正多面体种类的另一种证明

正多面体种类的另一种证明

正多面体种类的另一种证明

马俊

【期刊名称】《中学数学杂志(高中版)》

【年(卷),期】2008(000)005

【摘要】我们知道,正多面体只有五种,即正四面体,正六面体,正八面体,正十二面体,正二十面体.我们的教科书上是利用欧拉公式证明了这个结论.【总页数】1页(64)

【关键词】正多面体;公式证明;种类;正四面体;教科书

【作者】马俊

【作者单位】东北师范大学数学与统计学院,130024

【正文语种】中文

【中图分类】O1

【相关文献】

1.多面体欧拉定理的另一种推广——兼欧拉示性数本质探讨 [J], 郭柏生

2.另一种角度另一种价值另一种记录另一种承载 [J], 石小灵

3.作为政治修辞的宪法——宪法的另一种面相乃至宪法的另一种类型 [J], 李琦

4.正多面体的种类 [J], 王永建

5.从"另一种记忆"中听到了"另一种声音"——读《儿童的成长:另一种记忆——学校道德氛围的改造与重建》 [J], 姜月

以上内容为文献基本信息,获取文献全文请下载

27.命题、证明及平行线的判定定理(提高)知识讲解

命题、证明及平行线的判定定理(提高)知识讲解 【学习目标】 1.了解定义、命题的含义,会区分命题的条件(题设)和结论; 2.体会检验数学结论的常用方法:实验验证、举出反例、推理; 4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式; 5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】 要点一、定义与命题 1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义. 要点诠释: (1)定义实际上就是一种规定. (2)定义的条件和结论互换后的命题仍是真命题. 2.命题:判断一件事情的句子叫做命题. 真命题:正确的命题叫做真命题. 假命题:不正确的命题叫做假命题. 要点诠释: (1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论. (2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立. 要点二、证明的必要性 要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理.推理的过程叫做证明. 要点三、公理与定理 1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理. 2.定理:通过推理得到证实的真命题叫做定理. 要点诠释: 证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程. 要点四、平行公理及平行线的判定定理 1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释: (1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质. (2)公理中“有”说明存在;“只有”说明唯一. (3)“平行公理的推论”也叫平行线的传递性. 2.平行线的判定定理

平行线证明教学设计

第七章 平行线的证明 导学案 1、为什么要证明 一、读一读 学习目标: 1、对由观察、归纳等过程所得的结论进行思考、质疑,认识证明的必要性,培养推理意识; 2、体会检验数学结论的常用方法:实验验证、举出反例、推理等。 二、试一试 自学指导: 1、大胆猜想: 如教材P162提出的问题 2、某学习小组发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有自然数n, n 2-n+11的值都是质数。你认为呢? 由此可知:要判断一个数学结论是否正确,仅靠经验、观察或实验是不够的, 必须有根有据地进行推理。 三、练一练 A1、请在教材上完成P163随堂练习1、2;P164数学理解1 A2、当n 为正整数时,132++n n 的值一定是质数吗? n 0 1 2 3 4 5 6 7 8 9 10 11 … n 2-n+11 是否是质数

A3、八(1)班有39位同学,他们每人将自己的学号作为n 的取值(n=1,2,3,…39)代入式子412++n n ,结果发现式子412++n n 的值都是质数,于是 他们猜想:“对于所有的自然数,式子412++n n 的值都是质数。”你认为这个 猜想正确吗?验证一下n=40的情形。 B1、给出教材P164数学理解3问题的结论,你能用理由肯定自己的结论吗? B2、阅读P163“读一读” 班级 小组 姓名 小组评价 教师评价 2 定义与命题(1) 一、读一读 学习目标:了解定义、命题的含义;会判断某些语句是不是命题。 二、试一试 自学指导: 1、研读教材P165-166完成下列问题: (1)什么是定义? 定义: 。 (2)如右图某地的一个灌溉系统 如果B 处水流受到污染,那么 处水流便受到污染; 如果C 处水流受到污染,那么 处水流便受到污染; 如果D 处水流受到污染,那么 处水流便受到污染;

正多面体与平面展开图

正多面体 与平面展开 图 By Laurinda..201604开始总结,网络搜集 正四面体正六面体正八面体正十二面体正二十面体正四面体正六面体 正八面体正十二面体 正二十面体

