电力系统基础知识-发电机基础常识-12页文档资料

电力系统基础知识-发电机基础常识-12页文档资料
电力系统基础知识-发电机基础常识-12页文档资料

1.什么是“同步”发电机?同步转速是如何确定的?

答:发电机是发电厂的心脏设备,发电机按其驱动的动力大致可分为水轮发电机(水力)和汽轮发电机(蒸汽)。本书所涉及的内容均是指同步发电机(限于立式水轮发电机)。

发电机在正常运行时,在发电机定转子气隙间有一个旋转的合成磁场,这个磁场由两个磁场合成:转子磁场和定子磁场。所谓“同步”发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等。

转子磁场由旋转的通有直流电的转子绕组(磁极)产生,转子磁场的转速也就是转子的转速,也即整个机组的转速。转子由原动机驱动,转速由机组调速器进行调节,这个转速在发电机的铭牌上都有明确标示。定子旋转磁场由通过三相对

称电流的定子三相绕组(按120°对称布置)产生,其转速由式确定(式中:p为转子磁极对数;f为电力系统频率;n为机组转速)。从式中可见,对某一具体的发电机,其磁极对数是固定不变的,而我国电力系统的频率也是固定的,即50Hz(也称工频),可见每一具体的发电机的定子旋转磁场的转速在发电机制造完成后就是“定值”。当然,电力系统的频率并不能真正稳定在50Hz的理论值,而是允许在这个值的上下有微小的波动,也即定子磁场在运行中实际是在额定转速值的周围动态变化的。转子磁场为了与定子磁场同步也要适应这个变化,也即机组的转速作动态的调整。如果转速不能与定子磁场保持一致,则我们说该发电机“失步”了。

2.什么是发电机的飞轮力矩。?它在电气上有什么意义?

答:发电机飞轮力矩,是发电机转动部分的重量与其惯性直径平方的

乘积。看起来它是一个与电气参数无关的量,其实不然,它对电力系统的暂态过程和动态稳定影响很大。它直接影响到在各种工况下突然甩负荷时机组的速率上升及输水系统的压力上升,它首先应满足输水系统调节保证计算的要求。当电力系统发生故障,机组负荷突变时,因调速机构的时滞,使机组转速升高,为限制

转速,机组需一定量的,越大,机组转速变化率越小,电力系统的稳定性就越好。

与机组造价密切相关,越大,机组重量越大、制造成本越大。

3.什么是发电机的短路比Kc?Kc与发电机结构有什么关系?

答:短路比Kc,是表征发电机静态稳定度的一个重要参数。Kc原来的意义是对应于空载额定电压的励磁电流下三相稳态短路时的短路电流与额定电流之比,即Kc=I k o/I N。由于短路特性是一条直线,故Kc可表达为发电机空载额定电压时的励磁电流I f o与三相稳态短路电流为额定值时的励磁电流I fk之比,表达式为:Kc=I f o/I fk≈1/Xd。Xd是发电机运行中三相突然短路稳定时所表现出的电抗,即发电机直轴同步电抗(不饱和值)。

如忽略磁饱和的影响,则短路比与直轴同步电抗Xd互为倒数。短路比小,说明同步电抗大,相应短路时短路电流小,但是运行中负载变化时发电机的电压变化较大且并联运行时发电机的稳定度较差,即发电机的过载能力小、电压变化率大,影响电力系统的静态稳定和充电容量。短路比大,则发电机过载能力大,

负载电流引起的端电压变化较小,可提高发电机在系统运行中的静态稳定性。但Kc大使发电机励磁电流增大,转子用铜量增大,使制造成本增加。短路比主要根据电厂输电距离、负荷变化情况等因数提出,一般水轮发电机的K,取0.9~1.3。结构上,短路比近似的等于

可见,要使Kc增大,须减小A,即增大机组尺寸;或加大气隙,须增加转子绕组安匝数。

4.什么是发电机的直轴瞬变电抗凰Xd′?与发电机结构有什么

关系?

答:Xd′是代表发电机运行中三相突然短路初始时间(阻尼绕组的电流衰减后)的过渡电抗。直轴瞬变电抗是发电机额定转速运行时,定子绕组直轴总磁链产生的电压中的交流基波分量在突变时的初始值与同时变化的直轴交流基波电流之比。它也是发电机和整个电力系统的重要参数,对发电机的动态稳定极限及突然加负荷时的瞬态电压变化率有很大影响。Xd′越小,动态稳定极限越大、瞬态电压变化率越小;但Xd′越小,定子铁芯要增大,从而使发电机体积增大、成本增加。Xd′的值主要由定子绕组和励磁绕组的漏抗值决定。

结构上,Xd′与电负荷A、极距τ有如下关系:

k为比例系数。可见,要降低Xd′,必须减小A或加大τ,都将使发电机尺寸增大。

5.什么是发电机的直轴超瞬变电抗Xd″?与发电机结构有什么关系? Xd″的大小对系统有什么影响?

答:Xd″是代表发电机运行中三相突然短路最初一瞬问的过渡电抗。发电机突然短路时,转子励磁绕组和阻尼绕组为保持磁链不变,感应出对电枢反应磁通起去磁作用的电流,将电枢反应磁通挤到励磁绕组和阻尼绕组的漏磁通的路径上,这个路径的磁阻很大即磁导很小,故其相对应的直轴电抗也很小,这个等效电抗称为直轴超瞬变电抗Xd″,也即有阻尼绕组的发电机突然短路时,定子电流的周期分量由Xd″来限制。

结构上,Xd″主要由发电机定子绕组和阻尼绕组的漏抗值决定。

对于无阻尼绕组的发电机,则Xd″= Xd′。

由于Xd″的大小影响电力系统突然短路时短路电流的大小,故Xd″值的大小也影响到系统中高压输变电设备特别是高压断路器的选择,如动稳定电流等参数。从电气设备选择来说,希望Xd″大些,这样短路电流小一些。

6.阻尼绕组的作用是什么?

答:水轮发电机转子设计有交、直轴阻尼绕组。阻尼绕组在结构上相当于在转子励磁绕组外叠加的一个短路鼠笼环,其作用也相当于一个随转子同步转动的“鼠笼异步电机”,对发电机的动态稳定起调节作用。发电机正常运行时,由于定转子磁场是同步旋转的,因此阻尼绕组没有切割磁通因而也没有感应电流。当发电机出现扰动使转子转速低于定子磁场的转速时,阻尼绕组切割定子磁通产生感应电流,感应电流在阻尼绕组上产生的力矩使转子加速,二者转速差距越大,则此力矩越大,加速效应越强。反之,当转子转速高于定子磁场转速时,此力矩方向相反,是使转子减速的。因此,阻尼绕组对发电机运行的动态稳定有良好的调节作用。

7.3 Y接线是什么含义?发电机为何多采用星形接线?

答:在发电机铭牌或图纸中,我们常见到发电机定子绕组的接线方式表示为Y、3 Y、5 Y等。这表示发电机是按星形方式接线。3 Y表示发电机定子绕组是3路星形并联,也可以理解为3个星形接线的发电机并联在一起。

由于发电机的磁通内有较强的3次谐波,如果发电机接成△线,则3次谐波会在△内形成回路,造成附加的损耗和发热。此,发电机定子绕组一般接成Y 形,使3次谐波不能形成回路。

8.什么是励磁绕组?什么是电枢绕组?

答:在电机的定、转子绕组中,将空载时产生气隙磁场的绕称为励磁绕组(或激磁绕组);将另一产生功率转换(吸收或出有功功率)的绕组称为电枢绕组。可见,水轮发电机的励磁组就是转子绕组,而定子绕组则是电枢绕组。异步电动机的励绕组是定子绕组,而基本处于短路状态下的转子绕组则是电枢组。

9.什么是叠绕组?有何特点?什么是波绕组?有何特点?

