遗传算法参考文献

遗传算法参考文献
遗传算法参考文献

1.遗传算法在激光整形中的应用

【作者】王卫兵;赵帅;郭劲;王挺峰;2012-10第42卷 1115—1119 激光与红外

同爬山算法相比,遗传算法具有全局优化能力,为了研究遗传算法的波前整形能力,利用32单元变形镜和12项Zernike多项式构成的畸变波前建立了激光波前整形系统仿真模型。基于Zernike多项式的单位正交性特点,得到了两个常数矩阵,简化了算法的运算过程,加快了算法运行时间。然后分别对遗传1000,10000和100000代后的斯特列尔比和整形效果进行了模拟仿真,仿真结果为:进行100000代遗传后,遗传算法可分别将初始畸变波前的斯特列尔比从0.3771整形到0.9049,波前峰谷值从

0.8078λ整形到0.3758λ,均方根从0.1572λ整形到0.0503λ,并且随着遗传代数的增加,斯特列尔比逐渐和整形效果均逐渐趋于最优,进一步表明遗传算法是一种优化逼近控制算法,可以通过对变形镜驱动电压的优化控制来实现波前整形,为遗传算法应用于波前整形技术中提供了理论依据。

2.基于改进遗传算法的物流配送路径优化

【作者】罗勇;陈治亚; 118-122 系统工程 2012-8第30卷

物流配送路径规划对于提高物流配送效率、节约配送成本具有重要意义。以物流配送路径总长度为优化目标,将其转换为经典TSP优化问题进行求解并建立了数学模型。基于该数学模型,提出改进的遗传算法,针对遗传算法的选择、交叉和变异分别提出了基于序的选择算子、基于最小代价树的交叉算子和基于随机点长度控制的变异算子。改进的遗传算法与简单遗传算法的对比仿真实验表明,所改进的遗传算法有较好的全局寻优能力,且其收敛速度快,是解决物流配送路径优化问题的有效方法。

3.改进的混合遗传算法在配电网规划中的应用

【作者】黄慧;齐岩;吴利乐;168-170 水电能源科学 2012-9第30卷

【摘要】利用遗传算法解决NP问题(非确定性多项式问题)的良好能力、模拟退火算法在当前点邻域内搜索最优解的能力和禁忌搜索算法较快的搜索速度,提出了改进的混合遗传算法,即将模拟退火选择算子和禁忌搜索变异算子应用到遗传操作中,提高了种群选择的有效性和遗传算法局部搜索能力,避免了单一遗传算法中收敛速度慢和早熟现象的产生。并将改进的混合遗传算法应用到河南省北部A 地区电网规划中,对水平年电力网架进行了优化,结果满足电力系统经济性和可靠性的要求,运行实践证明该算法效果较好。更多还原

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

MATLAB实验报告-遗传算法解最短路径以及函数最小值问题

硕士生考查课程考试试卷 考试科目:MATLAB教程 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:20 年月日午时至时

《MATLAB教程》试题: A、利用MATLAB设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。 a c d e f h i k 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 B、设计遗传算法求解f(x)极小值,具体表达式如下: 要求必须使用m函数方式设计程序。 C、利用MATLAB编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D、结合自己的研究方向选择合适的问题,利用MATLAB进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分) 1 2 3 4 5 6 8 9 10 11 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为: 0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。 问题要求求出任意两点间的最短路径,Floyd算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i到j的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。二、实验原理与数学模型(20分) 实现原理为遗传算法原理: 按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 数学模型如下: 设图由非空点集合和边集合组成,其中 又设的值为,故可表示为一个三元组 则求最短路径的数学模型可以描述为:

实验六:遗传算法求解TSP问题实验分析

实验六:遗传算法求解TSP问题实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。 二、实验内容 参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 1. 最短路径问题 所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。 在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用

遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。 假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。这就是旅行商问题。旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。假设每个城市和其他任一城市之间都以欧氏距离直接相连。也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。 2. 遗传算法 遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。其假设常描述为二进制位串,位串的含义依赖于具体应用。搜索合适的假设从若干初始假设的群体集合开始。当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

