DW检验的局限性与模型的高阶自相关检验

DW检验的局限性与模型的高阶自相关检验
DW检验的局限性与模型的高阶自相关检验

DW检验的局限性与模型的高阶自相关检验

赵卫亚

2012-8-3 9:39:05 来源:《统计与决策》2004年第1期

作者简介:赵卫亚杭州商学院

由于经济发展的连续性所形成的“惯性”,使得许多经济变量的前后期值之间是相互关联的。经济发展的这种惯性作用,使得利用时序数据建立计量经济模型时经常会遇到“自相关性”的问题,即模型中随机误差项的各期值之间存在着较强的相关关系。自相关性的存在将会增大模型系数的估计误差,降低统计检验的可靠性和预测的精度。因此,进行计量经济分析时一般都要检验模型是否存在自相关性,并根据自相关性的类型采取相应的解决方法。

一、DW检验及其局限性

由Durbin和Watson提出的DW检验是检验自相关性的一种经典方法。DW统计量为:

1 / 11

DW检验因其原理简单,计算方便,许多统计分析软件在建立模型时也将DW统计量值作为基本统计量直接输出,所以DW检验现已成为检验自相关性的一种最常用的方法。但是目前人们在使用过程中经常会出现两个问题:一是将DW检验作为检验自相关性的唯一标准,模型一旦通过了DW检验,则认为模型已不存在自相关性;二是认为自相关性主要是一阶自相关性,所以当DW检验结果表明模型存在自相关性时,认为只要对模型进行一阶广义差分变换(有的甚至只进行一阶差分变换)就可以消除模型中的自相关性。

实际上DW检验也存在着一些局限性,其主要表现在以下三个方面。

(一)DW检验只能用于检验一阶自相关性

虽然很多经济现象仅表现为本期与上期相关,但是更多的是与多期相关,即存在所谓的“高阶自相关性”:

2 / 11

所以,如果经DW检验模型存在自相关性,则表明模型至少存在一阶自相关性,很可能还存在着高阶自相关性。同理,如果模型通过了DW检验,即DW统计量的值接近于2,则只说明不相关,模型不存在一阶自相关性,但并不同时意味着模型不存在高阶自相关性,还需要进行高阶自相关性检验。也就是说,即使模型通过了DW检验,也不能断然得出“模型不存在自相关性”的结论。

(二)DW检验存在着两个无法判别的区域

根据DW检验的上、下界表可以直接进行(一阶)自相关性的显著性检验,但表中存在两个特殊的区域,如果DW值落入这两个区域,则无法判别模型是否存在自相关性。虽然Durbin和Watson对此已提出了修正方法,但因计算公式复杂,当DW值落入这两个区域时,人们还是宁愿改用其他的检验方法。

3 / 11

(三)DW检验不能用于含有滞后内生变量的模型

如果模型的解释变量中间含有滞后内生变量,此时即使模型存在较强的自相关性,DW统计量的值也经常会接近于2,从而使DW 检验失效。

二、检验自相关性的一般方法

由于DW检验只是对自相关性的一个特例——一阶自相关性进行检验,虽然很多经济现象是一阶相关的,但是检验模型的自相关性时应该考虑更为一般的情况;而且更重要的是,只有在正确确定自相关性的具体类型之后,才能利用广义差分法消除自相关性的不利影响。因此,本文将结合我国城乡居民储蓄存款模型,介绍一些检验高阶自相关性的一般方法,以及对存在自相关性模型的具体调整过程。

(一)建立我国城乡居民储蓄存款模型

由于模型函数形式设置不当也是造成自相关性的一个主要原因,所以笔者先根据1978~2001年我国城乡居民储蓄存款(单位:

4 / 11

亿元)和国内生产总值指数(1978年=100)的统计资料(略)所绘制的相关图分析Y和X的相关类型。相关图表明,居民储蓄存款和GDP之间呈现出较强的曲线相关关系。因此,将模型形式分别取成指数模型、对数模型、双对数模型和多项式模型;经过比较分析,其中以三次多项式模型的拟合误差最小。所以,将我国城乡居民储蓄存款模型取成三次多项式模型,估计结果为:

其中,括号里的数字为各个回归系数的t统计量值,S.E为回归模型的标准差,DW为Durbin-Watson统计量值。由于模型的拟合程度高达99.77%,模型中所有回归系数也是高度显著的,所以模型有很好的统计性质。此时,DW统计量值等于1.02,当样本容量

n=24时,由DW检验表可以查得临界值的下界为1.273,而0<DW=1.02<1.273,所以模型存在一阶自相关性。

(二)模型的高阶自相关性检验

设模型存在P阶自相关性(P≥1)

5 / 11

其中随机误差项的值因无法观测,检验过程中用残差作为近似估计值,并且利用计量经济分析软件——EViews获取有关检验结果。

(1)偏相关系数检验

既然自相关性是指随机误差项各期值之间的相关关系,因而可以利用相关系数进行检验,而且为了避免相关传递性的影响(即考虑“纯”相关关系),相关系数应该取成偏相关系数。根据之间偏相关系数值的大小,可以大致判定与哪几期残差项相关。

