未来发展前瞻 总结一期试验网的经验,业内对智能天线提出了“四化”的要求,即双极化、宽带化、小型化和电调化。根据目前智能天线行业发展状况,双极化及小型化已经基本实现,并大量应用于二期建网中;宽带化及电调化也在紧锣密鼓的进行中,并且是未来发展的一个重要趋势,除此之外,rru一体化智能天线也是未来发展的一项重要技术。详细分析如下: 2007年初,我国十城市TD-SCDMA试验网络开始建设,当时,智能天线产

探讨智能天线在移动通信中的应用

探讨智能天线在移动通信中的应用 摘要:智能天线是移动通信领域的研究热点。作为具有测向和波束形成能力的天线阵列技术, 智能天线是提升频谱资源效率、系统容量和通信质量的有效途径之一, 被广泛应用于各类移动通信系统中。文章介绍智能天线的基本概念、工作原理、分类及其在第二代和第三代移动通信系统中的应用。 关键词:智能天线;软件无线电;移动通信 0 引言 随着移动通信产业的高速发展, 用户数量迅速增加, 频谱资源越发紧张, 如何提高现有频谱的使用效率, 扩展网络容量已成为移动通信发展的关键问题。尤其是中国入世后加快了通信行业对外开放步伐, 同世界全面接轨, 使我国的通信行业面临新的机遇和挑战。从国际上 3G 牌照拍卖情况看, 频率资源的投入已成为全球各运营商资金投入成本的重要组成部分。运营商迫切希望提高系统的频谱利用率, 从而提供更大的容量, 智能天线作为解决这个矛盾的核心技术之一, 受到业界的广泛关注。 1 智能天线的基本概念 智能天线是一种具有测向和波束形成能力的天线阵列, 最初广泛应用于雷达、声纳和军事通信领域。近年来, 由于数字信号处理技术的迅速发展、 IC 处理速度的提高和价格的普及, 使其在商用无线通信系统中的应用可能性大幅提高。智能天线主要由天线阵、波束形成单元和自适应控制单元三部分组成。其中天线阵列是收发射频信号的辐射单元, 常用的阵列形式有直线阵列与圆形阵列。波束形成单元则将来自每个单元天线的空间感应信号加权相加, 其中的权系数为复数。自适应控制单元是智能天线的核心, 该单元的功能是根据一定算法和优化准则, 主动适应周围电磁环境的变化。它利用数字信号处理技术, 通过满足某一准则的算法来调节各个阵元的加权幅度和相位,动态地产生空间定向波束, 使天线的主波束跟踪用户信号的到达方向, 旁瓣或零辐射方向对准干扰信号的到达方向, 进而达到抑制干扰信号, 提高所需信号信噪比的目的。 虽然天线阵列是射频前端的很重要的设备,但自适应阵列天线技术最重要的部分还在于基频(或包括中频) 数字信号处理算法, 算法决定了瞬时响应速率和电路实现的复杂程度, 其好坏将直接影响系统的工作指标。从是否需要参考信号(导频序列或导频信道)的角度来划分, 这些算法可分为盲算法和非盲算法两大类。在多址方式上,智能天线技术突破了传统的三维思维模式, 引入了空分多址( SDMA )方式, 在第四维空间上极大地拓宽了频谱的使用方式。SDMA的主要作用是压制同信道干扰, 可在不影响通信质量的前提下提升系统容量, 或在不改变系统容量的前提下提升通信质量。传统的固定扇形划分通常可提升少许容量或通信质量, 但在引进智能天线后, 改善程度可大幅提高, 其原因是智能天线不仅能有效消除干扰, 同时也能对目标信号提供较大增益。SDMA的终极理想目标是希望能达到每一用户与基地台之间均有一条专属的波束作为上下行链路信道,而不同用户的波束经过特殊设计和处理后,可以避免相互间干扰。 系统理论与实验模拟证明, 在无线通信系统中采用智能天线技术, 对于系统性能特别是系统容量的改善作用十分显著。 2 智能天线的分类 根据不同的复杂度和结构, 智能天线可分为波束转换智能天线和自适应阵列智能天线两大类。 2.1 波束转换智能天线 波束转换天线将传统的一个扇区一个波束变为一个扇区数个波束来覆盖, 每个波束的指向是固定和预定义的, 波束宽度随阵元数目而定。它采用波束切换技术, 随着用户在小区内的移动, 基地台自动选择不同的相应波束, 使接收信号最强。波束转换天线虽然不能实现信号最佳接收, 但结构简单, 便于实现, 且无需判定所接收信号的方向。波束转换天线的波束宽度由天线阵列的口径决定。对于处于主波束外的干扰, 波束转换天线通过控制低的旁瓣电平确保抑制。而对于处于主波束内的干扰, 波束转换天线则无法抑制, 所以它对于主波束内的干扰信号的抑制能力是有限的。由于所需信号的到达方向并不一定固定在主波束中央, 当信号的到达方向随着移动台的移动位于波束边缘, 而干扰信号位于波束中心时, 接收效果最差。此时必须进行波

