小区高负荷造成无线接通率低处理案例要点

小区高负荷造成无线接通率低处理案例要点
小区高负荷造成无线接通率低处理案例要点

告警信息

NO

NO

NO

NO

NO

NO

YES

结束

RRC建立成功率低

1、高负荷小区定义:RRC最大用户数≥200;

2、RRC平均用户数≥30且上行PRB利用率大于50%且上行流量大于1G;

3、RRC平均用户数≥30且下行PRB 利用率大于50%且下行流量大于5G;

4、主控板CPU最大利用率>80%

是否存在资源不足

1、参数调整,流量均衡;

2、天馈调整,分担流量;

3、热点区域,增补基站;

是否终端、用户行为异常

1.结合用户投诉情况,安排前场人员现场测试,同时后台通过信令跟踪,配合查找问题原因;

指标是否正常保存跟踪信令及测试数据,提交问题排查交付件至华为研发定位问题。

检查操作,是否存在告

警,传输问题,是否存在网络变动和升级行为等;2.查询单板运行情况;3.传输及EPC侧有网络变动(升级,割接,参数修改等)。

1、通过Mapinfo查看小区PCI复用是否合理,是否存在模三冲突;

2、检查小区时隙配比是否设置准确

(DE:SA2\SSP7;F:SA2\SSP5)3、如每PRB上干扰噪声平均值>-110dBm,确认小区存在上行干扰,同时可通过后台跟踪,确认干扰类型;最后干扰处理。

是否存在干扰 1.通过统计TA与RSRP接入确认用户的接入环境,是否为弱场发起RRC请求;3、邻区告警、故障等导致TOP小区存在弱覆盖;4、天馈问题;5、无线环境差;6、基站规划、建设、施工问题;7,天线权值配置与现场天线参数不一致。8.核查参考信号功率是否偏低(常规设置92,122,需结合现场设置);

是否存在覆盖问题是否存在高质差

1.通过观察小区上下行丢包率是否正常,如丢包率偏高,基本断定小区存在质差;2、通过后台误码率跟踪,如BLER>10%,确定小区存在高误码;

基站地理分布:

通过查询发现RRC建立失败原因主要为“mo-Data类型RRC连接失败次数,定时器超时小时600多次,如图所示:

RRC连接建立成功率mt-Access

类型RRC

连接失败

次数,定时

mo-Signalling

类型RRC连接

失败次数,定时

mo-Data

类型RRC

连接失败

次数,定

RRC连接

释放次

数,空口

定时器

RRC

释放次

数,

立失败

2015/6/7 12:00 94.93% 114 95 594 24 44

2、A1、A2门限由-92、-95改为-79、-82

3、如下图所示,随后提取指标发现RRC用户由250下降至170左右,无线接通率指标也恢复正常:

物理视图,在BBU10槽位新增一了块BPN2板,下挂了3台(M1920A)RRU

5、扩容前后LTE市区城坤钢材市场东_1小区指标与用户数对比:

市区空后院搬迁F_2扩容后用户数

qxx-15(6.1)新建住宅小区的用电负荷计算资料

新建住宅小区的用电负荷计算 该帖被浏览了412次| 回复了2次 新建住宅小区的用电负荷计算 作者:毛洪山来源:《电气&智能建筑》 简介:摘要通过实际测量大型成片住宅小区实际用电负荷峰值,提出负荷计算需要系数 Kx的合理取值范围。 关键词住宅小区用电负荷需要系数随着国民生活水平的提高和房地产业的蓬勃 ... 关键字:用电负荷 随着国民生活水平的提高和房地产业的蓬勃发展,各地新建中高档住宅小区越来越多。准确计算出住宅小区的用电负荷,合理选择配变电设施,才能既满足小区居民现在及将来的用电需要,又能合理降低工程造价、节省投资。 新的住宅设计规范对各类住宅的设计容量、进户线、电表容量都作了规定,笔者认为此标准较切合中国人口众多而能源又相对较少的实际情况,有一定的先进性,按此设计的住宅用电水准应至少可保证20~30年不落后。但该规范对各单元、楼、小区的负荷计算的需要系数取值未作规定,有的地方住宅标准列了一些具体数据,但各地标准相差较大。 表中住宅户数指接于一相电源的户数,由表可知,北京市规定200户以上的住宅Kx取0.26,而重庆市的标准为0.46~0.42,比北京市标准高了约70%,按两个标准计算的小区负荷差距甚大。另外,《住宅设计规范》中规定四类住宅每户负荷按4kW,而江苏、上海等地方标准中已将三类住宅每户负荷提高到6kW、四类住宅每户负荷提高到8kW,两者若按同样的需要系数计算,得到的住宅小区负荷也相距甚远。到底如何计算整 个小区的用电负荷,许多设计人员无所适从。 为了真正摸清小区用电负荷情况,笔者对所在公司整个生活区的用电状况作了深入的调查分析,所有数据均为现场抄表所得。本公司为大型国营上市公司,生活区始建于1982年,分多年陆续建设,至2001年大致建成,建筑面积约100,0000m2,共有两、三居室住宅15000套左右,95年前建成的老住宅按一户4kW用电负荷标准改造配置了20A电表和进户线,一部分新建住宅按每户6kW用电负荷标准设计。所有生活区用电均由我公司自备发电厂以10kV电缆、架空线引入,由于是自备电厂,电价只及周围城市居民用电电价的一半。另外,由于公司历年效益较好,居民人均收入高于周围大中城市,所以公司生活区目前用电水准应能代表各类新建中档住宅小区近几年的用电水平。笔者所处地为长江下游地区,夏天气温高、湿度大,用电最高峰为7~8月的18~21时,主要负荷为制冷空调器,每百户空调拥有量已达115台。 笔者取样了2002年7月14、15日两天的数据,笔者所处地此两日最高气温分别达38.4℃和39℃,为近几年最高,表3为此两天的最高负荷情况。 分析表3可以验证,若每户按4kW的用电标准,200户以上的小区选择变压器时需要系数Kx取0.26较为科学。变压器由于昼夜负荷落差大,有较大的过载潜力,笔者认为Kx取0.26是完全可行性的。若每户按7kW的用电标准设计,Kx取0.26,应 可以满足今后相当长时间住宅用电的需求。 按照新的住宅设计规范,虽然三、四类住宅须按一户4kW(地方标准6kW)的用电标准设计,但由于居民的平均生活水平还十分不富裕,再加上中国人勤俭持家生活传统,大部分居民用电负荷的峰值离设计负荷值还相差较远。从整个小区来看,大部分家电的同时使

无线接通率提升

无线接通率提升 1.1无线接通率指标情况 华为区域CS域语音接通率99.5%左右,PS域接通率在99.6%左右,远低于青海省平均值,也低于全国20名指标,为此,我们对无线接通率问题进行专项优化提升; 1.2影响无线接通率因素 从综合的角度考虑接通率,需要把RRC连接建立成功率和RAB指派成功率联合起来一起表征接通率。 RRC连接建立成功率反映RNC或者小区的UE接纳能力,RRC连接建立成功意味着UE与网络建立了信令连接。RRC连接建立可以分两种情况:一种是与业务相关的RRC连接建立;另一种是与业务无关(如位置更新、系统间小区重选、注册等)的RRC连接建立。前者是衡量呼叫接通率的一个重要指标,其结果可以作为调整信道配置的依据。后者可用于考察系统负荷情况。 RAB建立是由CN发起,UTRAN执行的功能。RAB是指用户平面的承载,用于UE和CN之间传送语音、数据及多媒体业务。UE首先要完成RRC连接建立然后才能建立RAB,当RAB建立成功以后,一个基本的呼叫即建立,UE进入通话过程。 1.3RRC建立失败分析调整 RRC连接建立失败的原因有很多种,总体来说和无线环境关系较为密切。UE 处于空闲模式下,当UE的非接入层请求建立信令连接时,UE将发起RRC连接建立过程。每个UE最多只有一个RRC连接。当RNC接收到UE的RRC Connection Request消息,由其无线资源管理模块RRM根据特定的算法确定是接受还是拒绝该RRC连接建立请求,如果接受,则再判决是建立在专用信道还是公共信道。对于RRC连接建立使用不同的信道,则RRC连接建立流程也不一样。RRC连接建立全部定义建立在专用信道上 RRC建立失败的原因可以通过RRC统计原因的counter来确定,从话统统计