答:叠绕组是任何两个相邻的线圈都是后一个线圈叠在前一线圈的上面。在制造上,这种绕组的一个线圈多为一次制造成,这种形式的线圈也称为框式绕组。这种绕组的优点是短矩时

节省端部用铜,也便于得到较多的并联支路。其缺点是端部的接线较长,在多极的大电机中这些连接线较多,不便布置且用量也很大,故多用于中小型电机。波绕组是任何两个串联线圈沿绕制方向象波浪似的前进。在造上,这种绕组的一个线圈多由两根条式线棒组合而成,故也为棒形绕组。其优点是线圈组之间的连接线少,故多用于大型轮发电机。在现场,波绕组的元件直接称呼为“线棒”。本书述中,多以“线棒”代替“线圈”。

10.什么是每极每相槽数g?什么是整数槽绕组?什么是分槽绕组?

答:对某一具体的发电机,发电机定子的槽数和转子的磁极数都已确定。其中有一个重要的概念是每极每相槽数q。发电绕组由A、B、C三相组成,则每一相在定子中所占的槽数是

等的,各1/3;对应于转子的每个磁极,各相在每个磁极下对应所占的定子槽数也是相等的。每极每相槽数q,即在每个磁极下,每一相应该占有的槽数。

式中Z——定子总槽数;

2p——磁极个数;

m——相数。

由公式可见,q值很容易求得。当q为整数时,则称绕组为整数槽绕组;q 为分数时,则称绕组为分数槽绕组。如q=3,则表示一个磁极下,A、B、C三相在定子槽中各占有三槽。如

表示一个磁极下,A、B、c三相在定子槽中各占有槽,也即分数

槽。可是,一个定子槽是不可能劈开为分数的。也即11/4,这就表示,每4个磁极下,A、B、c三相在定子槽中各占有1l槽,各相磁极下对应的总的槽数还是相等。

11.什么是分数槽绕组的循环数(或轮换数)?它是如何组成和确定的? ’答:在发电机定子绕组图纸的参数中,我们可以看到绕组循环数或轮换数,

如某发电机定子为792槽,每极每相槽数其绕组循环数为3233,这个

数就是分数槽绕组的轮换数,它与每极每相槽数是密切相关的,它表示定子三相绕组的排列中各相对应布置

的定子槽数。

上述的3233,其4位数字相加:3+2+3+3=11;ll为定子槽数,“位数”4表示4个磁极,显然两数分别为每极每相槽数q=11/4的分子和分母。它表示定子的所有槽数排列顺序为:按A相3槽、B相2槽、C相3槽、A相3槽(注意已排了一轮)、B相3槽、C相2槽、A相3槽、B相3槽(注意已排了两轮)……,如此一直将所有的定子槽数排完(见图2—1)。即按3233的顺序将定子的全部槽数均分为三等分,如该发电机共有792槽,则以3233这个顺序数排72轮

(72×1l=792),就将全部定子槽数排完了,每相占有264槽(参见本部分13题)。同为11/4,循环数当然也可排为2333或3332。之所以选3233,是根据各种排列在方块图上排列显示后,以其连线最省的原则确定的。也即绕组线棒之间的连接方式,以选用端部接头最少的波绕方式为佳,绕组端部接线的设计应使极问连接线的数量最少。

为节省篇幅,只标出一个支路的连接,中间部分槽省略。

12.什么是波绕组的合成节矩?合成节矩中的数值各代表什么意义?

答:合成节矩是用来表征波绕组连接规律的参数。它表明波绕组将各个线圈串接成完整绕组沿绕制方向前进的槽数,为相邻两线圈的对应边相隔的槽数。如在发电机定子绕组图纸上,我们看到绕组参数栏内标有类似1-7—14这样的参数,这个参数就是绕组的合成节矩。

合成节矩Y=y1+y2;其中节矩y1,表明一个定子线圈的一根线棒在N极下而另一根线棒处在s极下,两端相隔的定子槽数,1-7表示这个线圈一端在第1槽而另一端在第7槽,y1=

6:节矩y2,表示该线圈从第7槽出来后下一个相连的线圈槽号是第14槽,y2=7,则合成节矩Y=13。

14.分数槽绕组有何优缺点?

答:大型水轮发电机多采用分数槽绕组,其优点有:①能削弱磁极磁场非正弦分布所产生的高次谐波电势;②能有效地削弱齿谐波电势的幅值,改善电动势的波形;③减小了因气隙磁导变化引起的每极磁通的脉振幅值,减少了磁极表面的脉振损耗。

其缺点是分数槽绕组的磁动势存在奇数次和偶数次谐波,在某些情况下它们和主极磁场相互作用可能产生一些干扰力,当某些干扰力的频率和定子机座固有振动频率重合时,将引起共振,导致定子铁芯振动。因此,分数槽q值选择不当也可能带来很多隐患,这在实际发电机的运行中是有例子的。

15.什么是齿谐波电势?削弱齿谐波电势有哪些方法?

答:在发电机绕组电势的分析中,首先是假定定子绕组的铁芯表面是平滑的,但实际上由于铁芯槽的存在,铁芯内圆表面是起伏的,对磁极来说,气隙的磁阻实际上是变化的。磁极对着齿部分,则磁阻小,对着铁芯线槽口部分的气隙磁阻就大,随着磁极的转动,就会由于气隙磁阻的变化在定子绕组中感应电势。这种由于齿槽效应在绕组中感生的电势就称为齿谐波电势。

削弱齿谐波电势的方法有:

(1)采用斜槽,即定子或转子槽与轴线不平行。把定子槽做成不垂直的斜槽或将磁极做成斜极,当然这在大型发电机中是无法做到的。在小型电机如异步鼠

笼电动机中,转子绕组采用的就是斜槽。在一些中小型发电机中也采用了定子斜槽的方式,一般斜度等于一个定子槽距。

(2)采用磁性槽楔,即改善磁阻的大小。但目前没有成熟技术,也只限于中、小型电动机上应用。

(3)加大定、转子气隙也能有效地削弱齿谐波,但会使功率因数变坏,故一般也不采用。

(4)采用分数槽绕组。这是目前大型水轮发电机广泛采用的方法。

16.发电机运行中的损耗主要有哪些?

答:发电机的损耗大致可分为五大类,即定子铜损、铁损、励磁损耗、电气附加损耗、机械损耗。发电机运行中,所有的损耗几乎都以发热的形式表现出来。

(1)定子铜损即定子电流流过定子绕组所产生的所有损耗。

(2)铁损即发电机磁通在铁芯内产生的损耗,主要是主磁通在定子铁芯内产生的磁滞损耗和涡流损耗,还包括附加损耗。

(3)励磁损耗即转子回路所产生的损耗,主要是励磁电流在励磁回路中产生的铜损。

(4)电气附加损耗则比较复杂,主要有端部漏磁通在其附近铁质构件中产生的损耗、各种谐波磁通产生的损耗、齿谐波和高次谐波在转子表层产生的铁损等。

(5)机械损耗主要包括通风损耗、轴承摩擦损耗等。

17.发电机突然短路有哪些危害?

答:(1)发电机突然短路时,发电机绕组端部将受到很大的电动力冲击作用,可能使线圈端部产生变形甚至损伤绝缘。

(2)定、转子绕组出现过电压,对发电机绝缘产生不利影响。定子绕组中产生强大的冲击电流,与过电压的综合作用,可能导致绝缘薄弱环节的击穿。

(3)发电机可能产生剧烈振动,对某些结构部件产生强大的破坏性的机械应力。

18.什么是绝缘的局部放电?发电机内的局放有哪几种主要形式?