在EViews软件的方程窗口中,依次点击菜单上的有关命令:View\Residual\Test\Correlogram Qstatistics,并输入滞后期长度(设输入10),屏幕将显示的各期相关系数和偏相关系数。如图所示(图略,见原文)。

6 / 11

图中,AC栏是相关系数,PAC栏是偏相关系数;而且为了直观起见,在图形左端分别用直方块表示相关系数和偏相关系数数值的大小。从图1中可以明显看出,只有的偏相关系数较大,分别为-0.476和-0.462。这表明,居民储蓄存款模型不仅存在着一阶自相关性,而且还存在着二阶自相关性。

在EViews软件的方程窗口中,依次点击菜单上的有关命令:View\Residual Test\Serial Correlation LM Test,并输入滞后期长度(设输入2),屏幕将显不如表1(表略,见原文)所示的辅助回归模型的有关信息。

7 / 11

(三)自相关性模型的调整

检验自相关性的最终目的是为了利用广义差分法消除原模型的自相关牲,并且在调整过程中可以进一步确定自相关性的类型。根据偏相关系数检验和BG检验的结果,我国城乡居民储蓄存款模型存在着一阶和二阶自相关性;因此,对原模型中的变量作如下广义差分变换:

8 / 11

再利用最小二乘法估计变换后的模型;在EViews软件中,即键入以下命令:

LS Y C X1 X2 X3 AR(1) AR(2)

其中,AR(1)、AR(2)分别表示进行一阶和二阶广义差分变换。估计结果为:

由DW检验表查得临界值的上、下界分别为1.273和1.446,而1.446<DW=2.345<2.554=4-1.446;所以根据DW检验,调整后的模型已不存在一阶自相关性。由于偏相关系数检验和BG检验都只是对高阶自相关性的一种推测,所以还需要对调整后的模型2再进行高阶自相关性检验。偏相关系数检验结果表明,模型2中各阶偏相关系数的值都已调整得较低,但BG检验的结果却无法通过,其临界概率仍然很小,只有0.001519,表明还存在一定程度的自相关性。因此,对模型2再做更高阶的广义差分变换(依次取

p=3,4),即在EViews软件中键入以下命令:

9 / 11

LS Y C X1 X2 X3 AR(1) AR(2) AR(3) AR(4)

估计结果为:

对调整后的模型再进行自相关性检验,模型3不仅通过了DW检验,而且偏相关系数的值都较小,BG检验的临界概率也达到了0.10,表明模型3已不存在相关性。

从上述自相关性的处理过程可以看出,利用广义差分法对模型进行调整的过程,实际上也是检验高阶自相关性的过程。如果经过p阶广义差分变换,模型已不存在自相关性,则表明原模型确实存在p阶自相关并得到适当的调整。如果变换后的模型还存在自相关性,则再进行P+1、P+2……阶广义差分变换及自相关性检验,直到消除自相关性时为止。因此,广义差分法可以看成是将自相关性

10 / 11

检验和调整过程“合二为一”的检验方法;而且检验过程中,还可以根据对自相关系数的显著性检验结果,判定高阶自相关的具体类型。

将模型3与模型1比较后可以看出,两个模型中的系数在数值上几乎都相差2倍。所以,自相关性的存在将会增大系数的估计误差,必须正确检验和识别模型中自相关性的类型,并作适当的调整。

11 / 11

计量经济学异方差的检验与修正

《计量经济学》实训报告 实训项目名称异方差模型的检验与处理 实训时间 2012-01-02 实训地点实验楼308 班级 学号 姓名

实 训 (实 践 ) 报 告 实 训 名 称 异方差模型的检验与处理 一、 实训目的 掌握异方差性的检验及处理方法。 二 、实训要求 1.求销售利润与销售收入的样本回归函数,并对模型进行经济意义检验和统计检验; 2.分别用图形法、Goldfeld-Quant 检验、White 方法检验模型是否存在异方差; 3.如果模型存在异方差,选用适当的方法对异方差进行修正,消除或减小异方差对模型的影响。 三、实训内容 建立并检验我国制造业利润函数模型,检验异方差性,并选用适当方法对其进行修正,消除或不同) 四、实训步骤 1.建立一元线性回归方程; 2.建立Workfile 和对象,录入数据; 3.分别用图形法、Goldfeld-Quant 检验、White 方法检验模型是否存在异方差; 4.对所估计的模型再进行White 检验,观察异方差的调整情况,从而消除或减小异方差对模型的影响。 五、实训分析、总结 表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料。假设销售利润与销售收入之间满足线性约束,则理论模型设定为: 12i i i Y X u ββ=++ 其中i Y 表示销售利润,i X 表示销售收入。