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

最全的网络故障案例分析及解决方案

第一部:网络经脉篇2 [故事之一]三类线仿冒5类线,加上网卡出错,升级后比升级前速度反而慢2 [故事之二]UPS电源滤波质量下降,接地通路故障,谐波大量涌入系统,导致网络变慢、数据出错4 [故事之三]光纤链路造侵蚀损坏6 [故事之四]水晶头损坏引起大型网络故障7 [故事之五] 雏菊链效应引起得网络不能进行数据交换9 [故事之六]网线制作不标准,引起干扰,发生错误11 [故事之七]插头故障13 [故事之八]5类线Cat5勉强运行千兆以太网15 [故事之九]电缆超长,LAN可用,WAN不可用17 [故事之十]线缆连接错误,误用3类插头,致使网络升级到100BaseTX网络后无法上网18 [故事之十一]网线共用,升级100Mbps后干扰服务器21 [故事之十二]电梯动力线干扰,占用带宽,整个楼层速度降低24 [故事之十三]“水漫金山”,始发现用错光纤接头类型,网络不能联通27 [故事之十四]千兆网升级工程,主服务器不可用,自制跳线RL参数不合格29 [故事之十五]用错链路器件,超五类线系统工程验收,合格率仅76%32 [故事之十六]六类线作跳线,打线错误造成100M链路高额碰撞,速度缓慢,验收余量达不到合同规定的40%;34 [故事之十七]六类线工艺要求高,一次验收合格率仅80%36 第二部:网络脏腑篇39 [故事之一] 服务器网卡损坏引起广播风暴39 [故事之二]交换机软故障:电路板接触不良41 [故事之三]防火墙设置错误,合法用户进入受限44 [故事之四]路由器工作不稳定,自生垃圾太多,通道受阻47 [故事之五]PC机开关电源故障,导致网卡工作不正常,干扰系统运行49 [故事之六]私自运行Proxy发生冲突,服务器响应速度“变慢”,网虫太“勤快” 52 [故事之七]供电质量差,路由器工作不稳定,造成路由漂移和备份路由器拥塞54 [故事之八]中心DNS服务器主板“失常”,占用带宽资源并攻击其它子网的服务器57 [故事之九]网卡故障,用户变“狂人”,网络运行速度变慢60 [故事之十]PC机网卡故障,攻击服务器,速度下降62 [故事之十一]多协议使用,设置不良,服务器超流量工作65 [故事之十二]交换机设置不良,加之雏菊链效应和接头问题,100M升级失败67 [故事之十三]交换机端口低效,不能全部识别数据包,访问速度慢70 [故事之十四]服务器、交换机、工作站工作状态不匹配,访问速度慢72 第三部:网络免疫篇75 [故事之一]网络黑客程序激活,内部服务器攻击路由器,封闭网络75 [故事之二]局域网最常见十大错误及解决(转载)78 [故事之三] 浅谈局域网故障排除81 网络医院的故事 时间:2003/04/24 10:03am来源:sliuy0 整理人:蓝天(QQ:) [引言]网络正以空前的速度走进我们每个人的生活。网络的规模越来越大,结构越来越复杂,新的设备越来越多。一个正常工作的网络给人们带来方便和快捷是不言而喻的,但一个带病

浅谈小区用电负荷设计及计算

浅谈小区用电负荷设计及计算 摘要:因住宅用电负荷指标及需要系数的取值不同,势必影响了整个小区总的计算负荷值,从而不但影响了变压器容量的合理选择,以及影响了其配电设施、建筑占地面积的合理选择。造成这些问题当然一方面有电气设计人员的主观因素,如有的设计人员责任心不强,经验不足等,有的是选值时趋于保守,无视用户投资将其值选高,另一方面则主要是当前设计规范中存在的缺陷。因此,如何根据福州城市自身特点,选择一个科学的、能真实反映福州实际情况的住宅用电负荷指标和需要系数,对当前小区电气设计是有十分重要的现实意义和工程价值。 关键词:用电负荷计算负荷计算方法 1、计算负荷及计算方法 1.1 计算负荷 供电系统要能够在正常条件下可靠地运行,则各个供电设施(包括变压器、保护开关、供电线缆)必须选择得当,因此有必要对供电系统的电力负荷进行统计计算,通过统计计算求出的用来按发热条件选择供电系统中各元件的负荷值,称为计算负荷。计算负荷是一个假想的持续负荷,在供配电系统中以30min的最大计算负荷作为选择电气设备的依据。一些资料有时将计算负荷记为p30,本文中为了记忆方便将计算负荷全写为pjs。 1.2 负荷计算方法