正方体展开图 相对的两个面涂上相同颜色,正方体平面展开图共有以下11种。

邻校比我们学校早了几天举行段考,拿他们的数学卷子提供给学生充做模拟考,其中有一题作图题,不好做,它要求将右图,一个由正方形和等腰直角三角形组成的五边形,以两条线切割,重组成一个等面积的等腰直角三角形。 这题让学生和我「奋战」了几节课,却总是画不成。理论上它是可以成立的,因为等腰直角三角形可以和一个正方形等面积,而且由商高定理可以知道,存在一个正方形A,它的面积等于任意两个正方形B、C的面积和。只要A的边长是这两个正方形B、C的边长平方和的正平方根即可。而正方形当然可以等积于一个等腰直角三角 形。 但是如何以两条直线完成这道题呢? 今天(5/19),我利用周休继续思考这道题,终于完成了,做法如左。

多面体之Euler's 公式(V - E + F = 2) V =顶点数( number of vertices) ; E = 边数(number of edges) ; F = 面数(number of faces) 正四面体(Tetrahedron) V=4,E=6,F=4, 4 - 6 + 4 = 2 正六面体(Cube) V=8,E=12,F=6, 8 - 12 + 6 = 2 正八面体(Octahedron) V=6,E=12,F=8, 6 - 12 + 8 = 2 正十二面体(Dodecahedron) V=20,E=30,F=12, 20 - 30 + 12 = 2 正二十面体(Icosahedron) V=12,E=30,F=20,12 - 30 + 20 = 2

三维化学-空间正多面体

高中化学竞赛辅导专题讲座——三维化学 第八节空间正多面体 前面几节我们学习了五种正多面体,以及它们在化学中的应用。此节我们将继续对这一内容进行讨论、总结与深化。 何为正多面体,顾名思义,正多面体的每个面应为完全相同的正多边形。对顶点来说,每个顶点也是等价的,即有顶点引出的棱的数目是相同的,相邻棱的夹角也应是一样的。那么三维空间里的正多面体究竟有多少种呢? 【例题1】利用欧拉定理(顶点数-棱边数+面数=2),确定三维空间里的正多面体。 【分析】从两个角度考虑:先看每个面,正多边形可以是几边形呢?我们知道三个正六边形共顶点是构成平面图形的。因此最多只可以是正五边形,当然还有正三角形和正方形;再看顶点,每个顶点至少引出三条棱边,最多也只有五条棱边(六条棱边时每个角应小于60°,不存在这样的正多边形)。因此,每个面是正五边形时,三棱共顶点;正方形时,也只有三棱共顶点(四个正方形共顶点是平面的);正三角形时,可三棱、四棱、五棱共顶点(六个正三角形共顶点也是平面的),当然也可以说,一顶点引出三条棱边时可以为正三角形面、正方形面和正五边形面;一顶点引出四条棱边时只可以为正三角形面;一顶点引出五条棱边时也只可以为正三角形面——共计五种情况,是否各种情况都存在呢?(显然是,各种情况前面均已讨论)我们用欧拉定理来计算。 ①正三角形,三棱共顶点:设面数为x,则棱边数为3x/2(一面三棱,二面共棱),顶点数为x(一面三顶点,三顶点共面),由欧拉定理得x-3x/2+x=2,解得x=4,即正四面体; ②正三角形,四棱共顶点:同理,3x/4-2x+x=2,解得x=8,即正八面体; ③正三角形,五棱共顶点:同理,3x/5-3x/2+x=2,解得x=20,即正二十面体; ④正方形,三棱共顶点:同理,4x/3-2x+x=2,解得x=6,即正方体; ⑤正五边形,三棱共顶点:同理,5x/3-5x/2+x=2,解得x=12,即正十二面体。 【解答】共存在五种正多面体,分别是正四面体、正方体、正八面体、正十二面体、正二十面体。 【例题2】确定各正多面体的对称轴类型Cn和数目(Cn表示某一图形绕轴旋转360°/n后能与原图形完全重合) 【分析】①正四面体:过一顶点和对面的面心为轴,这是C3轴,显然共有四条;有C2轴吗?过相对棱的中点就是C2轴,共三条。将正四面体放入