表1 我国制造工业1998年销售利润与销售收入情况 行业名称销售利润Y 销售收入X 行业名称销售利润销售收入 食品加工业187.25 3180.44 医药制造业238.71 1264.1 食品制造业111.42 1119.88 化学纤维制品81.57 779.46 饮料制造业205.42 1489.89 橡胶制品业77.84 692.08 烟草加工业183.87 1328.59 塑料制品业144.34 1345 纺织业316.79 3862.9 非金属矿制品339.26 2866.14 服装制品业157.7 1779.1 黑色金属冶炼367.47 3868.28 皮革羽绒制品81.7 1081.77 有色金属冶炼144.29 1535.16 木材加工业35.67 443.74 金属制品业201.42 1948.12 家具制造业31.06 226.78 普通机械制造354.69 2351.68 造纸及纸品业134.4 1124.94 专用设备制造238.16 1714.73 印刷业90.12 499.83 交通运输设备511.94 4011.53 文教体育用品54.4 504.44 电子机械制造409.83 3286.15 石油加工业194.45 2363.8 电子通讯设备508.15 4499.19 化学原料纸品502.61 4195.22 仪器仪表设备72.46 663.68 1.建立Workfile和对象,录入销售收入X和销售利润Y: 图1 销售收入X和销售利润Y的录入 2.图形法检验 ⑴观察销售利润Y与销售收入X的相关图:在群对象窗口工具栏中点击

(完整版)多重共线性检验与修正.doc

问题: 选取粮食生产为例,由经济学理论和实际可以知道,影响粮食生产y 的因素有:农业化肥施 用量x1,粮食播种面积x2,成灾面积x3,农业机械总动力x4,农业劳动力x5,由此建立以下方程: y=β0+β1x1+β2x2+β3x3+β4x4+β5x5,相关数据如下: 解: 1、检验多重共线性 (1)在命令栏中输入: ls y c x1 x2 x3 x4 x5,则有; 可以看到,可决系数R2 和 F 值都 很高,二自变量x1 到 x5 的 t 值 均较小,并且x4 和 x5 的 t 检验 不显著,说明方程很可能存在多 重共线性。 (2)对自变量做相关性分析: 将x1—— x5 作为组打开, view —— covariance analysis—— correlation ,结果如下: 可以看到x1 和 x4 的相关系数 为 0.96,非常高,说明原模型 存在多重共线性

2、多重共线性的修正 (1)逐步回归法 第一步:首先确定一个基准的解释变量,即从 x1, x2, x3, x4, x5 中选择解释 y 的最好的一个建 立基准模型。分别用 x1, x2, x3, x4, x5 对 y 求回归,结果如下: 从上面 5 个输出结果可以知道,y 对 x1 的可决系数R2=0.89(最高),因此选择 第一个方程作为基准回归模型。即: Y = 30867.31062 + 4.576114592* x1 在基准模型的基础上,逐步将x2, x3 等加入到模型中, 加入 x2,结果:

拟合优度R2=0.961395 ,显著提高; 并且参数符号符合经济常识,且均显著。 所以将模型修改为: Y= -44174.52+ 4.576460*x1+ 0.672680*x2 再加入 x3,结果: 拟合优度R2=0.984174 ,显著提高; 并且参数符号符合经济常识(成灾面积越大,粮食产 量越低),且均显著。 所以将模型修改为: Y=-12559.35+5.271306*x1+0.417257*x2-0.212103*x3 再加入 x4,结果: 拟合优度R2=0.987158 ,虽然比上一次拟 合提高了; 但是变量x4 的系数为 -0.091271 ,符号不 符合经济常识(农业机械总动力越高, 粮食产量越高),并且 x4 的 t 检验不显著。 因此应该从模型中剔除x4。

计量经济学--自相关性的检验及修正

经济计量分析实验报告 一、实验项目 自相关性的检验及修正 二、实验日期 2015.12.13 三、实验目的 对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,对随机误差项进行异方差的检验和补救及自相关性的检验和修正。 四、实验内容 建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。 检验变量是否具有多重共线性并修正。 检验是否存在异方差并补救。 检验是否存在相关性并修正。 五、实验步骤 1、建立模型。 以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。 2、模型设定为: t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆) t 4X — 城乡居民储蓄存款年末增加值(亿元) 3、对模型进行多重共线性检验。 4、检验异方差是否存在并补救。 5、检验自相关性是否存在并修正。 六、实验结果

消除多重共线性及排除异方差性之后的回归模型为:2382963.08388.301?X Y +-= 检验 I 、图示法 1、1-t e ,t e 散点图 -1,500 -1,000 -500 500 1,000 1,500 -2,000 -1,00001,0002,000 ET(-1) E T 大部分落在第Ⅰ,Ⅲ象限,表明随机误差项存在正自相关。 2、t e 折线图 -1,500 -1,000 -500 500 1,000 1,500 86 88 90 92 94 96 98 00 02 04 06 08 10 RESID Ⅱ、解析法 1、D-W 检验

试验一异方差的检验与修正-时间序列分析

案例三 ARIMA 模型的建立 一、实验目的 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容及要求 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2007年中国进出口贸易总额数据运用经典B-J 方法论建立合适的ARIMA (,,p d q )模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入 打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated –regular frequency ”,在“Date specification ”栏中分别选择“Annual ”(年数据) ,分别在起始年输入1950,终止年输入2007,点击ok ,见图3-1,这样就建立了一个工作文件。点击File/Import ,找到相应的Excel 数据集,导入即可。