答:在电场的作用下,绝缘系统中绝缘体局部区域的电场强度达到击穿场强,在部分区域发生放电,这种现象称为局部放电(Partial Discharge)。局部放电只发生在绝缘局部,而没有贯穿整个绝缘。

发电机中的局部放电主要有绕组主绝缘内部放电、端部电晕放电及槽放电(含槽部电晕)三种。此外,发电机中还有一种危害性放电,是由定子线圈股线或接头断裂引起的电弧放电,这种放电的机理与局部放电不同。

19.发电机主绝缘内的局部放电产生的原因是什么?有什么危害?

答:大型发电机定子线棒在生产过程中,由于工艺上的原因,在绝缘层问或绝缘层与股线之间可能存在气隙或杂质;运行过程中在电、热和机械力的联合作用下,也会直接或间接地导致绝缘劣化,使得绝缘层间等产生新的气隙。由于气隙和固体绝缘的介电系数不同,这种由气隙(杂质)和绝缘组成的夹层介质的电场分布是不均匀的。在电场的作用下,当工作电压达到气隙的起始放电电压时,便产生局部放电。局部放电起始电压与绝缘材料的介电常数和气隙的厚度密切相关。

气隙内气体的局部放电属于流注状高气压辉光放电,大量的高能带电粒子(电子和离子)高速碰撞主绝缘,从而破坏绝缘的分子结构。在主绝缘发生局部放电的气隙内,局部温度可达到1000℃,使绝缘内的胶粘剂和股线绝缘劣化,造成股线松散、股问短路,使主绝缘局部过热而热裂解,最终损伤主绝缘。

局部放电的进一步发展是使绝缘内部产生树枝状放电,引起主绝缘进一步劣化,最终形成放电通道而使绝缘破坏。

20.什么是电晕?电晕对发电机有什么危害?

答:发电机内的电晕(Corona),是发电机定子高压绕组绝缘表面某些部位由于电场分布不均匀,局部场强过强,导致附近空气电离,而引起的辉光放电。可见,电晕是发电机局部放电的一种。它产生在绝缘的表面,它与我们所熟悉的一般户外高压电场下的导体附近的电晕是有所不同的。

与其他形式的局部放电相比,电晕本身的放电强度并不是很高,但电晕的存在大大的降低了绝缘材料的性能。表面电晕使绝缘表面局部温度升高,电晕的热效应及其产生的03和N2的化合物(03极易分解与空气中的氮N2及水分化合生成酸)也会损坏局部绝缘,对黄绝缘来说是将绝缘层变成白色粉末,其程度的深浅与电晕作用时间有关,材料表面损坏后,放电集中于凹坑并向绝缘材料内部发展,严重时发展为树枝放电直到击穿。此外,电晕还使其周围产生带电离子,各种不利因数的叠加,一旦定子绕组出现过电压,则就有造成线棒短路或击穿的可能。黄绝缘的击穿场强随温度的升高而略有下降,当温度超过180℃时,其击穿

场强将急剧下降。

21.发电机内哪些部位易产生电晕?

答:发电机一般在机内可能产生外部电晕的部位有:①线棒出槽口处。绕组出槽口处属典型的套管型结构,槽口电场非常集中,是最易产生电晕的地方。②铁芯段通风沟处。通风槽钢处属尖锐边缘,易造成电场局部不均匀。③线棒表面与铁芯槽内接触不良处或有气隙处。④端箍包扎处。⑤端部异相线棒间。绕组端部电场分布复杂,特别是线圈与端箍、绑绳、垫块的接触部位和边缘,由于工艺的原因往往很难完全消除气隙,在这些气隙中也容易产生电晕。

22.发电机电晕与哪些因素有关系?

答:(1)与海拔高度有关。海拔越高,空气越稀薄,则起晕放电电压越低。

(2)与湿度有关。湿度增加,表面电阻率降低,起晕电压下降。

(3)端部高阻防晕层与温度有关。如常温下高阻防晕层阻值高,则温度升高其起晕电压也提高。常温下如高阻防晕层阻值偏低,起晕电压随温度升高而下降。

(4)槽部电晕与槽壁间隙有关。线棒与铁芯线槽壁间的间隙会使槽部防晕层和铁芯间产生电火花放电。环氧粉云母绝缘最易产生局部放电的危险间隙在是O.2~0.3mm左右。目前我国高压大电机采用的环氧粉云母绝缘的线膨胀系数很小,在正常运行条件下,环氧粉云母绝缘的线棒的膨胀量不能填充线棒和铁芯间的间隙。这是与黑绝缘区别比较大的地方。

(5)与线棒所处部位的电位和电场分布有关。越高越易起晕,电场分布越不均匀越易起晕。

23.什么是电腐蚀?什么是内腐蚀和外腐蚀? 防止电腐蚀的措施有哪些?

答:电腐蚀是发生在发电机槽部定子线棒防晕层表面和定子槽壁之间因失去电接触而产生的容性放电,从而引起线棒表面的腐蚀和损伤。这种容性放电的放电能量比纯电晕放电要大得多,严重时发展为火花放电。火花放电温度可高达摄氏几百度至上千度。同样,放电使空气电离产生的臭氧与空气中的氮、水分产生化学作用,对线棒表面和铁芯产生腐蚀。电腐蚀轻者,使线棒防晕层及主绝缘表面变白并有不同程度的蚕食;严重者防晕层损坏,主绝缘外露或出现麻点,引起线棒表面防晕层乃至主绝缘、垫条的烧损。这种引起线棒防晕层、主绝缘、垫条等损伤的情况统称为“电腐蚀”。

风力发电基础知识

风力发电基础知识 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。 风力发电的原理,是利用风力带动风车叶片旋转,再透过 增速机将旋转的速度提升,来促使发电机发电。依据目前的风 车技术,大约是每秒三公尺的微风速度(微风的程度),便可 以开始发电。风力发电正在世界上形成一股热潮,为风力发电 没有燃料问题,也不会产生辐射或空气污染。 转子空气动力学 为了解风在风电机的转子叶片上的移动方式,我们将红色带子 绑缚在模型电机的转子叶片末端。黄色带子距离轴的长度是叶 片长度的四分之一。我们任由带子在空气中自由浮动。本页的 两个图片,其中一个是风电机的侧视图,另一个使风电机的正视图。 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 为什么转子叶片呈螺旋状? 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 风电机结构

机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。 偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装 置由电子控制器操作,电子控制器可以通过风向标来感觉风向。 图中显示了风电机偏航。通常,在风改变其方向时,风电机一 次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制 偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该 控制器可以自动停止风电机的转动,并通过电话调制解调器来 呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上

发电机基础知识讲解

生产培训教案 培训题目:发电机知识讲解 培训目的:了解发电机及励磁系统基本知识,发电机保护,运行定期检修试验项目。 内容摘要: 1、发电机工作原理。 2、发电机获得励磁电流的几种方式。 3、发电机保护 4、发电机试验: 培训内容: 发电机基本原理: 三相同步发电机由原动机拖动直流励磁的同步发电机转子,以转速n(rpm)旋转,根据电磁应原理,三相定子绕阻就会感应(产生)交流电势。定子绕阻若接入用电负载,电机就有交流电能输出。发电机是利用电磁感应现象的原理制成的,它是把机械能转化为电能的装置。交流发电机主要由转子和定子两部分组成,另外还有滑环、电刷等。 感应电势E=4.44fNΦ(N:匝数) 频率f=Pn/60 交流发电机的特点:把机械能转化为电能的一种机器。因为它提供的是方向做周期性变化的交流电,故称为交流发电机。