外文翻译---采用遗传算法优化加工夹具定位和加紧位置

附录 Machining fixture locating and clamping position optimization using genetic algorithms Necmettin Kaya* Department of Mechanical Engineering, Uludag University, Go¨ru¨kle, Bursa 16059, Turkey Received 8 July 2004; accepted 26 May 2005 Available online 6 September 2005 Abstract Deformation of the workpiece may cause dimensional problems in machining. Supports and locators are used in order to reduce the error caused by elastic deformation of the workpiece. The optimization of support, locator and clamp locations is a critical problem to minimize the geometric error in workpiece machining. In this paper, the application of genetic algorithms (GAs) to the fixture layout optimization is presented to handle fixture layout optimization problem. A genetic algorithm based approach is developed to optimise fixture layout through integrating a finite element code running in batch mode to compute the objective function values for each generation. Case studies are given to illustrate the application of proposed approach. Chromosome library approach is used to decrease the total solution time. Developed GA keeps track of previously analyzed designs; therefore the numbers of function evaluations are decreased about 93%. The results of this approach show that the fixture layout optimization problems are multi-modal problems. Optimized designs do not have any apparent similarities although they provide very similar performances. Keywords: Fixture design; Genetic algorithms; Optimization 1. Introduction Fixtures are used to locate and constrain a workpiece during a machining operation, minimizing workpiece and fixture tooling deflections due to clamping and cutting forces are critical to ensuring accuracy of the machining operation. Traditionally, machining fixtures are designed and manufactured through trial-and-error, which prove to be both expensive and time-consuming to the manufacturing process. To ensure a workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped, making it imperative to develop tools that will eliminate costly and time-consuming trial-and-error designs. Proper

计算机系统结构发展历程及未来展望

计算机系统结构发展历程及未来展望 一、计算机体系结构 什么是体系结构 经典的关于“计算机体系结构(computer Architecture)”的定义是1964年C.M.Amdahl在介绍IBM360系统时提出的,其具体描述为“计算机体系结构是程序员所看到的计算机的属性,即概念性结构与功能特性” 。 按照计算机系统的多级层次结构,不同级程序员所看到的计算机具有不同的属性。一般来说,低级机器的属性对于高层机器程序员基本是透明的,通常所说的计算机体系结构主要指机器语言级机器的系统结构。计算机体系结构就是适当地组织在一起的一系列系统元素的集合,这些系统元素互相配合、相互协作,通过对信息的处理而完成预先定义的目标。通常包含的系统元素有:计算机软件、计算机硬件、人员、数据库、文档和过程。其中,软件是程序、数据库和相关文档的集合,用于实现所需要的逻辑方法、过程或控制;硬件是提供计算能力的电子设备和提供外部世界功能的电子机械设备(例如传感器、马达、水泵等);人员是硬件和软件的用户和操作者;数据库是通过软件访问的大型的、有组织的信息集合;文档是描述系统使用方法的手册、表格、图形及其他描述性信息;过程是一系列步骤,它们定义了每个系统元素的特定使用方法或系统驻留的过程性语境。 体系结构原理 计算机体系结构解决的是计算机系统在总体上、功能上需要解决的问题,它和计算机组成、计算机实现是不同的概念。一种体系结构可能有多种组成,一种组成也可能有多种物理实现。 计算机系统结构的逻辑实现,包括机器内部数据流和控制流的组成以及逻辑设计等。其目标是合理地把各种部件、设备组成计算机,以实现特定的系统结构,同时满足所希望达到的性能价格比。一般而言,计算机组成研究的范围包括:确定数据通路的宽度、确定各种操作对功能部件的共享程度、确定专用的功能部件、确定功能部件的并行度、设计缓冲和排队策略、设计控制机构和确定采用何种可靠技术等。计算机组成的物理实现。包括处理机、主存等部件的物理结构,器件的集成度和速度,器件、模块、插件、底板的划分与连接,专用器件的设计,信号传输技术,电源、冷却及装配等技术以及相关的制造工艺和技术。 主要研究内容 1·机内数据表示:硬件能直接辨识和操作的数据类型和格式 2·寻址方式:最小可寻址单位、寻址方式的种类、地址运算 3·寄存器组织:操作寄存器、变址寄存器、控制寄存器及专用寄存器的定义、数量和使用规则 4·指令系统:机器指令的操作类型、格式、指令间排序和控制机构 5·存储系统:最小编址单位、编址方式、主存容量、最大可编址空间 6·中断机构:中断类型、中断级别,以及中断响应方式等