(整理)多重共线性的检验与修正

附件二:实验报告格式(首页) 山东轻工业学院实验报告成绩 课程名称计量经济学指导教师实验日期 2013-5-25 院(系)商学院专业班级实验地点二机房 学生姓名学号同组人无 实验项目名称多重共线性的检验与修正 一、实验目的和要求 掌握Eviews软件的操作和多重共线性的检验与修正 二、实验原理 Eviews软件的操作和多重共线性的检验修正方法 三、主要仪器设备、试剂或材料 Eviews软件,计算机 四、实验方法与步骤 (1)准备工作:建立工作文件,并输入数据: CREATE EX-7-1 A 1974 1981; TATA Y X1 X2 X3 X4 X5 ; (2)OLS估计: LS Y C X1 X2 X3 X4 X5; (3)计算简单相关系数 COR X1 X2 X3 X4 X5 ; (4)多重共线性的解决 LS Y C X1; LS Y C X2; LS Y C X3; LS Y C X4; LS Y C X5; LS Y C X1 X3; LS Y C X1 X3 X2; LS Y C X1 X3 X4; LS Y C X1 X3 X5; 五、实验数据记录、处理及结果分析 (1)建立工作组,输入以下数据: 98.45 560.20 153.20 6.53 1.23 1.89 100.70 603.11 190.00 9.12 1.30 2.03 102.80 668.05 240.30 8.10 1.80 2.71 133.95 715.47 301.12 10.10 2.09 3.00 140.13 724.27 361.00 10.93 2.39 3.29

实验异方差地检验与修正

实验异方差的检验与修正 实验目的 1、理解异方差的含义后果、 2、学会异方差的检验与加权最小二乘法 实验容 一、准备工作。建立工作文件,并输入数据,用普通最小二乘法估计方程(操作 步骤与方法同前),得到残差序列。 表2列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。 表2 我国制造工业1998年销售利润与销售收入情况 二、异方差的检验 1、图形分析检验 ⑴观察销售利润(Y)与销售收入(X)的相关图(图3-1):SCAT X Y

图3-1 我国制造工业销售利润与销售收入相关图 从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。这说明变量之间可能存在递增的异方差性。 ⑵残差分析 首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。 图3-2 我国制造业销售利润回归模型残差分布 图3-2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。 2、Goldfeld-Quant检验 ⑴将样本安解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本) ⑵利用样本1建立回归模型1(回归结果如图3-3),其残差平方和为2579.587。 SMPL 1 10 LS Y C X

图3-3 样本1回归结果 ⑶利用样本2建立回归模型2(回归结果如图3-4),其残差平方和为63769.67。 SMPL 19 28 LS Y C X 图3-4 样本2回归结果 ⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。 取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而 44.372.2405.0=>=F F ,所以存在异方差性 3、White 检验 ⑴建立回归模型:LS Y C X ,回归结果如图3-5。

异方差性的检验和补救

异方差性的检验和补救 一、研究目的和要求 表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型,检验其是否存在异方差,并加以补救。 表1 我国制造工业1998年销售利润与销售收入情况 二、参数估计 EVIEWS 软件估计参数结果如下

Dependent Variable: Y Method: Least Squares Date: 06/01/16 Time: 20:16 Sample: 1 28 Included observations: 28 Variable Coefficient Std. Error t-Statistic Prob. C 12.03349 19.51809 0.616530 0.5429 X 0.104394 0.008442 12.36658 0.0000 R-squared 0.854694 Mean dependent var 213.4639 Adjusted R-squared 0.849105 S.D. dependent var 146.4905 S.E. of regression 56.90455 Akaike info criterion 10.98938 Sum squared resid 84191.34 Schwarz criterion 11.08453 Log likelihood -151.8513 Hannan-Quinn criter. 11.01847 F-statistic 152.9322 Durbin-Watson stat 1.212781 Prob(F-statistic) 0.000000 用规范的形式将参数估计和检验结果写下 2?12.033490.104394(19.51809)(0.008442) =(0.616530) (12.36658)0.854694152.9322 i Y X t R F =+ = = 三、 检验模型的异方差 (一) 图形法 1. 相关关系图 X Y X Y 相关关系图

多重共线性的检验与修正

计量经济学实验报告成绩 课程名称计量经济学指导教师苏卫东实验日期 2014-6-24 院(系)财政与金融学院专业班级金融二专实验地点实验楼八机房 学生姓名单一芳学号 201212041018 同组人无 实验项目名称多重共线性的检验与修正 一、实验目的和要求 1、理解多重共线性的含义与后果 2、掌握Eviews软件的操作和多重共线性的检验与修正 二、实验原理 Eviews软件的操作和多重共线性的检验修正方法 三、主要仪器设备、试剂或材料 Eviews软件,计算机 四、实验方法与步骤 1、准备工作:建立工作文件,并输入数据 CREATE A 1974 1981; DATA Y X1 X2 X3 X4 X5 2、OLS估计: LS Y C X1 X2 X3 X4 X5; 3、计算简单相关系数 COR X1 X2 X3 X4 X5 4、多重共线性的解决 LS Y C X1; LS Y C X2; LS Y C X3; LS Y C X4; LS Y C X5;