发电机的主要构造是转子(转动部分)和定子(固定部分),滑环两个,电刷两个。小型发电机的转子是线圈,定子产生磁场,就像教学演示用的模型一样。大型发电机恰好相反。它的线圈是定子,产生磁场是转子。 同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 发电机获得励磁电流的几种方式: 1、直流发电机供电的励磁方式: 这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10mw以上的机组中很少采用。 2、交流励磁机供电的励磁方式 现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整

30个发电机的基础知识点

30个发电机的基础知识点 1、什么是“同步”发电机?同步转速是如何确定的? 答:发电机是发电厂的心脏设备,发电机按其驱动的动力大致可分为水轮发电机(水力)和汽轮发电机(蒸汽)。本书所涉及的内容均是指同步发电机(限于立式水轮发电机)。 发电机在正常运行时,在发电机定转子气隙间有一个旋转的合成磁场,这个磁场由两个磁场合成:转子磁场和定子磁场。所谓“同步”发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等。 转子磁场由旋转的通有直流电的转子绕组(磁极)产生,转子磁场的转速也就是转子的转速,也即整个机组的转速。转子由原动机驱动,转速由机组调速器进行调节,这个转速在发电机的铭牌上都有明确标示。 定子旋转磁场由通过三相对称电流的定子三相绕组(按120°对称布置)产生,其转速由式确定(式中:p为转子磁极对数;f为电力系统频率;n为机组转速)。 从式中可见,对某一具体的发电机,其磁极对数是固定不变的,而我国电力系统的频率也是固定的,即50Hz(也称工频),可见每一具体的发电机的定子旋转磁场的转速在发电机制造完成后就是“定值”。 当然,电力系统的频率并不能真正稳定在50Hz的理论值,而是允许在这个值的上下有微小的波动,也即定子磁场在运行中实际是在额定转速值的周围动态变化的。转子磁场为了与定子磁场同步也要适应这个变化,也即机组的转速作动态的调整。如果转速不能与定子磁场保持一致,则我们说该发电机“失步”了。 2、什么是发电机的飞轮力矩?它在电气上有什么意义? 答:发电机飞轮力矩,是发电机转动部分的重量与其惯性直径平方的乘积。看起来它是一个与电气参数无关的量,其实不然,它对电力系统的暂态过程和动态稳定影响很大。 它直接影响到在各种工况下突然甩负荷时机组的速率上升及输水系统的压力上升,它首先应满足输水系统调节保证计算的要求。当电力系统发生故障,机组负荷突变时,因调速机构的时滞,使机组转速升高,为限制转速,机组需一定量的飞轮力矩越大,机组转速变化率越小,电力系统的稳定性就越好。与机组造价密切相关,飞轮力矩越大,机组重量越大,制造成本越大。 3、什么是发电机的短路?比Kc Kc与发电机结构有什么关系? 答:短路比Kc,是表征发电机静态稳定度的一个重要参数。Kc原来的意义是对应于空载额定电压的励磁电流下三相稳态短路时的短路电流与额定电流之比,即Kc=Iko/IN。

汽油发电机基础知识及故障排除

发电机培训资料 一. 概述. 二. 原理 三. 使用范围.环境以及安全 四. 主要结构 五. 使用操作方法 六. 保养,维修以及保存 七. 常见故障的分析及排除 概述 一.概述 1.1公司简介 1.2产品用途,,性能,使用条件等简单介绍。 见广宣资料 原理.. 二.原理 2.1汽油机原理 2.2发电机原理 1、汽油机工作原理 四冲程汽油机的工作过程是一个复杂的过程,它由进气、压缩、燃烧膨胀、排气四个行程组成。 进气行程 此时,活塞被曲轴带动由上止点向下上止点移动,同时,进气门开启,排气门关闭。当活塞由上止点向下止点移动时,活塞上这方的容积增大,气缸内的气体压力下降,形成一定的真空度。由于进气门开启,气缸与进气管相通,混合气被吸入气缸。当活塞移动到下止点时,气缸内充满了新鲜混合气以及上一个工作循环未排出的废气。 压缩行程 活塞由下止点移动到上止点,进排气门关闭。曲轴在飞轮等惯性力的作用下带动旋转,通过连杆推动活塞向上移动,气缸内气体容积逐渐减小,气体被压缩,气缸内的混合气压力与温度随着升高。 燃烧膨胀行程(做功行程) 此时,进排气门同时关闭,火花塞点火,混合气剧烈燃烧,气缸内的温度、压力急剧上升,高温、高压气体推动活塞向下移动,通过连杆带动曲轴旋转。在发动机工作的四个行程中,只有这个在行程才实现热能转化为机械能,所以,这个行程又称为作功行程。 排气行程 此时,排气门打开,活塞从下止点移动到上止点,废气随着活塞的上行,被排出气缸。由于排气系统有阻力,且燃烧室也占有一定的容积,所以在排气终了地,不可能将废气排净,这部分留下来的废气称为残余废气。残余废气不仅影响充气,对燃烧也有不良影响。 排气行程结束时,活塞又回到了上止点。也就完成了一个工作循环。随后,曲轴依靠飞轮转动的惯性作用仍继续旋转,开始下一个循环。如此周而复始,发动机就不断地运转起来。汽油机工作时,完成进气、压缩、膨胀和排气一个工作循环,四冲程汽油机需要曲轴转两圈(720°),活塞上、下运动四次共四个行程;二冲程汽油机需要曲轴转一圈(360°),活塞上、下运动两次共两个行程。 2.汽油机组成 (1)曲轴连杆系统包括活塞、连杆、曲轴、滚针轴承、油封等。

发电机基础教材知识培训讲义

发电机基础知识 培训讲义
发电机技术处 周华翔 南京汽轮电机(集团)有限责任公司

1. 电机发展的历史 2. 发电机原理 3. 发电机结构 4. 发电机图纸和文件 5. 发电机成套范围

1. 电机发展的历史
在人类的科技发
展史中,对于电现象 和磁现象很早就有认 识了。但对于两者之 间的联系,却直到 183 年 前 才 发 现 。 这 个发现者的名字叫法 拉第,他是一位英国 物理学家。

早在1821年,法拉第发现了载流 导体在磁场中会受到力的作用的现象, 1831年又发现了电磁感应定律,并很 快就出现了原始模型电机。从此电机的 研究和应用迅速发展起来,至今已有 180多年。

z 电机发展的初期主要是直流电机
z 1869年法国电气工程师格拉姆发明了 第一台实用的直流发电机
z 1882年美国发明家爱迪生指挥建造了 第一个用于商业中心的直流照明系
z 1883年塞尔维亚裔美国人特斯拉发明 了第一台两相感应电机
z 1888年俄国电气工程师多利沃-多勃鲁 夫斯基发明了三相感应电机。

? 1912年英国派生斯公司已能生产4极 25MW汽轮发电机。
? 上世纪20年代美国和欧洲一些其他国 家已能生产类似的汽轮发电机,其中德 国西门子公司、匈牙利冈茨厂对发电机 的通风冷却有较多的创新,为后来汽轮 发电机冷却系统的发展奠定了基础。
? 上世纪30年代许多欧美国家可以生产 50~60MW的汽轮发电机。