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

第四代移动通信系统中的多天线技术

第四代移动通信系统中的多天线技术[转] (2008-09-15 15:46:44) 转载 分类:信息论与编码 标签: 杂谈 一、引言 由于第三代移动通信系统(3G)还存在一些不足,包括很难达到较高的通信速率,提供服务速率的动态范围不大,不能满足各种业务类型要求,以及分配给3G系统的频率资源已经趋于饱和等,于是人们提出了第四代移动通信系统(4G)的构想。4G的关键技术包括: (1)调制和信号传输技术(OFDM); (2)先进的信道编码方式(Turbo码和LDPC); (3)多址接入方案(MC-CDMA和FH-OFCDMA); (4)软件无线电技术; (5)MIMO和智能天线技术; (6)基于公共IP网的开放结构。 研究表明,在基于CDMA技术的3G中使用多天线技术能够有效降低多址干扰,空时处理能够极大增加CDMA系统容量。凭在提高频谱利用率方面的卓越表现,MIMO和智能天线成为4G发展中炙手可热的课题。 二、智能天线技术 智能天线最初用于雷达、声纳及军事通信领域。使用智能天线可以在不显著增加系统复杂程度的情况下满足服务质量和扩充容量的需要。 1.基本原理和结构 智能天线利用数字信号处理技术,采用先进的波束转换技术(switched beam technology)和自适应空间数字处理技术(adaptive spatial digital processing technology),判断有用信号到达方向(DOA)通过选择适当的合并权值,在此方向上形成天线主波束,同时将低增益旁瓣或零陷对准干扰信号方向。在发射时,能使期望用户的接收信号功率最大化,同时使窄波束照射范围外的非期望用户受到的干扰最小,甚至为零。 智能天线引入空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号空间传播路径的不同而区分。实际应用中,天线阵多采用均匀线阵或均匀圆阵。智能天线系统由天线阵;波束成形成网络;自适应算法控制三部分组成

微波技术与天线论文

题目:简论微波谐振器件 姓名:陆昌佳学号20091120242 专业:通信工程 目录: 一、…………………………摘要 二、…………………………关键词 三、…………………………正文 1、微波元器件的简单介绍 2、微波元器件常见种类 3、矩形和圆柱形谐振腔基本参数的计算 4、参考书目

一、摘要:微波谐振器件是根据微波频率的特点从LC回路演变而来的,通过对微波谐振器件的研究,我们可以通过谐振器件各个参数更进一步的了解和认识其特点,从而更好的使用微波谐振器件、最大程度的发挥它在通信系统中的作用。以下我将对矩形谐振腔做简要计算分析,得到其谐振频率和品质因素f。和Q。,并将其和圆柱微波谐振腔的基本参数作比较,从而更进一步为通信事业服务. 二、关键词:谐振频率品质因素 三、微波元器件简单介绍:在低频电路中, 谐振回路是一种基本元 件, 它是由电感和电容串联或并联而成, 在振荡器中作为振荡回路,用以控制振荡器的频率; 在放大器中用作谐振回路; 在带通或带阻滤波器中作为选频元件等。在微波频率上, 也有上述功能的器件, 这就是微波谐振器件, 它的结构是根据微波频率的特点从LC回路演变而成的。微波谐振器一般有传输线型谐振器和非传输线谐振器两大类, 传输线型谐振器是一段由两端短路或开路的微波导行系统构成的, 如金属空腔谐振器、同轴线谐振器和微带谐振器等 四、常见谐振腔:

五、正文:谐振在通信系统中起着举足轻重的作用,以最简单的收音机为例,我们都知道收音机在接收电磁波信号时,只有谐收音机频率和空中的电磁波频率相等才能接收到音频信号即谐振。而谐振的直接决定因素在于谐振器件,对谐振器件的研究可从其基本参数谐振频率和品质因素入手。