LS Y C X1 X3; LS Y C X1 X3 X2; LS Y C X1 X3 X4; LS Y C X1 X3 X5 五、实验数据记录、处理及结果分析 1、建立工作组,输入以下数据: obs Y X1 X2 X3 X4 X5 1974 98.45 560.2 153.2 6.53 1.23 1.89 1975 100.7 603.11 190 9.12 1.3 2.03 1976 102.8 668.05 240.3 8.1 1.8 2.71 1977 133.95 715.47 301.12 10.1 2.09 3 1978 140.13 724.27 361 10.93 2.39 3.29 1979 143.11 736.13 420 11.85 3.9 5.24 1980 146.15 748.91 497.16 12.28 5.13 6.83 1981 144.6 760.32 501 13.5 5.47 8.36 1982 148.94 774.92 529.2 15.29 6.09 10.07 1983 158.55 785.3 552.72 18.1 7.97 12.57 1984 169.68 795.5 771.16 19.61 10.18 15.12 1985 162.14 804.8 811.8 17.22 11.79 18.25 1986 170.09 814.94 988.43 18.6 11.54 20.59 1987 178.69 828.73 1094.65 23.53 11.68 23.37 2、OLS估计 LS Y C X1 X2 X3 X4 X5 Dependent Variable: Y Method: Least Squares Date: 06/24/14 Time: 18:45 Sample: 1974 1987 Included observations: 14 Variable Coefficient Std. Error t-Statistic Prob. C -3.650950 30.00144 -0.121692 0.9061 X1 0.125752 0.059087 2.128275 0.0660 X2 0.072656 0.037445 1.940317 0.0883 X3 2.681426 1.258639 2.130418 0.0658 X4 3.405866 2.444896 1.393052 0.2011 X5 -4.430561 2.194164 -2.019248 0.0781 R-squared 0.970397 Mean dependent var 142.7129

自相关地检验与修正

实验2 自相关的检验与修正 一、实验目的: 掌握自相关模型的检验方法与处理方法.。 二、实验容及要求: 表1列出了1985-2007年中国农村居民人均纯收入与人均消费性支出的统计数据。 (1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。 (2)检验模型是否存在自相关。 (3)如果存在自相关,试采用适当的方法加以消除。 表1 1985-2007年中国农村居民人均纯收入与人均消费性支出(单位:元)

实验如下: 首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。 图1

1、用OLS估计法估计参数 图2 图3

图4 从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显著的正相关关系。 估计回归方程: 从图3中可以得出,估计回归方程为: Y=56.21878+0.698928X t=(3.864210)(31.99973) R2=0.979904 F=1023.983 D.W.=0.409903

(1)图示法 图5 从图5中,可以看出残差的变化有系统模式,连续为正或连续为负,表示残差项存在一阶正自相关。

(2)DW检验 从图3中可以得到D.W.=0.409903,在显著水平去5%,n=23,k=2,d L=1.26, d U=1.44。此时0

EViews计量经济学实验报告-多重共线性的诊断与修正

时间 地点 实验题目 多重共线性的诊断与修正 一、实验目的与要求: 要求目的:1、对多元线性回归模型的多重共线性的诊断; 2、对多元线性回归模型的多重共线性的修正。 二、实验内容 根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。 三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等) (一)模型设定及其估计 经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。研究“农业的发展反而会减少财政收入”这个问题。 设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ 其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。 图1: 1978~2007年财政收入及其影响因素数据 年份 财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业 增加值 JZZ/亿 元 总人口 TPOP/万 人 最终消费 CUM/亿元 受灾面 积SZM/ 千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 1994 5218.1 9572.7 19480.7 2964.7 119850 29242.2 55043

实验六多元线性回归和多重共线性

实验六多元线性回归和多重共线性 姓名:何健华 学号:201330110203 班级:13金融数学2班 一 实验目的: 掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。 二 实验要求: 应用教材P140例子4.3.1案例做多元线性回归模型,并识别和修正多重共线性。 三 实验原理: 普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。 四 预备知识: 最小二乘法估计的原理、t 检验、F 检验、R 2值。 五 实验步骤: 有关的研究分析表明,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出外,还可能与基础设施有关。因此考虑影响国内旅游收入Y (单位为亿元)的以下几个因素:国内旅游人数X1、城镇居民人均旅游支出X2(单位为元)、农村居民人均旅游支出X3(单位为元)、并以公路里程X4(单位为万公里)和铁路里程X5(单位为万公里)作为相关设施的代表,根据这些变量建立如下的计量经济模型: 01122334455y x x x x x ββββββμ=++++++ 为了估计上述模型,从《中国统计年鉴》收集到1994年到2003年的有关统计数据。 Year Y X1 X2 X3 X4 X5 1994 1023.5 52400 414.7 54.9 111.78 5.9 1995 1375.7 62900 464 61.5 115.7 5.97 1996 1638.4 63900 534.1 70.5 118.58 6.49 1997 2112.7 64400 599.8 145.7 122.64 6.6 1998 2391.2 69450 607 197 127.85 6.64 1999 2831.9 71900 614.8 249.5 135.17 6.74 2000 3175.5 74400 678.6 226.6 140.27 6.87 2001 3522.4 78400 708.3 212.7 169.8 7.01 2002 3878.4 87800 739.7 209.1 176.52 7.19 2003 3442.3 87000 684.9 200 180.98 7.3 1、 请用普通最小二乘方法估计模型参数; 2、 检验模型是否存在多重共线性,如果存在共线性,试采用适当的方法消除共线性。