风力发电基础知识汇总

风力发电 把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电的原理, 利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵) 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同) 由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。 铁塔是支承风轮、尾舵和发电机的构架。它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。 发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。 小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 一般说来,三级风就有利用的价值。但从经济合理的角度出发,风速大于每秒4米才适宜于发电。据测定,一台55千瓦的风力发电机组,当风速为每秒9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒6米时,只有16千瓦;而风速每秒5米时,仅为9.5千瓦。可见风力愈大,经济效益也愈大。 在我国,现在已有不少成功的中、小型风力发电装置在运转。 我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。中国风能储量很大、分布面广,仅陆地上的风能储量就有约 2.53亿千瓦。2009年,中国(不含台湾地区)新增风电机组10129台,容量13803.2MW,同比增长124%;累计安装风电机组21581台,容量25805.3MW。按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。以每千瓦装机容量设备投资7000元计算,根据《风能世界》杂志发布,未来风电设备市场将高达1400亿元至2100亿元。风电发展到目前阶段,其性价比正在形成与煤电、水电的竞争优势。风电的优势在于:能力每增加一倍,成本就下降15% 风力发电的输出

风力发电机的基础知识

风力发电机的基础知识 一、风的认知 从某一个角度讲,风是太阳能的一种表现形式。 1.风的成因: ①地球的自转 ②温差: 地球表面的不同状态对太阳的吸热系数以及放热系数不同从而造成空气之间温度的差异,而导致风的形成。(如水面比地面的吸热慢,放热也慢)。 2.风的运动轨迹 风在遇到障碍物后,都会形成湍流。 二、风力发电机 风力发电机是一种将风能转换为电能的一种发电装置,实现风能转换成机械能,再由发电机把机械能转换成电能的过程。 1.风力发电机的技术原理 三相三相不控桥整流蓄电池 (1)发电机为三相(即三根线),输出三相应该是相互导通的,两根引出线的电阻是相同的,任意两根线一打是会出现火花。 (2)12V蓄电池充满电之后,电压会上升,一般蓄电认为电池充满在13.8V~14.5V之间。用风力充电,蓄电池电压都会高,1.1V~1.3V为额定电压,多种蓄电池工作状态选择是不一样的。10.2V切入逆变器。 发电机频率的监控,控制器增加监控点,电压信号选择保护。 2.风力发电机实际上是一个由风机叶片、发电机及尾舵组成的机组。 (1)最理想的叶片 叶片扫风面积越大,接受风能则越大。叶片侧面叶型的不同设计,可提高转速,减小阻力。 叶片理论极限值CP(max)=0.593 P∝SρO3 *cp (目前,大风机叶片实际做出来最理想的CP值为0.48,小风机为0.48~0.36,而HY系列的叶片CP值可做到0.42。) (2)高效能的发电机 发电机效率: 大型发电机0.95 小型发电机0.6~0.5 整机转化效率:整机转化效率= 气动效率(CP值) * 发电机效率 三、风力发电机的特点 风是一种随机能源,我们要利用风能发电,便要捕捉风能。而风能可以无限大,在这种特性下,如果不作限速,即使再优良的风机也会被损 坏。现在风机一般利用于发电的,都是在3M/S~60M/S输出空间。 一般采用以下几种限速装置: (1)变浆距(离心变浆距) 这是目前较先进的叶片控制方式,当大风来时,调型叶片,形成阻力,使风能大部分消耗在叶尖,限制能量输出。 (2)折尾 (3)机头上昂(或上侧昂):风大时向上推动,避让风。 以上三种叶片控制方式均有可靠性较差、较容易磨损风机相关部件的缺点。

发电机基础知识

为了使大家对发电机组有一个更加专业的了解,本文在开始还是要对发电机组的基础知识在做一个简单的知识介绍,希望大家在这方面能更加的专业: 首先发电机组的概念:发电机组是指能将机械能或其它可再生能源转变成电能的发电设备。 一般我们常见的发电机组通常由以下几个:汽轮机、水轮机或内燃机(汽油机、柴油机等发动机)驱动,而近年来所说的可再生新能源包括核能、风能、太阳能、生物质能、海洋能等。目前柴油发电机组的市场最大,主要是由于柴油发电机组的容量较大,可并机运行且持续供电时间长,还可独立运行,不与地区电网并列运行,不受电网故障的影响,可靠性较高。尤其对某些地区常用市电不是很可靠的情况下,把柴油发电机组作为备用电源,既能起到应急电源的作用,又能通过低压系统的合理优化,将一些平时比较重要的负荷在停电时使用,因此在工程中得到广泛的使用。 了解了这些发电机组的基础常识以后,下面就要为大家详细的介绍一下有关于发电机组的详细工作原理以及结构: 第一个是汽轮发电机组 与汽轮机配套的发电机组。为了得到较高的效率,汽轮机一般做成高速的,通常为 3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过 1.2米。而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以 5~10万千瓦以上的汽轮发电机组都采用了冷却效果较好的氢冷或水冷技术。70年代以来,汽轮发电机组的最大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机组发展史上产生一个新的飞跃。 第二个则是水轮发电机组 由水轮机驱动的发电机组。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构。由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的最大容量已达70万千瓦。 第三个是柴油发电机组

机动车发电机工作基础学习知识原理

整体式交流发电机工作原理、 结构及主要零部件的功能简介 一、概述 发电机是汽车的主要电源,其功用是在发动机正常运转时,向除启动机外的所有用电设备供电,同时给蓄电池充电,汽车用发电机可分为直流发电机和交流发电机,由于交流发电机的性能在许多方面优于直流发电机,直流发电机已被淘汰。目前汽车采用三相交流发电机,内部带有二极管整流电路,将交流电整流为直流电,所以,汽车交流发电机输出的是直流电。交流发电机必须配装电压调节器,电压调节器对发电机的输出电压进行控制,使其保持基本恒定,以满足汽车用电器的需求。 二、交流发电机的分类 一、交流发电机的分类 1.按总体结构分 (1)普通交流发电机。这种发电机即无特殊装置,也无特殊功能特点,使用时需要配装电压调节器。 (2)整体式交流发电机,发电机和调节器制成一个整体的发电机。(3)带泵的交流发电机。发电机和汽车制动系统用真空助力泵安装在一起的发电机。 (4)无刷交流发电机,不需要电刷的发电机。 (5)永磁交流发电机,转子磁极为永磁铁制成的发电机 我们的产品主要以整体式交流发电机、带泵交流发电机为主。 2、按输出电压分为14V和28V两大类 3、按发电机的输出电流分有很多种,我们的产品主要有25A、35A、55A、 70A、75A、80A、90A、100A、110A、120A、140A、150A等。 三、交流发电机的型号 根据中华人民共和国汽车行业标准QC/T73-93《汽车电器设备产品型号编制方法》的规定,汽车交流发电机型号组成如下: 1. 产品代号 产品代号用中文字母表示,例:JF——普通交流发电机 JFZ——整体式(内置调节器)交流发电机 JFB——带泵的交流发电机 JFW——无刷交流发电机 2. 电压等级代号 电压等级代号用一位阿拉伯数字表示,例:1表示12V系统,2表示 24V 系统,6表示6V系统。

基础知识培训发电机

无刷三相同步发电机培训教材 ?Skip Record If...? 第一章简介 我们所指的发电机是无刷三相同步发电机(以下简称发电机)。 它们的用途是:与往复式内燃机相配套组成发电机组,可作为国防、邮电通讯、机场、医院、大厦以及石油勘探、工矿企业等部门的固定电源或备用电源。 第二章工作原理 电压输出(发电) 励磁机定子(剩磁) 主机定子 旋转整流器 主机转子往复式内燃机 往复式内燃机带动主机转子旋转,励磁机定子的剩磁(磁钢)切割励磁机转子的线圈发电,通过旋转整流器将交流转化成直流给主机转子励磁,主机转子线圈产生的磁场切割主机定子线圈发电。然后,A VR 对主机定子的输出电压作出反馈(一般是两相检测,一个作为信号电压,一个作为电源电压),通过控制励磁机的磁场电流,来达到控制主机磁场电流的要求。