21 -智能天线权值

智能天线权值 第一部分智能天线广播波束权值相关知识 第一章引言 1.1 智能天线的基本功能 智能天线是N列取向相同的天线按照一定方式排列和激励,利用波的干涉原理形成预定波束的阵列结构天线。智能天线可以通过阵元信号的加权幅度和相位来改变阵列的方向图形,即自适应或以预制方式控制波束宽度、指向和零点位置,使波束指向期望的方向,实现对移动用户的波束跟踪,并自动地抑制干扰方向的副瓣电平。 1.2 智能天线与GSM天线的区别 1.2.1 结构组成区别 智能天线由两个或以上天线阵列组成,而GSM系统天线只由一个天线阵列构成。

8列单极化智能天线GSM单极化天线 8通道双极化智能天线GSM双极化天线 1.2.2 功能区别 智能天线可以通过改变对各天线阵列的激励(即权值)形成预定波束。而GSM天线只有一个阵列,其波束在设计时已确定,出厂后不可改变。 在进行小区覆盖宽度调整时,GSM天线只能更换,TD-SCDMA智能天线可以通过软件改变预定波束的宽度(特指广播波束),灵活的调整覆盖范围。

第二章智能天线的分类 2.1 全向天线 在360°任意方位上均可进行波束扫描的智能天线阵列。 2.2 定向单极化天线 特指采用单极化辐射单元,组成定向阵列,可以在特定方向内进行波束扫描的天线阵列。 2.3 定向双极化天线 特指采用双极化辐射单元,组成定向阵列,可以在特定方向内进行波束扫描的天线阵列。 第三章相关基本概念 3.1 单元波束、广播波束、业务波束 单元波束定义为:智能天线单一阵列的接收或者发射的水平面辐射方向图。

即,智能天线阵列中任意馈电端口在其它所有端口都接负载时发射或接收到的辐射方向图。 广播波束定义为:对智能天线阵列施加特定的幅度和相位激励所形成的全向覆盖或扇区覆盖的辐射方向图。 业务波束定义为:对智能天线阵列施加特定的幅度和相位激励所形成的在工作角域内具有任意波束指向扫描以及具有高增益窄波束的方向图。 3.2 波束宽度 波束宽度指波束的主瓣中功率电平下降一半(3dB)的角度范围。如下图所示:横坐标是角度值,纵坐标-3dB处的虚线与波束图相交叉的两个点之间的角度约为65度。 3.3 波束权值 a)什么是权值,什么是TD广播波束权值: 权值是天线各端口所施加的特定激励信号的量化表示方法,天线端口施加特定激励的目的是为了得到具有特定覆盖效果的方向图。权值可以表示为幅度/相位方式,幅度一般用归一化的电压值|Ui|或电流值|Ii|表示(也可以用归一化功率表示,注意,功率表示与电压电流表示方式的关系为平方、开方),相位用角度表示。在将权值导入某些厂家的OMC前可能需要将其转化为其他格式。

智能天线在TD—LTE中的应用分析

智能天线在TD—LTE中的应用分析 【摘要】文章从技术层面介绍了智能天线的基础技术、波束赋形技术和自适应算法,介绍了TD-LTE中智能天线的单流波束赋形、双流波束赋形技术及相关算法,分析了智能 天线在TD-LTE中的应用情况,最后简述了智能天线技术的发展态势。 【关键词】TD-LTE 智能天线波束赋形 1 概述 智能天线(Smart Antenna)技术是在微波技术、自动控制理论、自适应天线技术、数 字信号处理DSP(Digital Signal Processing)技术和软件无线电技术等多学科基础上综合发 展而成的一门新技术。智能天线是具有一定程度智能性的自适应天线阵列。智能天线早期应用于军事领域,自3G时代开始走向民用通信,在今天的TD-LTE试验网和商用网中, 智能天线技术得到了飞速发展。 智能天线技术利用信号传输的空间相干性,通过调整天线阵列阵元发送信号的权值,产生空间预定波束,将无线信号导向具体方向,使主瓣波束自适应地跟踪用户主信号到达的方向,旁瓣或零陷对准干扰信号到达的方向,达到充分和高效利用移动用户信号,删除或抑制干扰信号的双重目的。智能天线可实现信号的空域滤波和定位,在多个指向不同用户的并行天线波束控制下,可以显著降低用户信号彼此间的干扰。 智能天线通常应用在基站侧,可在下行链路对发射信号进行预加权实现选择性发送,也可在上行链路对接收的混叠信号进行不同加权合并得到对应的波形。智能天线因其具有增加系统容量、提高通信质量和扩大小区覆盖等优点,已广泛应用于TD-SCDMA和TD-LTE网络。可以肯定的是,情景化、小型化、电调化、宽带化和集成化相结合的智能天线,将在TD-LTE及后期演进系统中发挥不可替代的作用。 2 智能天线简介[1] 由于无线移动通信信道传输环境具有复杂性和不确定性,主要受多径衰落、时延扩展等不利因素影响,存在符号间串扰、同信道间干扰和多址干扰等恶化通信环境的情况,直接降低了链路性能和系统容量,而智能天线是解决这些问题的重要手段之一。 2.1 智能天线的信号模型 图1为智能天线接收部分简图,由阵元、加权和合并三部分组成。用户发射信号经 过多径信道衰减和延迟后,到达天线阵列各阵元的是所有发射信号及各自延迟副本的叠加。