空间计量经济学模型归纳

空间计量经济学模型 空间相关性是指 () ,i j y f y i j =≠即i y 与j y 相关 模型可表示为() (),1i j j i i y f y x i j βε=++≠ 其中,()f 为线性函数,(1)式的具体形式为 () ()2,0,2i ij j i i i i j y a y x N βεεδ≠=++∑ 如果只考虑应变量空间相关性,则(2)式变为(3)式 ()()21 ,0,,1,2...3n i ij j i i i y W y N i n ρεεδ==+=∑ 式中 1 n ij j i W y =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ?中的元素,ρ为待估的空间自相 关系数。0ρ≠,存在空间效应 (3)式的矩阵形式为() ()2 1,0,4u n y Wy N I ρεδ?= (4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下 () ()2,0,5n y Wy X N I ρβεεδ=++ (5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有 () ()21,,0,6u n y X u u Wu N I βλεδ?=+= (6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有 () ()2121,,0,7u n y W y X u u W u N I ρβλεεδ?=++=+ (7)式称为一般空间模型,记为SAC 模型 当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR 当10W =时,SAC →SEM 当空间相关性还体现在解释变量上时,则有 () ()2,0,8n y Wy X WXr N I ρβεεδ=+++ (8)式成为空间杜宾模型,记为SDM 模型

计量经济学实验四 序列相关的检验与修正

实验四 序列相关的检验与修正 实验目的 1、理解序列相关的含义后果、 2、学会序列相关的检验与消除方法 实验内容 利用下表资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。 表3 我国城乡居民储蓄存款与GDP 统计资料(1978年=100) 一、模型的估计 0、准备工作。建立工作文件,并输入数据。 1、相关图分析 SCAT X Y 相关图表明,GDP 指数与居民储蓄存款二者的曲线相关关系较为明显。现将函数初步设定为线性、双对数等不同形式,进而加以比较分析。 2、估计模型,利用LS 命令分别建立以下模型 ⑴线性模型: LS Y C X x y 5075.9284.14984?+-=

=t (-6.706) (13.862) 2R =0.9100 F =192.145 S.E =5030.809 ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX x y ln 9588.20753.8?ln +-= =t (-31.604) (64.189) 2R =0.9954 F =4120.223 S.E =0.1221 3、选择模型 比较以上模型,可见各模型回归系数的符号及数值较为合理。各解释变量及常数项都通过了t 检验,模型都较为显著。比较各模型的残差分布表。线性模型的残差在较长时期内呈连续递减趋势而后又转为连续递增趋势,残差先呈连续递增趋势而后又转为连续递减趋势,因此,可以初步判断这种函数形式设置是不当的。而且,这个模型的拟合优度也较双对数模型低,所以又可舍弃线性模型。双对数模型具有很高的拟合优度,因而初步选定回归模型为双对数回归模型。 二、模型自相关的检验 1.图示法 其一,残差序列e t 的变动趋势图。菜单:Quick→Graph→line ,在对话框中输入resid ;或者用命令操作,直接在命令行输入:line X 。 其二,作e t-1和e t 之间的散点图。菜单:Quick→Graph→Scatter ,在对话框中输入resid(-1) resid ;或者用命令操作,直接在命令行输入:scat resid(-1) resid 。 2.DW 检验 因为n =21,k =1,取显著性水平α=0.05时,查表得L d =1.22,U d =1.42,而0<0.7062=DW