第三章TWG系列无刷三相同步发电机介绍 H 225 250 315 型号 TWG2 TWG3 TWG4 C D E F G C D E F G C D E kW 30 40 50 64 75 75 90 100 120 150 200 250 300 H 225 250 型号 C D E F G H C D E F G kW 20 24 30 40 50 64 75 90 100 120 150 H 315 400 型号 TWG5 C D E F G C D E F G kW 200 250 300 355 400 450 500 630 720 800 1、产品型号定义(新系列): TWG E 1 TWG表示系列特征号 机座号---2: 200, 3: 250, 4: 315, 5: 400 .1表示为新一代发电机(与旧系列的区别) 铁心长度 结构方式---1:单轴承2:双轴承 2、无刷的定义:没有电刷,与有刷发电机的区别。用励磁机取代电刷的功能,励磁机也是一个小发电机,所以有时也称之为两级发电机。 3、三相的说明:我们的发电机可以接成单相的(8个端子,12引出线),但功率仅相当于三相时的约60%。所以我们的发电机还可以接成不同的电压,最典型的有两种,一种是串联星形,一种是并联星形。 注意: 发电机的电压、频率、相数---不同的电网要求、不同的负载 4.同步:发电机转子的转速与旋转磁场的转速是一样的,与异步机不同。 n=60f/p---n: 转速(r/min), f: 频率(Hz), p: 极对数 (4极,1500r/min, 50Hz, 380-400-415V) (4极,1800r/min, 60Hz, 440-460-480V) 第四章发电机的基本概念 1.发电机的功率是如何定义的?(我们这里指陆用)(kW=) 1)持续功率S1/40℃:在额定负载下运行,绕组绝缘允许每12小时过载1小时,每年运行时间无限制; 2)备用功率40℃:在恒定负载下运行,每年最多运行500小时(连续运行时最多300小时),绕组温升允许超过H级温升. 3)备用功率27℃:在恒定负载下运行,每年最多运行500小时(连续运行时最多300小时),绕组温升允许超

热电厂电气基础知识

电气设备基础知识目录 一发电机基础知识 1.同步发电机的“同步”是什么意思? 2.同步发电机的转速、频率、磁极对数之间的关系是怎样的? 3.发电机铭牌上标示的型号、容量、电压、电流、温升、功率因数是什么意思?4.同步发电机是如何发出三相正弦交流电的? 5.发电机一般为什么都接成星形接线? 6.什么叫有功?什么叫无功? 7.有功功率、无功功率、视在功率之间的关系是什么? 8.什么叫同步发电机的迟相运行?什么叫同步发电机的进相运行? 9.汽轮发电机定子、转子分别由哪几部分构成? 二变压器基础知识 1.变压器如何分类? 2.变压器的基本原理是什么? 3.变压器在电力系统中起什么作用? 4.什么是变压器的空载运行? 5.什么是变压器的正常过负荷? 6.表示变压器油电气性能好坏的主要参数是什么? 7.为什么要规定变压器的允许温度? 8.为什么要规定变压器的允许温升? 9.运行电压超过或低于额定电压值时,对变压器有什么影响? 10.有载分接开关的基本原理是什么? 11.气体保护的动作原理是怎样的? 12.什么是压力式温度计? 三电动机基础知识 1.电动机的铭牌上有哪些主要数据? 2.异步电动机由哪几部分组成? 3.异步电动机按结构的不同主要分为哪两大类?它们有何不同? 4.感应电动机是怎样转起来的? 5.感应电动机运行时,有几种损耗? 6.什么是控制电机?它有什么用途? 7.为什么处于备用中的电动机应定期测量绝缘电阻? 8.异步电动机发生振动和噪声是由什么原因引起的? 9.电动机在什么情况下应测定绝缘? 10.启动电动机时应注意什么? 11.运行中的电动机遇到哪些情况时应立即停用? 12.电动机允许联系处理的异常有哪些? 13.规程规定电动机的运行电压可以偏离额定值-5%或+10%而不改变其额14.什么叫电动机的自启动? 15.电动机启动前应做哪些准备工作?检查哪些项目? 16.单相异步电动机是怎样转起来的? 17.感应电动机在什么情况下会出现过电压? 18.电磁调速异步电动机是由哪几部分组成的? 四配电装置基础知识

柴油发电机组常见的55个基础知识问答

柴油发电机组常见的55个基础知识问答 用户作为柴油发电机组的拥有者和使用者,在使用发电机组的时候不仅要对柴油发电机组有基本的认识了解,对机组的使用注意事项也要清楚。下面华全动力介绍柴油发电机组常见的55个问题。 1、两台发电机组并机使用的条件是什么?用什么装置来完成并机工作?答:1)并机使用的条件是两台机瞬间的电压、频率、电流一致。俗称“三同时”。并且是全铜无刷发电机。并且是电子调速或者是电喷发电机。 2)用专用并机装置来完成并机工作。一般建议采用全自动并机柜。尽量不用手动并机。因为手动并机的成功或失败取决于人为经验。 2、三相发电机的功率因数是多少?为提高功率因素可以加功率补偿器吗?答:功率因素为0.8。不可以,因为电容器的充放电会导致小电源的波动。及机组振荡。 3、为什么我们要求客户,机组每运行200小时后,要进行一项所有电器接触件的紧固工作? 答:柴油发电机组属振动工作器。而且很多国内生产或组装的机组该用双螺母的没用。该用弹簧垫片的没用,一旦电器紧固件松懈,会产生很大的接触电阻,导致机组运行不正常。 4、为什么发电机房须保证清洁、地面无浮沙? 答:柴油机若吸入脏空气会使功率下降;发电机若吸入沙粒等杂质会使定转子间隙之间的绝缘破坏,重者导致烧毁。 5、为什么自2002年开始我公司一般不建议用户在安装时采用中性点接地?

答:1)新一代发电机自我调节功能大大增强; 2)实践中发现中性点接地机组的雷电故障率偏高。 3)接地质量要求较高。 4)中性点接地的机组会掩盖负荷的漏电故障及接地错误,而这些故障和错误在市电大电流供电情况下无法暴露。 6、对中性点不接地机组,使用时应注意什么问题? 答:0线可能带电、因为火线与中性点之间的电容电压无法清理。操作人员须视0线为带电体。不能按市电习惯处理。 7、UPS与柴油发电机如何功率配套,才能保证UPS输出稳定? 答:1)UPS一般用视在功率KVA表示,先把它乘0.8换算成与发电机有功功率一致的单位KW。 2)若采用一般发电机,则以UPS的有功功率乘以2来确定所配发电机功率、即发电机功率为UPS功率的二倍。 3)若采用带PMG(永磁机励磁)发电机,则以UPS的功率乘以1.2来确定发电机功率、即发电机功率为UPS功率的1.2倍。 8、标明耐压500V的电子或电器元件,可用于柴油发电机控制柜吗? 答:不可以。因为柴油发电机组上标明的400/230V电压为有效电压。其峰值电压为有效电压的1.414倍。即柴油发电机的峰值电压为Umax=566/325V。 9、所有的柴油发电机组均带有自保护功能吗? 答:不是。华全动力介绍目前市场上甚至于在相同品牌的机组中有的带、有的