(完整版)线面平行证明的常用方法

线面平行证明的常用方法 张磊 立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC 分析: 如图⑴ 如图⑵ 如图⑶ 方法二:构造平行四边形,找平行线 例2、如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE//CF ,求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 就是平面AEGD 与平面DCF 的交线,那么只要证明AE//DG 即可。 方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已 知平面平行的平面 例3、如图⑷,在四棱锥O ABCD -中,底面ABCD 为菱形, M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析::取OB 中点E ,连接ME ,NE ,只需证平面MEN 平面OCD 。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。 例4、已知正方形ABCD 和正方形ABEF AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 如图⑷ 如图⑸ 如图⑹ E B A D C G F F y C B E D A S z _ M _ D _ A B _ O E P E D C B O A B C D E F N M

例5.如图⑸,已知三棱锥P—ABC,A′,B ′,C ′是△PBC,△PCA,△PAB 的重心. (1)求证:A′B′∥面ABC; (2)求S △A ′B ′C ′:S △ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.证明EF ∥平面SAD ; 分析:因为侧棱SD ⊥底面ABCD ,底面ABCD 是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系D xyz -. 设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ???? ? ????? ,,,,,, 02b EF a ??=- ?? ?u u u r ,,. 因为y 轴垂直与平面SAD ,故可设平面的法向 量为n r =(0,1,0) 则:02b EF n a ??=- ?? ?u u u r r g g ,,(0,1,0)=0 因此 EF n ⊥u u u r r 所以EF ∥平面SAD .

高三数学多面体与正多面体

高三数学多面体与正多面体 9.11多面体与正多面体 【教学目标】 了解多面体、正多面体的概念 【知识梳理】 1若干个平面多边形围成的几何体,叫做多面体. 2把多面体的任何一个面伸展为平面,如果所有其他各面都 在这个平面的同侧,这样的多面体叫做凸多面体. 3每个面都是有相同边数的正多边形,且以每个顶点为其一 端都有相同的数目的棱的凸多面体,叫做正多面体. 4.正多面体有且只有5种:正四面体、正六面体、正八面体、正十二面体、正二十面体 【点击双基】 1.一个正方体内有一个内切球面,作正方体的对角面,所得 截面图形是 答案:B 2.正多面体只有_____________种,分别为 ________________. 答案:5 正四面体、正六面体、正八面体、正十二面体、 正二十面体 3.在正方体ABCD-A1B1C1D1中,M、N分别是A1B1、BB1的中

点,则直线AM与CN所成的角的余弦值是_____________. 解析:过N作NP∥AM交AB于点P,连结C1P,解三角形即可. 答案: 【典例剖析】 【例1】已知甲烷CH4的分子结构是中心一个碳原子,外围有4个氢原子(这4个氢原子构成一个正四面体的四个顶点).设中心碳原子到外围4个氢原子连成的四条线段两两组成的角为θ,则cosθ等于 A.- B. C.- D. 解析:将正四面体嵌入正方体中,计算易得 cosθ==-(设正方体的棱长为2). 答案:A 【例2】试求正八面体二面角的大小及其两条异面棱间的距离. 解:如图,设正八面体的棱长为4a,以中心O为原点,对角线DB、AC、QP为x轴、y 轴、z轴建立空间直角坐标系,则A(0,-2a,0)、B(2a,0,0)、C(0,2a,0)、P(0,0,2a),设E为BC的中点,连结PE、QE、OE,则∠PEQ=2∠PEO即为所求二面角的平面角,∵OE=2a,OP=2a,∴tan∠PEO=,∠PEQ=2arctan.设n=(x,y,z)是AB与PC的公垂线的一个方向向量,则有n?=x+y=0,n?=y-z=0,解得

线面平行证明的常用方法

线面平行证明的常用方法张磊立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平 行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 求证:PB//平面AEC . 分 析: r 如图⑴ 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD中,点E是PD的中点? 方法二:构造平行四边形,找平行线 例2、如图⑵,平行四边形ABCD和梯形BEFC所在平面相交,BE//CF,求证: AE// 平面DCF. 分析:过点E作EG//AD交FC于G,DG就是平面AEGD 与平面DCF的交线,那么只要证明 AE//DG即可。 方法三:作辅助面使两个平面是平行,即:作平行平面,使得过所证直线作与已知平面平行的平面 例3、如图⑷,在四棱锥O ABCD中,底面ABCD为菱形,M为0A的中 点,N为BC的中点,证明:直线MN ||平面OCD 分析::取0B中点E,连接ME , NE,只需证平面MEN l平面OCD。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。