遗传算法实验报告(仅供参照)

人工智能实验报告

遗传算法实验报告 一、问题描述 对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。 若遗传操作规定如下: (1)选择概率为100%,选择算法为轮盘赌算法; (2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序; (3)变异几率为0 请编写程序,求取函数在区间[0,30]的最大值。 二、方法原理 遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。遗传操作包括三个算子:选择、交叉和变异。选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。选择算子的作用效果是提高了群体的平均适应值。由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。变异是对个体的某一个或某一些基因值按某一较小概率进行改变。从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。 三、实现过程 (1)编码:使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。 (2)生成初始群体:种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。遗传算法以该群体作为初始迭代点; (3)适应度检测:根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数; (4)选择:从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比; (5)交叉:遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制

蚁群算法蚂蚁算法中英文对照外文翻译文献

蚁群算法蚂蚁算法中英文对照外文翻译文献(文档含英文原文和中文翻译)

翻译: 蚁群算法 起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID 控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。 原理 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐地更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。 为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比

较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢? 1、范围: 蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。 2、环境: 蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。 3、觅食规则: 在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

一种基于遗传算法的Kmeans聚类算法

一种基于遗传算法的K-means聚类算法 一种基于遗传算法的K-means聚类算法 摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means 算法的局部性和对初始聚类中心的敏感性。关键词:遗传算法;K-means;聚类 聚类分析是一个无监督的学习过程,是指按照事物的某些属性将其聚集成类,使得簇间相似性尽量小,簇内相似性尽量大,实现对数据的分类[1]。聚类分析是数据挖掘 技术的重要组成部分,它既可以作为独立的数据挖掘工具来获取数据库中数据的分布情况,也可以作为其他数据挖掘算法的预处理步骤。聚类分析已成为数据挖掘主要的研究领域,目前已被广泛应用于模式识别、图像处理、数据分析和客户关系管理等领域中。K-means算法是聚类分析中一种基本的划分方法,因其算法简单、理论可靠、收敛速 度快、能有效处理较大数据而被广泛应用,但传统的K-means算法对初始聚类中心敏 感,容易受初始选定的聚类中心的影响而过早地收敛于局部最优解,因此亟需一种能克服上述缺点的全局优化算法。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。在进化过程中进行的遗传操作包括编码、选择、交叉、变异和适者生存选择。它以适应度函数为依据,通过对种群个体不断进行遗传操作实现种群个体一代代地优化并逐渐逼近最优解。鉴于遗传算法的全局优化性,本文针 对应用最为广泛的K-means方法的缺点,提出了一种基于遗传算法的K-means聚类算法GKA(Genetic K-means Algorithm),以克服传统K-means算法的局部性和对初始聚类中心的敏感性。用遗传算法求解聚类问题,首先要解决三个问题:(1)如何将聚类问题的解编码到个体中;(2)如何构造适应度函数来度量每个个体对聚 类问题的适应程度,即如果某个个体的编码代表良好的聚类结果,则其适应度就高;反之,其适应度就低。适应度函数类似于有机体进化过程中环境的作用,适应度高的个体 在一代又一代的繁殖过程中产生出较多的后代,而适应度低的个体则逐渐消亡;(3) 如何选择各个遗传操作以及如何确定各控制参数的取值。解决了这些问题就可以利