发电机基础知识

第一章基础知识 1.同步发电机保护的基本知识 电厂中的发电机都为同步电机,它把原动机的机械能转变为电能,通过输电线路等设备送往用户。 1.1 同步发电机基本工作原理 我们知道,导线切割磁力线能产生感应电势,将导线连成闭合回路,就有电流流过,同步发电机就是利用电磁感应原理将机械能转变为电能的。 图1-1为同步发电机示意图。导线放在空心圆筒形铁芯的槽里。铁芯是固定不动的,称为定 子。磁力线由磁极产生。磁极是转动的,称为转子。定 子和转子是构成发电机的最基本部分。为了得到三相交 流电,沿定子铁芯内圆,每相隔120o分别安放着三相 绕组A-X、B-Y、C-Z。转子上有励磁绕组(也称转子绕 组)R-L。通过电刷和滑环的滑动接触,将励磁系统产 生的直流电引入转子励磁绕组,产生稳恒的磁场。当转 子被原动机带动旋转后,定子绕组(也称电枢绕组)不 断地切割磁力线,就在其中感应出电势来。 感应电势的方向由右手定则确定。由于导线有时 切割N极,有时切割S极,因而感应的是交流电势。 交流电势的频率f,决定于电机的极对数p和转子转 数n,即 pn f = ()Z H 60 式中n的单位为转每分(r/min) 转子不停地旋转,A、B、C三相绕组先后切割转子 磁场的磁力线,所以在三相绕组中电势的相位是不同 的,依次差120o,相序为A、B、C。 当发电机带上负荷以后,三相定子绕组中的定子电流(电枢电流),将合成产生一个旋转磁场。该磁场与转子以同速度、同方向旋转,这就叫“同步”。同步电机也由此而得名。它的特点是转速与频率间有着严格的关系,即 60f n = p 1.2同步发电机的分类 同步发电机的种类按原动机不同来分,可分为: 汽轮发电机——一般是卧式的,转子是隐极式的。 水轮发电机——一般是立式的,转子是凸极式的。 按冷却介质和冷却方式分:

发电机基础知识

发电机部分知识(一)(2008-06-19 11:07:03) 标签:绕组定子气隙局部放电磁极文化分类:专业知识发电机部分知识(一) 1.什么是"同步"发电机同步转速是如何确定的 答:发电机是发电厂的心脏设备,发电机按其驱动的动力大致可分为水轮发电机(水力)和汽轮发电机(蒸汽).本书所涉及的内容均是指同步发电机(限于立式水轮发电机). 发电机在正常运行时,在发电机定转子气隙间有一个旋转的合成磁场,这个磁场由两个磁场合成:转子磁场和定子磁场.所谓"同步"发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等. 转子磁场由旋转的通有直流电的转子绕组(磁极)产生,转子磁场的转速也就是转子的转速,也即整个机组 的转速.转子由原动机驱动,转速由机组调速器进行调节,这个转速在发电机的铭牌上都有明确标示.定子 旋转磁场由通过三相对称电流的定子三相绕组(按120°对称布置)产生,其转速由式确定(式中:p为转子磁极对数;f为电力系统频率;n为机组转速).从式中可见,对某一具体的发电机,其磁极对数是固定不变的,而我国电力系统的频率也是固定的,即50Hz(也称工频),可见每一具体的发电机的定子旋转磁场的转速在发电机制造完成后就是"定值".当然,电力系统的频率并不能真正稳定在50Hz的理论值,而是允许在这个值的上下有微小的波动,也即定子磁场在运行中实际是在额定转速值的周围动态变化的.转子磁场为了与定子 磁场同步也要适应这个变化,也即机组的转速作动态的调整.如果转速不能与定子磁场保持一致,则我们说该发电机"失步"了. 2.什么是发电机的飞轮力矩. 它在电气上有什么意义 答:发电机飞轮力矩,是发电机转动部分的重量与其惯性直径平方的乘积.看起来它是一个与电气参数无关的量,其实不然,它对电力系统的暂态过程和动态稳定影响很大.它直接影响到在各种工况下突然甩负荷时机组的速率上升及输水系统的压力上升,它首先应满足输水系统调节保证计算的要求.当电力系统发生故障,机组负荷突变时,因调速机构的时滞,使机组转速升高,为限制转速,机组需一定量的飞轮力矩,越大,机组转速变化率越小,电力系统的稳定性就越好.与机组造价密切相关, 飞轮力矩越大,机组重量越大,制造 成本越大. 3.什么是发电机的短路比Kc,Kc与发电机结构有什么关系 答:短路比Kc,是表征发电机静态稳定度的一个重要参数.Kc原来的意义是对应于空载额定电压的励磁电流下三相稳态短路时的短路电流与额定电流之比,即Kc=Iko/IN.由于短路特性是一条直线,故Kc可表达为发电机空载额定电压时的励磁电流Ifo与三相稳态短路电流为额定值时的励磁电流Ifk之比,表达式 为:Kc=Ifo/Ifk≈1/Xd.Xd是发电机运行中三相突然短路稳定时所表现出的电抗,即发电机直轴同步电抗(不饱和值). 如忽略磁饱和的影响,则短路比与直轴同步电抗Xd互为倒数.短路比小,说明同步电抗大,相应短路时短路电流小,但是运行中负载变化时发电机的电压变化较大且并联运行时发电机的稳定度较差,即发电机的过 载能力小,电压变化率大,影响电力系统的静态稳定和充电容量.短路比大,则发电机过载能力大,负载电流引起的端电压变化较小,可提高发电机在系统运行中的静态稳定性.但Kc大使发电机励磁电流增大,转子用铜量增大,使制造成本增加.短路比主要根据电厂输电距离,负荷变化情况等因数提出,一般水轮发电机的K,取0.9~1.3. 结构上,短路比近似的等于 可见,要使Kc增大,须减小A,即增大机组尺寸;或加大气隙,须增加转子绕组安匝数. 4.什么是发电机的直轴瞬变电抗Xd′与发电机结构有什么关系 答:Xd′是代表发电机运行中三相突然短路初始时间(阻尼绕组的电流衰减后)的过渡电抗.直轴瞬变电抗 是发电机额定转速运行时,定子绕组直轴总磁链产生的电压中的交流基波分量在突变时的初始值与同时变化的直轴交流基波电流之比.它也是发电机和整个电力系统的重要参数,对发电机的动态稳定极限及突然 加负荷时的瞬态电压变化率有很大影响.Xd′越小,动态稳定极限越大,瞬态电压变化率越小;但Xd′越小,

风电基础知识考试题(卷1)

国电电力宁波穿山风电场 风电基础知识考试题(卷1) 一、填空题(每题1分共10分) 1、风力发电机开始发电时,轮毂高度处的最低风速叫。 2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。 3、凡采用保护接零的供电系统,其中性点接地电阻不得超过。 4、在风力发电机电源线上,并联电容器的目的是为了。 5、风轮的叶尖速比是风轮的和设计风速之比。 6、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。 7、风电场生产必须坚持的原则。 8、是风电场选址必须考虑的重要因素之一。 9、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。 10、滚动轴承如果油脂过满,会。 二、判断题(每题1分共20分) 1、风的功率是一段时间内测的能量。() 2、风能的功率与空气密度成正比。() 3、风力发电机的接地电阻应每年测试一次。() 4、风力发电机产生的功率是随时间变化的。() 5、风力发电机叶轮在切入风速前开始旋转。() 6、大力发展风力发电机有助于减轻温室效应。() 7、风力发电机的功率曲线是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。() 8、风能利用系数是衡量一台风力发电机从风中吸收能量的百分率。() 9、风轮确定后它所吸收能量它所吸收能量的多少主要取决于空气速度的变化情况。() 10、风力发电机组的平均功率和额定功率一样。() 11、叶轮应始终在下风向。() 12、平均风速就是给定时间内瞬时风速的平均值。() 13、平均风速是正对特别时期给出的。() 14、风力发电机会对无线电和电视接收产生一定的干扰。() 15、风电场投资成本随发电量而变化。() 16、风力发电机将影响配电电网的电压。() 17、拆卸风力发电机组制动装置前应先切断液压、机械与电气的连接。() 18、沿叶片径向的攻角变化与叶轮角速度无关。() 19、变桨距叶轮叶片的设计目标主要是为防止气流分离。() 20、拆卸风力发电机制动装置前应先切断液压、机械与电气的连接。() 三、选择题(每题1分共15分) 1、风能的大小与风速的成正比。 A、平方; B、立方; C、四次方; D、五次方。 2、风能是属于的转化形式。 A、太阳能; B、潮汐能; C、生物质能; D、其他能源。 3、在正常工作条件下,风力发电机组的设计要达到的最大连续输出功率叫。 A、平均功率; B、最大功率; C、最小功率; D、额定功率。 4、风力发电机开始发电时,轮毂高度处的最低风速叫。