例4、已知正方形 ABCD 和正方形ABEF 所在的平面相交于 AB ,点M , N 分别在 AC 和 BF 上,且 AM=FN. 求证:MN |平面 BCE. 如图⑷ 如图⑹ A D 如图⑸

例5.如图⑸,已知三棱锥P —ABC, A', B C '是△ PBC, △ PCA, △ PAB 的重心. (1)求证:A'B' //面ABC; (2)求£△ A ' B ' C ' : £△ ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD中,底面ABCD为正方形, 侧棱SD丄底面ABCD,E,F分别为AB, SC的中点.证明EF //平面SAD; 分析:因为侧棱SD丄底面ABCD,底面ABCD是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系 D xyz . 设A(a,O,O,S(0,0, b),贝U B(a, a,0), C(0,a,0, E a, ,0 , F 0,,, 2 2 2 uu u b EF a,0,— 2 因为y轴垂直与平面SAD,故可设平面的法向量为n= (0, 1, 0) uur r b 则:EFgn a,0,,(0, 1, 0) =0 2 uuu r 因此EF n 所以EF //平面SAD .

多面体与正多面体

高三第一轮复习数学---多面体 一、教学目标:了解多面体、正多面体的概念,了解多面体的欧拉公式,并利用欧拉公式解决有 关问题; 二、教学重点: 1、欧拉公式 (如何运用) 2、割补法求体积 三、教学过程: (一)主要知识: 1、若干个平面多边形围成的几何体,叫做多面体. 2、把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体. 3、表面经过连续变形可变为球面的多面体叫做简单多面体。一切凸多面体都是简单多面体。 4、每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同的数目的棱的凸多面体,叫做正多面体. 5、如果简单多面体的顶点数为V,面数为F,棱数为E,那么V+F-E=2,这个公式叫做欧拉公式. 6 思维方式: 空间想象及转化思想 特别注意: 研究多面体时,不要脱离棱柱棱锥的概念和性质,而要以它们为基础去认识多面体,并讨论多面体的特点和性质.欧拉公式的适用范围为简单多面体. (二)例题分析: 例1:(1)给出下列命题①正四棱柱是正多面体②直四棱柱是简单多面体③简单多面体就是凸多面体④以正四面体各面中心为顶点的四面体仍为正四面体,其中真命题个数为( )个 A.1 B.2 C.3 D.4 (2)一个凸多面体的棱数为30,面数为12,则它的各面多边形的内角总和为__ 解:(1) B (2)同欧拉公式V=E-F+2=20,所以内角总和为(V-2)×360°=6480°. 思考题:一个多面体,每个面的边数相同且小于6,每个顶点出发的棱数也相同,若各个面的内角总和为3600°,求这个多面体的面数、顶点数及棱数.(20,12,30) 思维点拨:运用公式V+F-E=2 例2: 已知某金属元素的单晶体外形是简单几何体,此晶体有三角形和八边形两种晶面,如果此晶体有24个顶点,以每个顶点为一端都有三条棱,计算此晶体的两种晶面的数目. 解:由于晶体各面不都是边数相同的多边形,因此面数是两种多边形面数之和,棱数仍然是各面边数总和的一半,另一方面,由顶点数及每一顶点发出的棱数也可求出多面体的棱数,设三角形晶面x 个,八边形晶面有y 个,则F=x+y ,同时V=24,∴E=36,由欧拉公式:24+(x+y)-36=2, x+y=14, E= 2 1(3x+8y)=36, ∴x=8, y=6.

证明线线平行的方法

证明线线平行的方法 内错角相等 同位角相等 同旁内角互补 A平行B,B平行C,则A平行C 平行四边形(那一类如菱形,矩形等)对边平行 证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不平行则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线平行于a 这就与平行公理矛盾所以假使不成立所 以b‖c 由同位角相等,两直线平行,可推出:内错角相等,两直线平行。同旁内角互补,两直线平行。因为a‖b,a‖c, 所以b‖c (平行公理的推论) 2 “两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已, 并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利 用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。 一、怎样证明两直线平行证明两直线平行的常用定理(性质)有: 1.两直线平行的判 定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果 一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于 三角形的第三边. 4、平行四边形的性质定理. 5、若一直线上有两点在另一直线的同 旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C \认六一值!小人﹃夕叱的一试勺洲洲川JL ZE一B \/(一、图月一飞 /匕\一|求且它们到该直线的距离相等,则两直线平行. 例1(20xx年南通市)已知:如图l,下列条 件中,不能判断直线l,//l:的是(B). 例2(20xx年泉州市)如图2,△注Bc中,匕BAC的平 分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc (1)根据定义。证明两个平面没有公共点。 由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常 用反证法证明。 (2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。 (3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。