序列相关的检验和修正

序列相关的检验及修正 例题:中国居民总量消费函数 数据: 年份 GDP CONS CPI TAX GDPC X Y 1978 3605.6 1759.1 46.21 519.28 7802.6 6678.9 3806.8 1979 4092.6 2011.5 47.07 537.82 8694.7 7552.1 4273.4 1980 4592.9 2331.2 50.62 571.70 9073.3 7943.9 4605.3 1981 5008.8 2627.9 51.90 629.89 9650.9 8437.2 5063.4 1982 5590.0 2902.9 52.95 700.02 10557.1 9235.1 5482.3 1983 6216.2 3231.1 54.00 775.59 11511.5 10075.2 5983.5 1984 7362.7 3742.0 55.47 947.35 13273.3 11565.4 6746.0 1985 9076.7 4687.4 60.65 2040.79 14965.7 11600.8 7728.6 1986 10508.5 5302.1 64.57 2090.37 16274.6 13037.2 8211.4 1987 12277.4 6126.1 69.30 2140.36 17716.3 14627.8 8840.0 1988 15388.6 7868.1 82.30 2390.47 18698.2 15793.6 9560.3 1989 17311.3 8812.6 97.00 2727.40 17846.7 15034.9 9085.2 1990 19347.8 9450.9 100.00 2821.86 19347.8 16525.9 9450.9 1991 22577.4 10730.6 103.42 2990.17 21830.8 18939.5 10375.7 1992 27565.2 13000.1 110.03 3296.91 25052.4 22056.1 11815.1 1993 36938.1 16412.1 126.20 4255.30 29269.5 25897.6 13004.8 1994 50217.4 21844.2 156.65 5126.88 32057.1 28784.2 13944.6 1995 63216.9 28369.7 183.41 6038.04 34467.5 31175.4 15467.9 1996 74163.6 33955.9 198.66 6909.82 37331.9 33853.7 17092.5 1997 81658.5 36921.5 204.21 8234.04 39987.5 35955.4 18080.2 1998 86531.6 39229.3 202.59 9262.80 42712.7 38140.5 19363.9 1999 91125.0 41920.4 199.72 10682.58 45626.4 40277.6 20989.6 2000 98749.0 45854.6 200.55 12581.51 49239.1 42965.6 22864.4 2001 108972.4 49213.2 201.94 15301.38 53962.8 46385.6 24370.2 2002 120350.3 52571.3 200.32 17636.45 60079.0 51274.9 26243.7 2003 136398.8 56834.4 202.73 20017.31 67281.0 57407.1 28034.5 2004 160280.4 63833.5 210.63 24165.68 76095.7 64622.7 30306.0 2005 188692.1 71217.5 214.42 28778.54 88001.2 74579.6 33214.0 2006 221170.5 80120.5 217.65 34809.72 101617.5 85624.1 36811.6 1、 建立回归模型,模型的OLS 估计 t t t X Y μββ++=10 (1)录入数据 打开EViews6,点“File ” “New ”“Workfile ”

异方差的检验比较和修正

2007年 5 月 Journal of Science of Teachers′College and University May 2007 文章编号:1007-9831(2007)03-0027-03 异方差的检验比较和修正 陈晖1, 2 ,杨乃军 3 (1. 山东大学 数学与系统科学学院,山东 济南 250100;2. 烟台职业学院 软件工程学院,山东 烟台 264001; 3. 烟台大学 教务处,山东 烟台 264001) 摘要:异方差是计量经济工作中线性回归模型经常遇到的问题,异方差的存在对线性回归分析有很强的破坏作用.通过对异方差产生的原因和后果进行分析,利用异方差的戈德菲尔特-夸特检验、拉格朗日乘数(LM)检验、怀特检验方法,判断线性回归模型异方差的存在性.通过加权最小二乘法或可行广义最小二乘法进行修正,建立能够真正反映经济规律的经济模型,实现对经济的正确指导作用. 关键词:异方差;戈德菲尔特-夸特检验;拉格朗日乘数(LM)检验;最小二乘法 中图分类号:F222.1 文献标识码 :A 1 异方差产生的原因 在计量经济学中,建立线性回归模型时需要做一些假设,从而保证所分析的变量关系符合线性回归分析的基本规定性,明确分析对象,保证回归分析的有效性.其中之一要求随机误差项同方差,即2)var(σε=i 不随i 变化,保证扰动因素对被解释变量的影响是简单的、随机的,不构成主要的影响因素.当这条假设不满足,也就是线性回归模型误差项2)var(i i σε=随i 的变化而变化,这时候就产生了异方差,此时称线性回归模型存在异方差或异方差性.如果对应线性回归模型误差项随着i X 或i 的增大而增大,称为“递增异方差”,反之称为“递减异方差”,有时也有先增后减或者先减后增的其他复杂类型的异方差[1-2] . 模型中异方差产生的原因,根据来源可以归纳为以下几方面原因:(1)模型中省略相关的解释变量; (2)误差随时间变化而变化;(3)模型设定不合理带来异方差;(4)分组数据误差带来异方差. 2 异方差的后果 计量经济模型一旦出现异方差,就会破坏模型假设的基本条件,如果仍然采用普通最小二乘法的估计方法,则会产生如下的不良后果: (1)参数估计量失效:因为在有效性证明中利用了同方差的条件,因此所求的OLS 参数估计值虽然仍具有无偏性,但不再是有效的; (2)变量的显著性检验失效:因为在变量的显著性检验中,构造的t 统计量包含有随机误差项的方差 2u σ,如果出现异方差,则t 检验就失去意义; (3)模型预测失效:这是因为在预测值的置信区间中包含有随机误差项的方差2 u σ,导致预测值的置 信区间加大,降低了预测的精度,使预测失效[3] . 3 异方差的检验方法 收稿日期:2006-12-18 作者简介:陈晖(1970-),女,山东青岛人,讲师,在读研究生,从事金融数学研究.E-mail:ch_yt@https://www.360docs.net/doc/f612319973.html,