负荷计算方法有多种,主要有需要系数法、二项式法、利用系数法、单位面积法、单位指标法以及单位产品耗电量法等。 (l)需要系数法:计算公式为pjs=kxσpn,kx为需要系数,σpn 为用电设备组所有设备的额定容量之和。这种方法计算比较简便,目前在民用建筑中应用很广泛。 (2)利用系数法:采用利用系数求出最大系数求出最大负荷的平 均值,再考虑设备台数和功率差异的影响,乘以与有效台数有关的最大系数得出计算负荷。这种方法计算进程稍繁,目前利用系数的有关资料均为工业方面,故在民用建筑方面应用很少。 (3)二项式法:计算公式为pjs=bpn+cpx,b,c为二项式系数,pn 为用电设备组所有设备的额定容量之和,px为x台最大容量的设备总容量。二项式法主要于工业上用电设备台数较少、各台设备容量相差悬殊时应用。 2、小区用电负荷设计及计算 而且随着改革开放的深入和市民生活水平的提高,家用电器的普及率大大的增加,尤其空调的使用,大为增加,家用的全套音响、微波炉、热水器等大容量电器也日益增长,说明了城市中心城区居民的生活用电每年都以18%以上速度递增,而且逐年增长率都加大,这必然引起居民用电负荷的增长。 (1)住宅小区的供电方案。住宅小区内住户的负荷等级按《供配电系统设计规范》 (gb50052一95)第2.0.1条一般是属于三级负

Volte丢包率优化案例

V o l t e丢包率优化案例 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Volte丢包率优化方案 一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显着地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN 侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图: 当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。

1、 PDCP层参数优化 PDCP是对分组数据汇聚协议的一个简称。它是UMTS中的一个无线传输协议栈,它负责将IP头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS)设置的无线承载的序列号。 涉及参数:pdb、pdboffset、aqmmode、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization 参数优化原理:通过修改相关参数,延长或缩短PDCP层的丢包定时器,从而控制丢包具体步骤如下 参数优化建议:

小区用电负荷计算

小区用电负荷计算 1. 小区负荷计算(估算) 按《民用建筑电气设计规范》3.4.2.1.“在方案设计阶段可采用单位指标法;在初步设计阶段,宜采用需要系数法。” 应用单位指标法确定计算负荷Pjs(适用于照明及家用电负荷),即: Pjs=∑Pei×Ni(kW) 式中Pei——单位用电指标KW/户。 Ni——户数 应用以上方法计算负荷应乘以同时系数,即实际最大负荷(PM)。 PM=Pjs×η(式中η——同时系数,不同的住户η值不同) 我们建设的小区总户数为17000户,每户最大的用电负荷为6KW/户考虑,所以:Pjs=∑Pei×Ni=6 kW/户×17000户=102000(kW) 小区实际最大负荷PM=Pjs×η=102000(kW)×0.4=40800(kW)。 (η取0.4,η值越大,配电成本越高,电业局越高兴,建议当η取0.2时PM=20400(KW)或每户用电负荷按3KW/户考虑,PM=20400(KW)) 2. 选择配变容量 S=P∑÷cosφ(kVA) cosφ一般取值为0.8~0.9。 S=P∑÷0.85=20400÷0.85=24000(kVA),变压器总容量为24000(kVA),按此选择变压器。 3. 今年开发用地负荷计算(估算) 今年开发用地:职工安置用地66267㎡+补偿用地33133㎡=99400㎡ (公司总共开发用地780716㎡,总户数17000户,容积率按1.7计算,平均每户面积为78.0716㎡) 所以今年开发建设的建筑面积约为:99400㎡×1.7=168980㎡ 户数为:168980㎡÷78.0716㎡/户=2164(户) Pjs=∑Pei×Ni=6 kW/户×2164户=12984(kW) 今年开发用地最大负荷PM=Pjs×η=12984(kW)×0.4=5193.6(kW) S=P∑÷0.85=5193.6÷0.85=6110.12(kVA),变压器总容量为6110.12(kVA),按此选择变压器。