发电机组基础知识

一,柴油发电机组总体 1,发电机组与单发电机,发动机的区别 2,为什么大功率用柴油发动机而不是汽油机(能量利用效率,热负荷,机体机械负荷,输出扭矩大(驴、马)) 3,主要组成部分(几大重要部分,各有什么作用,怎么连接,位置关系) 发动机:源动力输出 发电机:将发动机机械力转化为电力输出(电力的优点...缺点...) 散热器:散热作用,为什么要散热,散热的条件 底盘:支撑防护,基底油箱,导电体(特点,做多大,满足强度、防护要求) 防音外罩:防雨、防尘、隔音(满足一定进气条件) 控制箱:控制器安装位置,(一定的操作防护与设备防护、电气防护) 附件:减震器、油表、加油口,油管,水管,抱箍,胶边、连接件等 4,捷森工厂现有发电机组产品的分类 开放/防音立架/侧置/防音内嵌式/上置式水泵/非水泵 5 ,按发动机分类 康明斯/perkins/雷沃/福田/杨动/久保田 (列举出来) 6发电机 斯坦福/美奥迪/法拉第/利莱森玛/英格/马拉松 (简单列举) 二,分块讲述 1,发动机的分类 2,发动机工作容量、排量与缸数的关系 单缸,两缸,多缸/大排量、小排量/ 3,发动机转速与发电机组的转速 汽油机转速与柴油发电机组转速 4,发动机几大系统(分别列举每一系统元件以及各部分作用,结合故障问题) 1.曲柄连杆机构(机体、曲轴、连杆、活塞、活塞缸套、缸盖等)

缸体:提供密闭环境,承受气体压力,提供油道,水套等 活塞:压缩气体,给曲轴提供动力,协助进排气。 曲轴:主轴,动力输出活塞缸套:提供润滑、密封 连杆:连接主轴与活塞缸盖:密封,安装进排气门 2.配气机构(凸轮轴、进排气门、挺柱、摇臂等部件) 凸轮轴:带动凸轮转动进排气门:进排气开关 挺柱:支撑进排气门摇臂:转动凸轮 3.供油调速系统(高压泵、喷油器、柴油虑、柴油管路等部件) 高压泵:给柴油加压喷油器:按时喷油并雾化 柴油虑:过滤杂质柴油管路:通道 调速器:调节油泵的供油 4.润滑系统(机油泵、机油池、机油管道、机油滤等部件) 机油泵:抽油并提供一定的压力机油池:储存并有冷却作用 机油管道:油道机油滤:过滤杂质 5.冷却系统(水泵、风扇、散热器、节温器,冷却水管、水套路等部件) 水泵:提供水压,强制循环风扇:散热动力源节温器:控制散热器何时起作用的内置机械式开关冷却水管:水路水套:缸体中存留冷却水 6.进排气系统(进排气管、空气滤、消声器、废气涡轮增压器(增压柴油机用),中冷器(增压中冷柴油机用)等部件) 进排气管:气体在机体外部通路空气滤:过滤空气中的杂质消声器:降噪并冷却尾气废气涡轮增压器:提高进气压力中冷器:进气冷却 7.启动、监控系统(起动电机、充电发电机、转速表、温度表、压力表、控制器、蓄电池等部件) 起动电机:启动机组充电发电机:给电气设备供电,同时也给蓄电池充电 转速表:测量并显示发动机转述温度表:冷却水温度压力表:机油压力表 控制器:指挥控制中心(启停、辅助调速调压)蓄电池:启动的电力以及电气元件电源 8,发电机主定子、转子系统(定子线圈、转子线圈、转轴、轴承、冷却风扇) 主定子:电力产生并输出转子线圈:旋转磁场,造成定子切割磁力线 转轴:与发动机主轴相连 轴承:支撑作用 9,励磁、调压系统(励磁定子,励磁转子,A VR) 励磁定子:产生定子磁场 励磁转子:转子切割磁场产生交流电 A VR(调压板):调节励磁磁场大小,从而调节主定子励磁电流,进而调节发动机组电压输出。 10 他励系统(PMG)(永磁铁、励磁定子) 11,电气测量系统 电压测量:直接从发电机接线柱上接入电压采样线输入控制器,电压表直接接入两相电压测量(注意线电压与相电压) 电流测量:互感器三路全部接入控制器,电流表直接接入其中一个互感器的电流(接对

风力发电机基础知识概述

风力发电机基础知识概述 风力发电机基础知识概述 发电机分为两个主要类型。同步发电机运行的频率与其所连电网的频率完全相同,同步发电机也被称为交流发电机。异步发电机运行时的频率比电网频率稍高,异步发电机常被称为感应发电机。 感应发电机与同步发电机都有一个不旋转的部件被称为定子,这两种电机的定子相似,两种电机的定子都与电网相连,而且都是由叠片铁芯上的三相绕组组成,通电后产生一个以恒定转速旋转的磁场。尽管两种电机有相似的定子,但它们的转子是完全不同的。同步电机中的转子有一个通直流电的绕组,称为励磁绕组,励磁绕组建立一个恒定的磁场锁定定子绕组建立的旋转磁场。因此,转子始终能以一个恒定的与定子磁场和电网频率同步的恒定转速上旋转。在某些设计中,转子磁场是由永磁机产生的,但这对大型发电机来说不常用。 感应电机的转子就不同例如,它是由一个两端都短接的鼠笼形绕组构成。转子与外界没有电的连接,转子电流由转子切割定子旋转磁场的相对运动而产生。如果转子速度完全等于定子转速磁场的速度(与同步发电机一样),这样就没有相对运动,也就没有转子感应电流。因此,感应发电机总的转速总是比定子旋转磁场速度稍高,其速度差叫滑差,在正常运行期间。它大概为1%。 同步发电机和异步发电机 将机械能转化为电能装置的发电机常用同步励磁发电机、永磁发电机和异步发电机。同步发电机应用非常广泛,在核电、水电、火电等常规电网中所使用的几乎都是同步发电机,在风力发电中同步发电机即可以独立供电又可以并网发电。然而同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的频率、电压、相位,对风力发电机进行调整,使发电机发出电能的频率与系统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时,微调风力机的转速从周期检测盘上监视,使发电机的电压与系统的电压相位相吻合,就在频率、电压、相位同时一臻的瞬间,合上断路器将风力发电机并入系统。同期装置可采用手动同期并网和自同期并网。但总体来说,由于同步发电机造价比较高,同时并网麻烦,故在并网风力发电机中很少采用。 控制监测系统 风力发电机的运行及保护需要一个全自动控制系统,它必须能控制自动启动,叶片桨距的机械调节装置(在变桨距风力机上)及在正常和非正常情况下停机。除了控制功能,系统也能用于监测以提供运行状态、风速、风向等信息。该系统是以计算机为基础,除了小的风力机,控制及监测还可以远程进行。控制系统具有及格主要功能: 1、顺序控制启动、停机以及报警和运行信号的监测 2、偏航系统的低速闭环控制

相关文档
最新文档