自动化毕业论文智能无线技术简介

智能无线技术简介 智能天线原名自适应天线阵列(AAA,Adaptive Antenna Array),最初应用于雷达、声纳、军事方面,主要用来完成空间 滤波和定位,大家熟悉的相挂阵雷达就是一种较简单的自适应无 线阵。移动通信研究者给应用于移动通信的自适应无线阵起了一 个较吸引入的名字:智能无线,英文名为smart antenna或Intelligent antenna。 1.基本结构顾名思义自适应天线阵由多 个天线单元组成,每一个天线后接一个加权器(即乘以某一个系数,这个系数通常是复数,既调节幅度又调节相位,而在相控阵 雷达中只有相位可调),最后用相加器进行合并。这种结构的智 能天线只能完成空域处理,同时具有空域、时域处理能刀的智能 天线在结构上相对复杂些,每个天线后接的是一个延时抽头加权 网(结构上与时城FIR均衡器相同)。自适应或智能的主要含义 是指这些加权系数可以恰当改变自适应调整。上面介绍的其实是 智能天线用作接收天线时的结构,当用它进行发射时结构稍有变化,加权器或加权网络置于天线之前,也没有相加合并器。 2.工 作原理假设满足天线传输窄带条件,即某~人射信号在各天线单 元的响应输出只有相位差异而没有幅度变化,这些相位差异由人 射信号到达各天线所走路线的长度差决定。若人射信号为平面波(只有一个人射方向),则这些相位差由载波波长、人射角度、 天线位置分布唯一确定。给足~粗加权值,一定的人射信号强度,不同人射角度的信号由于在天线问的相位差不同,合并器后的输 出信号强度也会不同。以人射角为横坐标对应的智能无线输出增 益(dB)为纵坐标所作的图被称为方向图(天线术语),智能天 线的方向图不同于全向(omni-)天线(理想时为一直线),而

MIMO无线技术的研究现状与发展趋势

MIMO无线技术的研究现状与发展趋势 2009-07-28 17:19:47 https://www.360docs.net/doc/f318086171.html, 来源:互联网 摘要MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包 ... 摘要 MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包括MIMO的算法开发、信道建模、天线设计、测试平台构建、芯片开发与技术标准化进展等,为深入认识与研究MIM0通信技术奠定了基础。 1、引言 随着无线互联网多媒体通信的快速发展,无线通信系统的容量与可靠性亟待提升,常规单天线收发通信系统面临严峻挑战。采用常规发射分集、接收分集或智能天线技术已不足以解决新一代无线通信系统的大容量与高可靠性需求问题。可幸的是,结合空时处理的多天线技术——多入多出(MIMO)通信技术,提供了解决该问题的新途径。它在无线链路两端均采用多天线,分别同时接收与发射,能够充分开发空间资源,在无需增加频谱资源和发射功率的情况下,成倍地提升通信系统的容量与可靠性。然而,与常规单天线收发通信系统相比,MIMO通信系统中多天线的应用面临大量亟待研究的问题。 2、MIMO无线通信技术 2.1传统单天线系统向多天线系统演进 传统无线通信系统采用一副发射天线和一副接收天线,称作单入单出(SISO)系统。SISO系统在信道容量上具有一个不可突破的瓶颈——Shannon容量限制。针对移动通信中的多径衰落与提高链路的稳定性,人们提出了天线分集技术。而将天线分集与时间分集联合应用,还能获得空间维与时间维的分集效益。因此,从传统单天线系统向多天线系统演进是无线通信发展的必然趋势。 2.2智能天线向多天线系统演进

相关文档
最新文档