最新人教版七年级数学上册第四章正多面体

正多面体 有一次一个平常的英国孩子詹姆斯,在醉心于制作多面体模型时,写信给父亲:“……我做了四面体、十二面体以及两个不知道名称的多面体.”他当时还是一个毫无名气的孩子.这些话意味着伟大物理学家詹姆斯·克拉克·麦克斯韦尔诞生了.想象一下,你们自己和你们亲人醉心于制作几何物体模型的情形.本书的这几页是家庭作业.新年临近,这是最欢乐和美丽的节日.除了传统的枫树装饰(炮仗和小挂灯)外,你们可以制作几何玩具.这是用彩色纸做成的正多面体模型.考察下图,在这图上画着四面体、正方体、八面体、十二面体和二十面体.它们的形状是完美的典型! 你们能觉察到一系列有趣的特点,也正是这些性质使它们得到了相应的名称.每一个正多面体的所有面都是相同的正多边形,在每一个顶点集聚着同样数量的棱,而相邻的面在相等角下毗连. 数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表中. 在最后一栏,这些多面体得到的是同一个结果:V+F-E=2.最令人惊奇的是它不仅对正多面体,而且对所有多面体都正确! 若有兴趣你们可以对某些胡乱取得的多面体进行验证.最伟大的数学家之一列昂纳德·欧拉(1707-1783)证明了这一令人惊叹的关系式,因此公式以他命名:欧拉公式.这位出生于瑞士的天才学者几乎整个一生居住在俄罗斯,我们完全有理由和自傲地将他引为自己的同胞. 正多面体还有一个特点.我们发现:正四面体有一性质:如果把它的每个面的中心作为新的多面体的顶点,那么我们重新得到一个正四面体.余下的4个正多面体恰可分成两对.正方体各面的中心组成一个正八面体,而正八面体各面的中心则组成正方体.同样,可以发生的另一对类似联系是正十二面体和正二十面体. 正多面体所具有的完美的形状和漂亮的数学规律使这五种几何物体具有某种神秘色彩,以致于很久以前它们就是神术者和占星家的必要伴侣.如果你们致力于正多面体的研究和制作,那么肯定会使你们感到欢乐和满意,甚至有可能在新的一年里给你带来好运气! 在下图中给出这些枞树上玩具的展开图.在制作模型时不要忘记在需要的地方留一片瓣膜为粘接用.

高考第一轮复习数学 多面体与正多面体

9.11 多面体与正多面体 ●知识梳理 1.每个面都是有相同边数的正多边形,每个顶点为端点都有相同棱数的凸多面体,叫做正多面体. 2.正多面体有且只有5种.分别是正四面体、正六面体、正八面体、正十二面体、正二十面体. ●点击双基 1.一个正方体内有一个内切球面,作正方体的对角面,所得截面图形是 A B C D 答案:B 2.正多面体只有_____________种,分别为________________. 答案:5 正四面体、正六面体、正八面体、正十二面体、正二十面体 3.在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是A 1B 1、BB 1的中点,则直线AM 与CN 所成的角的余弦值是_____________. 解析:过N 作NP ∥AM 交AB 于点P ,连结C 1P ,解三角形即可. 答案: 5 2 ●典例剖析 【例1】 已知甲烷CH 4的分子结构是中心一个碳原子,外围有4个氢原子(这4个氢原子构成一个正四面体的四个顶点).设中心碳原子到外围4个氢原子连成的四条线段两两组成的角为θ,则cos θ等于 A.-31 B. 31 C.- 21 D. 21 解析:将正四面体嵌入正方体中,计算易得 cos θ= 3 32)22()3()3(2 22??-+=- 3 1 (设正方体的棱长为2). 答案:A 【例2】 试求正八面体二面角的大小及其两条异面棱间的距离. 解:如图,设正八面体的棱长为4a ,以中心O 为原点,对角线DB 、AC 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系,则A (0,-22a ,0)、B (22a ,0,0)、C (0,22a ,