外文翻译-遗传算法

What is a genetic algorithm? ●Methods of representation ●Methods of selection ●Methods of change ●Other problem-solving techniques Concisely stated, a genetic algorithm (or GA for short) is a programming technique that mimics biological evolution as a problem-solving strategy. Given a specific problem to solve, the input to the GA is a set of potential solutions to that problem, encoded in some fashion, and a metric called a fitness function that allows each candidate to be quantitatively evaluated. These candidates may be solutions already known to work, with the aim of the GA being to improve them, but more often they are generated at random. The GA then evaluates each candidate according to the fitness function. In a pool of randomly generated candidates, of course, most will not work at all, and these will be deleted. However, purely by chance, a few may hold promise - they may show activity, even if only weak and imperfect activity, toward solving the problem. These promising candidates are kept and allowed to reproduce. Multiple copies are made of them, but the copies are not perfect; random changes are introduced during the copying process. These digital offspring then go on to the next generation, forming a new pool of candidate solutions, and are subjected to a second round of fitness evaluation. Those candidate solutions which were worsened, or made no better, by the changes to their code are again deleted; but again, purely by chance, the random variations introduced into the population may have improved some individuals, making them into better, more complete or more efficient solutions to the problem at hand. Again these winning individuals are selected and copied over into the next generation with random changes, and the process repeats. The expectation is that the average fitness of the population will increase each round, and so by repeating this process for hundreds or thousands of rounds, very good solutions to the problem can be discovered. As astonishing and counterintuitive as it may seem to some, genetic algorithms have proven to be an enormously powerful and successful problem-solving strategy, dramatically demonstrating

遗传算法实验报告17643

信息与管理科学学院计算机科学系 实验报告 课程名称:人工智能 实验名称:遗传算法问题 姓名:苏鹏海贾美丽赵妍张汉昭 学号:1510003063 1510003024 班级:计科实验室:软件技术实验室指导教师:张慧日期: 2016.11.09

&&遗传算法问题 一、实验目的 1.熟悉和掌握遗传算法的原理、实质; 2.学会使用遗传算法解决问题; 3.学会编写遗传算法程序寻找函数最值; 二、实验原理 遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化构成进行的数学方式仿真。在遗传算法中染色体对应的是一系列符号序列,在标准的遗传算法(即基本遗传算法)中,通常用0, 1组成的位串表示,串上各个位置对应基因座,各位置上的取值对应等位基因。遗传算法对染色体进行处理,染色体称为基因个体。一定数量的基因个体组成基因种群。种群中个体的数目为种群的规模,各个体对环境的适应程度称为适应度。 三、实验内容 用遗传算法求根号2,也就是求方程f(x)=x*x-2=0的正整数解,x=1时f(1)<0,x=2时f(2)>0,由介值定理,则1到2中间存在一个根,根据代数基本定理和根的对称性知这就是我们要找的根,由目标函数得到适应度函数,我们选择个体都在[1,2]之间,那适应度函数我可以取 j(x)=40/(2+|x*x-2|)-10,由x的取值范围知j的范围是(0,10) x和y交叉就用取平均(x+y)/2,交叉概率取0.9,变异概率为0, 四、步骤分析 1.选择目标函数,确定变量定义域及编码精度,形成编码方案 2.随机产生一个规模为(即该种群中含有个体)的种群 2 3.个体评价:计算群体P(t)中各个个体适应度 4.选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传 到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建 立在群体中个体的适应度评估基础上的。(选择运算用轮盘赌算法) 5.对被选择进入匹配池中的个体进行交叉操作,形成新种群 6.以小概率在种群中选择个体进行变异操作形成新种群 7.计算每个个体的适值 8.根据适值概率选择新个体形成新种群 9.检查结束条件,若满足则算法结束,当前种群中适值最高的个体即所求 解;否则转3