多重共线性检验与修正

多重共线性检验与修正 数据来源:《中国统计年鉴2014》12-10、4-3、12-4、12-5、12-8、 Eviews操作: 1、基本操作: (1)录入数据:命令:data y l m f a ir (y代表粮食产量,l代表第一产业劳动力数量,m代表农业机械总动力,f代表化肥施用量,a代表农作物总播种面积,ir为有效灌溉面积/农作总播种面积得出的灌溉率) (2)做线性回归:命令:LS y c l m f a ir 2、检验多重共线性 (1)方差膨胀因子判断法 在生成的线性回归eq01中,view—coefficient diagnostics—variance inflation factors 看生成表格中的Centered VIF,发现L、M、F、A、IR的方差膨胀因子都很大,说明存在严重多重共线性。(eg:L的Centered VIF指以L为因变量,M、A、F、IR为自变量所做出的辅助回归的判定系数R2,然后1/1-R2得出的值。) (由课本内容可知,当完全不共线性时,VIF=1;完全共线性时,VIF=正无穷)(2)相关系数矩阵判断法 命令:cor l m f a ir 这个是通过看各个解释变量之间的相关系数来判断是否存在多重共线性的。可以看到大多数解释变量之间两两相关系数都大于0.9。相关系数极大说明解释变量之间存在很高的相关性,因而也就很可能存在共线性。 3、修正多重共线性 (1)逐步回归排除引起共线性的变量 ①菜单栏操作 在生成的线性回归eq01中,Estimate—Method—STEPLS 接下来会出现两个框框,上面的框框是固定住不做逐步回归的变量,一般设定为y和c

异方差的检验及修正

异方差问题的检验与修正 【实验目的】 1、深刻理解异方差性的实质、异方差出现的原因、异方差的出现对模型的不良影响(即异方差的后果),掌握估计和检验异方差性的基本思想和修正异方差的若干方法。 2、能够运用所学的知识处理模型中的出现的异方差问题,并要求初步掌握用Eviews处理异方差的基本操作方法。 【实验原理】 1、最小二乘估计。 2、异方差。 3、最小二乘残差图解释异方差。 4、Breusch-Pagan检验(B-P检验)和White检验(怀特检验)检验特定方差函数的异方差性。 5、稳健标准差和加权最小二乘法对特定方差函数的异方差性的修正。 【实验软件】 Eviews6.0 【实验步骤】 一、设定模型 首先将实验数据导入软件之中。(注:本实验报告正文部分只显示软件统计结果,导入数据这一步骤参见附A) 本次实验的数据主要是Big Andy店的食品销售收入数据与食品价格数据,共采用了75组。 实验数据来源于课本中的例题,由老师提供。如下表: 表Big Andy店月销售收入和价格的观测值

sales price sales price sales price sales price 73.2 5.6975.7 5.5978.1 5.773.7671.8 6.4974.4 6.2288 5.2271.2 6.3762.4 5.6368.7 6.4180.4 5.0584.7 5.3367.4 6.2283.9 4.9679.7 5.7673.6 5.2389.3 5.0286.1 4.8373.2 6.2573.7 5.8870.3 6.4173.7 6.3585.9 5.3478.1 6.2473.2 5.8575.7 6.4783.3 4.9869.7 6.4786.1 5.4178.8 5.6973.6 6.3967.6 5.4681 6.2473.7 5.5679.2 6.2286.5 5.1176.4 6.280.2 6.4188.1 5.187.6 5.0476.6 5.4869.9 5.5464.5 6.4984.2 5.0882.2 6.1469.1 6.4784.1 4.8675.2 5.8682.1 5.3783.8 4.9491.2 5.184.7 4.8968.6 6.4584.3 6.1671.8 5.9873.7 5.6876.5 5.3566 5.9380.6 5.0282.2 5.7380.3 5.2284.3 5.273.1 5.0874.2 5.1170.7 5.8979.5 5.6281 5.2375.4 5.7175 5.2180.2 5.2873.7 6.0281.3 5.45 75 6.05 81.2 5.83 69 6.33 其中,sales 表示在某城市的月销售收入,以千美元为单位;price 表示在该城市的价格,以美元为单位。 假设表1中的月销售收入数据满足假设SR1—SR5。即,假设Big Andy 店的月销售收入的期望值是产品价格水平的线性函数,误差项额的均值为零,销售收入的方差和误差项e 的方差相同,随机误差项e 在统计上不相关,且选取的价格的值是非随机的。 这样,在上面的基础之上,建立Big Andy 的食品销售收入(sales )与食品价格(price )之间的线性模型方程: e price sales ++=10ββ根据最小二乘估计的思想估计模型参数,(此过程参见附B )结果如下图: Coefficient Std.Error t-Statistic Prob.C 121.9002 6.52629118.678320.0000PRICE -7.829074 1.142865 -6.850394 0.0000R-squared 0.391301Mean dependent var 77.37467Adjusted R-squared 0.382963 S.D.dependent var 6.488537

相关文档
最新文档