几种正多面体的相互呼应

几种正多面体的相互呼应 南师附中江宁分校 韦恩培 近年来,在高考中常考查以某一正多面体为背景的立体几何题,此类问题运用不同的方法解决效果是显然不同的。 1、 常用的三种正多面体的呼应 众所周知,正多面体只有五种:正四面体,正六面体,正八面体,正十二面体,正 二十面体。 正四面体,正六面体,正八面体之间可以相互呼应。 在正方体中可以产生正四面体;(正方体对面的一对异面对角线的顶点是正四面体的顶点)如图(1) 在正方体中可以产生正八面体;(正方体六个面的中心是正八面体的顶点)如图(2) 在正八面体中可以产生正方体;(正八面体的八个面的中心是正方体的顶点)如图(3) 在正八面体中可以产生正四面体;(正八面体的两对对面的中心,连线异面的四个面的中心是正四面体的顶点)如图(4) 在正四面体中可以产生正八面体;(正四面体六条棱的中点是正八面面体的顶点)如图(5) 在图(5)的基础上,结合图(4)就能在正四面体中产生正方体。 图(1) 图(2) 图(3) 图(4) 图(6) 相互转化的目的。 2、应用呼应解题

在高考的考查中经常会利用它们之间的相互转化而达到巧解的目的。 例1、一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为( ) A .3π B .4π C .3π3 D .6π 提示:利用图(1)正方体产生正四面体具有共同的外接球,即求棱长为1的正方体的外接球的表面积,易求得为π3,选A 。 例2、有一棱长为a 的正四面体骨架(架的粗细忽略不计),其内放置一气球,对其充气,使其尽可能地膨胀(成为一个球)则气球表面积的最大值为 ( ) A .2 a π B . 22 2a π C .2 2 1a π D . 24 1a π 提示:利用图(2)正方体可以产生正八面体,正八面体可以产生正四面体知,符合条件的球即为棱长为 a 2 2 的正方体的内切球,易求得其表面积为221a π,故选C 。 例3、如图(6)棱长为a 的正方体1111D C B A ABCD -,过11BC A 的平面截去正方体一角(三棱锥111BC A B -),象这样依次截去正方体所有角,则剩下的几何体的体积为 。 提示:根据图(2)在正方体中可以产生正八面体得,所剩下几何体为 正方体的六个面中心作为顶点的正八面体,易求得其体积为 3 6 1a 。 例4、在甲烷的分子式4CH 中,四个H 位于一个正四面体的四个顶点上,C 位于该正四面体的中心,现已知H 与H 之间的距离为a ,则C 与H 之间的距离为 。 提示:由图(1)易知:该问题等价于已知正方体的面对角线长为a ,求正方体对角线长的一半。易求得结果为 a 4 6 。 例5、正三棱锥S —ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于 ( ) A . 90 B . 60 C . 45 D . 30 提示:根据图(1)易知答案为C 。

正多面体的顶点坐标

正多面體的頂點坐標 國立台灣師範大數學系 陳創義 要利用GSP 來作多面體,先要從立體的基本正多面體下手,在正多面體中有許多的對稱,包括旋轉對稱、面對稱、線對稱、點對稱等,因此下列舉出旋轉對稱中的旋轉軸置於z 軸時,某些較簡單形式的頂點坐標標出來,其中旋轉軸在四面體選取的有點到底面中心的連線及兩稜中點連線兩種,另外,正六面體、正八面體、正十二面體、正二十面體選取的有面中心到面中心的連線、稜中點到稜中點的連線、頂點到頂點的連線三種。若一線段長度為a ,正射影到xy 平面的長度為b ,該線段正投影到z 軸的長度為c ,利用畢氏定理知道它們的關係是a 2=b 2+c 2。 正四面體頂點坐標 令表繞旋轉角度O R O a b a b a b O ==-+(,),(,)(,)(cos s i n ,s i n cos ).00θθθθθθ (一) v v v R O v R O 1001283013312083013424083013 ==-=?-=?-(,,);( ,,);((,)(,),);((,)(,),). (二) v v v v 12301322301330231340231 3 ==-=-=--( ,,);(,,);(,,);(,,). 正六面體頂點坐標