外文翻译---遗传算法在非线性模型中的应用

英文翻译 2011 届电气工程及其自动化专业 0706073 班级 题目遗传算法在非线性模型中的应用 姓名学号070607313

英语原文: Application of Genetic Programming to Nonlinear Modeling Introduction Identification of nonlinear models which are based in part at least on the underlying physics of the real system presents many problems since both the structure and parameters of the model may need to be determined. Many methods exist for the estimation of parameters from measures response data but structural identification is more difficult. Often a trial and error approach involving a combination of expert knowledge and experimental investigation is adopted to choose between a number of candidate models. Possible structures are deduced from engineering knowledge of the system and the parameters of these models are estimated from available experimental data. This procedure is time consuming and sub-optimal. Automation of this process would mean that a much larger range of potential model structure could be investigated more quickly. Genetic programming (GP) is an optimization method which can be used to optimize the nonlinear structure of a dynamic system by automatically selecting model structure elements from a database and combining them optimally to form a complete mathematical model. Genetic programming works by emulating natural evolution to generate a model structure that maximizes (or minimizes) some objective function involving an appropriate measure of the level of agreement between the model and system response. A population of model structures evolves through many generations towards a solution using certain evolutionary operators and a “survival-of-the-fittest”selection scheme. The parameters of these models may be estimated in a separate and more conventional phase of the complete identification process.

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

神经网络和遗传算法的模糊系统的自动设计论文中英文资料对照外文翻译

基于神经网络和遗传算法的模糊系统的自动设计摘要 本文介绍了基于神经网络和遗传算法的模糊系统的设计,其目的在于缩短开发时间并提高该系统的性能。介绍一种利用神经网络来描绘的多维非线性隶属函数和调整隶属函数参数的方法。还提及了基于遗传算法的集成并自动化三个模糊系统的设计平台。 1 前言 模糊系统往往是人工手动设计。这引起了两个问题:一是由于人工手动设计是费时间的,所以开发费用很高;二是无法保证获得最佳的解决方案。为了缩短开发时间并提高模糊系统的性能,有两种独立的途径:开发支持工具和自动设计方法。前者包括辅助模糊系统设计的开发环境。许多环境已具有商业用途。后者介绍了自动设计的技术。尽管自动设计不能保证获得最优解,他们仍是可取的手工技巧,因为设计是引导走向和依某些标准的最优解。 有三种主要的设计决策模糊控制系统设计: (1)确定模糊规则数, (2)确定隶属度函数的形式。 (3)确定变化参数 再者,必须作出另外两个决定: (4)确定输入变量的数量 (5)确定论证方法 (1)和(2)相互协调确定如何覆盖输入空间。他们之间有高度的相互依赖性。(3)用以确定TSK(Takagi-Sugeno-Kang)模式【1】中的线性方程式的系数,或确定隶属度函数以及部分的Mamdani模型【2】。(4)符合决定最低套相关的输入变量,计算所需的目标决策或控制的价值观。像逆向消除(4)和信息标准的技术在此设计中经常被利用。(5)相当于决定使用哪一个模糊算子和解模糊化的方法。虽然由数种算法和模糊推理的方法已被提出,仍没有选择他们标准。[5]表明动态变化的推理方法,他依据这个推理环境的结果在性能和容错性高于任何固定的推理的方法。 神经网络模型(以更普遍的梯度)和基于遗传算法的神经网络(最常见的梯度的基础)和遗传算法被用于模糊系统的自动设计。基于神经网络的方法主要是用来设计模糊隶属度函数。这有两种主要的方法; (一)直接的多维的模糊隶属度函数的设计: 该方法首先通过数据库确定规则的数目。然后通过每个簇的等级的训练来确定隶属函数的形式。更多细节将在第二章给出。 (二)间接的多维的模糊隶属度函数的设计: 这种方法通过结合一维模糊隶属函数构建多维的模糊隶属度函数。隶属度函数梯度技术被用于调节试图减少模糊系统的期望产量和实际生产所需的产出总量的误差。 第一种方法的优点在于它可以直接产生非线性多维的模糊隶属度函数;没有必要通过结合一维模糊隶属函数构建多维的模糊隶属度函数。第二种方法的优点在于可通过监测模糊系统的最后性能来调整。这两种方法都将在第二章介绍。 许多基于遗传算法的方法与方法二在本质上一样;一维隶属函数的形式利用遗传算法

相关文档
最新文档