(一 ) 12(3(453;64;71;8 2.v v v v v v v v v v v v =====-=-=-=- (二 ) 12(34(53;64;72;8 1.v v v v v v v v v v v v =====-=-=-=- (三 ) 1111(0,0,1);2( );3(((,120)();4(((,240)();33333354;62;73;8 1.v v v R O v R O v v v v v v v v ===?=?=-=-=-=- 正八面體頂點坐標 (一 ) 12((,1203((,24043;51;6 2.v v R O v R O v v v v v v ==?=?=-=-=- (二 ) 12(3(0,1,0); 43;52;6 1.v v v v v v v v v ====-=-=- (三) 1(1,0,0);2(0,1,0);3(0,0,1);43;52;6 1.v v v v v v v v v ====-=-=-

立体几何中线面平行的经典方法+经典题(附详细解答)

D B A 1 A 高中立体几何证明平行的专题(基本方法) 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边 形 * 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 - 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. … 分析:连EA ,易证 C 1EA D 是平行四 是 (第1题图)

P E D C B A MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F G M AD CD BD BC AM EFG 求证:AB 1ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//= 1 2 AD BE //= 12 AF ,G H ,FA FD BCHG ,,,C D F E ) 利用平行四边形 的性质 9.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O 2 1 中点为PD E 求证:AE ∥平面PBC ; & 分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形 11、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小. # (I )证法一: 因为 EF 90ACB ∠=?90,EGF ABC ∠=??.EFG ?BC FG 21=ABCD BC AM 21=FA ?GM ?SM AM ND BN ABC P -PB ⊥ABC 90BCA ∠=E PC M AB F PA 2AF FP =(1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ; 分析: 取AF 的中点N ,连CN 、MN ,易证平面CMN1 ! A F E B C D M 。 A B C D E F G M

线面垂直平行六种关系的证明方法

线面垂直平行六种关系的证明方法 一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。(分线段成比例的直线平行) 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(线面平行的性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。(平行公理) 7、夹在两个平行平面之间的平行线段相等。(需证明) 8. 两直线的方向向量共线(平行) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 4、直线的方向向量与平面的法向量垂直,且线在面外。 5、直线的方向向量与平面内的两个不共线向量共面(线性表示)且线在面外。

三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面和已知平面平行。 5、垂直于同一直线的两个平面平行。 6、两平面的法向量共线 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形(三线合一)。 3、菱形对角线。 4、圆所对的圆周角是直角。 5、点在线上的射影。 6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。

总结证明线面平行的常用方法

B C D A 1 B 1 C 1 D 1 图2 A F E G α a b A 图1 总结证明线面平行的常用方法 空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下: 方法一、反证法 【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理) 已知:,,a b a αα??∥b ,如图1. 求证:a ∥α. 【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明. 【证明】假设直线a 与平面α不平行,又∵a α?,∴a A α=. 下面只要说明a A α=不可能即可. ∵a ∥b ,∴a ,b 可确定一平面,设为β. 又a A α=, ∴,A a A β∈∈. 又b ,A αα?∈, ∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α?,这与已知a α?相矛盾. ∴a A α=不可能.故a ∥α. 方法二、判定定理法 【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件. 【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且1 2 EF CD = 又∵G 为11C D 的中点, ∴ 1D G ∥CD 且11 2 D G CD = ∴ EF ∥1D G ,且1EF D G =

第七章平行线的证明全章教案

第七章平行线的证明 1.为什么要证明 一、学生知识状况分析 学生的技能基础:学生经历了很多验证结论合理性的过程,有了初步的逻辑推理思维。 学生活动经验基础:学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.二、教学任务分析 学生的直观能力是仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时的教学目标是: 1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否. 2.经历观察、验证、归纳等过程,使学生认识证明的必要性,培养学生的推理意识. 3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等. 三、教学过程: 1、验证活动(1) 某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n,n2-n+11的值都是质数.你认为呢?与同伴交流. 注意事项: 学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性. 2、验证活动(2) 如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围 起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球

形)?能放进一个红枣吗?能放进一个拳头吗? 参考答案:设赤道周长为c ,铁丝与地球赤道之间的间隙为 : )(16.021 221m c c ≈=-+π ππ 它们的间隙不仅能放进一个红枣,而且也能放进一个拳头. 注意事项: 要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生。 3、反馈练习 1.如图中两条线段a 与b 的长度相等吗?请你先观察,再度量一下. 答案:a 与b 的长度相等. 第1小题图 第2小题图 2.如图中三条线段a 、b 、c ,哪一条线段与线段d 在同一直线上?请你先观察,再用三角尺验证一下. 答案:线段b 与线段d 在同一直线上. 3.当n 为正整数时,n 2+3n +1的值一定是质数吗? 答案:经验证:当n 为正整数时,n 2+3n +1的值一定是质数. 4、课堂小结 5、 巩固练习 课本第217页习题7.1 第2,3题. 四、教学反思 2.定义与命题(第1课时) 一、学生知识状况分析 学生技能基础:本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.

证明线线平行的方法

证明线线平行的方法: 1.垂直于同一平面的两条直线平行 2.平行于同一直线的两条直线平行 3.一个平面与另外两个平行平面相交,那么2条交线也平行 4.两条直线的方向向量共线,则两条直线平行 5.线面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 证明线面平行的方法: 1.直线与平面平行的判定性定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 2.平面与平面平行的性质定理:如果两个平面是平行,那么在其中一个平面内的直线和另一个平面平行。 证明面面平行的方法: 1.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 2.面面平行的传递性:如果两个平面都和第三个平面平行,则这两个平面平行。 3.垂直与同一直线的两个平面平行。 4.利用向量法证明。 证明线线垂直的方法: 1.定义法:两直线夹角90度 2.三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直 3.直线与平面的定义:若1条直线垂直于一个平面,则它垂直于这个平面的所有直线 4.法向量:在空间直角坐标系中,三点两向量确定一个平面,分别于这两个向量垂直的向量也就是分别与这两个向量乘积为0的向量垂直于这个平面,也就叫这个平面的法向量。 证明线面垂直的方法: 1.直线垂直于平面内两条相交直线,则线与面垂直。 2.两条平行线一条垂直于平面,则另一条也垂直于这个平面。 3.如果两个面垂直,则其中一个面内垂直交线的线垂直另一个平面。 4.如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面。 5.向量法。就是用向量乘积为零则两向量垂直来证线线垂直,再用方法1来证。(向量法一般不用来证线面垂直,多用于求二面角,线面角等) 6.直线于平面的法向量共线。 证明面面垂直的方法: 1.定义:两个平面相交,它们所成的二面角是直二面角。 2.如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直。

多面体简介

MTS2007第一屆全國高中數學教學研討會論文集市立高雄女中林義強 第九場次 第177頁至第192頁 多面體簡介{P o l y h e d r o n} kghs_john@https://www.360docs.net/doc/f414971059.html, 高雄市立高雄女中 林義強 編授 [ Contents ] : {1}.從柏拉圖多面體談起( Platonic Solids ) {2}.阿基米得多面體( Archimedean Solids ) {3}.加泰朗多面體( Catalan Solids ) {4}.喀卜勒-龐索多面體( Kepler-Poinsot Solids ) {5}.自製多面體模型玩具 {6}.參考資料 『Geometry is a skill of the eyes and the hands as well as of the mind.』 『幾何 是 眼、手 及 心靈 的 技能。』 J e a n J.P e d e r s o n 177

多面體簡介 { Polyhedron } 178 {1}. 從柏拉圖多面體談起( P l a t o n i c S o l i d s ) [1]. Construct Platonic Solids [2]. Important facts about Platonic Solids 柏拉圖多面體每面均由全等的正多邊形所組成,且要求每個頂點的組態一致;為"凸"的正多面體,共有正四面體( T e t r a h e d r o n ) , 正六面體( H e x a h e d r o n 或C u b e ) , 正八面體( O c t a h e d r o n ) , 正12面體( D o d e c a h e d r o n ) , 正20面體( I c o s a h e d r o n )等五個。 古希臘人已經知道有上述五個正多面體,柏拉圖( P l a t o , B C 427-B C 347 )在其著作 ( T i m a e u s )中已有描述;時約公元前350年。 歐基里得( E u c l i d o f A l e x a n d r i a , a b o u t B C 325-B C 265 ) 在其"幾何原本( E l e m e n t s )"最後一個命題也已完成証明 "凸正多面體恰有如上述五個"。 (P01). 正四面體: 4{3} (由 4 個正三角形構成) (P02). 正六面體: 6{4} (由 6 個正方形構成) (P03). 正八面體: 8{3} (由 8 個正三角形構成) (P04). 正十二面體: 12{5} (由 12 個正五邊形構成) (P05). 正二十面體: 20{3} (由 20 個正三角形構成)

相关文档
最新文档