精品案例_SIP487的VoLTE未接通处理

SIP487的VoLTE未接通

目录 一、问题描述 (3) 二、分析过程 (4) 三、解决措施 (7) 四、经验总结 (8)

SIP487的VoLTE未接通 【摘要】本文分析于4月24日出现的VoLTE未接通的工单,发现18:30到19:00期间RCU1197设备产生大量未接通,对数据进行详细分析为设备吊死导致。 【关键字】VoLTE 未接通 SIP 吊死 【业务类别】优化方法 一、问题描述 问题发生过程中,终端由宁芜高速向南京行驶,行驶到南京境内后再由宁芜高速返回马鞍山,RCU1197设备4月24日18:30至19:00产生大量未接通事件,且未接通为全程存在。 图1:未接通事件截图

二、分析过程 图2:18:31:28起呼的未接通情况 核查相关基站,基站无告警和故障,底噪正常,负荷水平也较低,查询扇区性能指标,无线接通率和掉话率正常,无明显波动和异常。 图 图3:未接通占用扇区性能指标情况 问题数据未接通事件较多,选取18:31:28起呼的未接通事件进行分析。18:31:28.230进行起呼,占用MA-市区-昭明派出所-ZFTA-443830-51,RSRP-97dBm,SINR在10dB,信号良好。

图4:VoLTE信令流程 图5:18:31:28未接通的事件和信令详情 对呼叫流程和信令进行详细分析,18:31:28.230发起起呼后,18:31:38.351发起IMS_SIP_INVITE->Request,18:31:38.398收到Try100信令,随后在18:31:48.136收到INVITE 183消息,并在18:31:48.202上报PRACK,在18:31:48.234收到PACK200,。然后在18:31:58.198上报SIP_CANCEL信令,上报原因为IMS_SIP_INVITE 487。

计算家庭用电负荷

计算家庭用电负荷 随着经济发展,人们的生活水平提高,家庭用电负荷不断增加,特别是大功率家用电器的使用,提出了如何计算家庭用电负荷问题。 70年代末以前设计的住宅楼,按每平方米建筑面积2瓦标准设计供电设施,主要用于照明。两居室用户的用电量不超过110瓦,三居室用户不超过140瓦。80年代,按每平方米建筑面积10瓦标准设计供电设施,两居室用户的用电量不超过550瓦,三居室用户不超过700瓦。90年代,按每平方米建筑面积25瓦标准设计供电设施,两居室用户的用电量不超过1400瓦,三居室用户不超过1700瓦。现行国家标准规定,一般两居室住宅用电负荷为4000瓦,相应的电能表规格为10(40)安,进户铜导线截面不应小于10毫米2,空调用电、照明与插座、厨房和卫生间的电源插座应该分别设置独立的回路。除了空调电源插座外,其他电源插座应加装漏电保护器,卫生间应作局部等电位连接。由上可知,住宅楼按照所建年代不同,供电容量也不同。目前,由于住户的用电容量不断增加,因此,加重了早先修建的住宅搂人户导线、开关电器的负担,熔丝容易超载烧断,或者自动空气开关经常跳闸断电。加之个别用户不遵守用电规则,用铜导线或铁丝代替熔丝,造成了导线过热,绝缘损坏,发生短路,很容易引发火灾。 考虑到近期和远期用电发展,每户的用电量应按最有可能同时使用的电器最大功率总和计算,所用家用电器的说明书上都标有最大功率,可以根据其标注的最大功率,计算出总用电量。 目前市场上的大功率家用电器,大致分为电阻性和电感性两大类。电阻性负载的家用电器以纯电阻为负载参数,电流通过时会转换成光能、热能,如白炽灯、电水壶、电炒锅、电饭煲、

无线设备故障案例分析

故障案例分析 RBS2000 站 1、 CF 类 a、 CF.FC=2A/8 一般为天馈线的发射部分故障或CDU、CU 故障;(此时TX 并没有闭塞,VSWR 在1.8 范围内,当天馈线的VSWR 超过2.2 时,TX 闭塞,表现为TX.FC=1B/4); f、 CF.FC=2A/23,一般为FAN 或FCU 故障; g、 CF.FC=2A/26,一般为温感器故障; i. CF 2A 33,分集接收故障 i、 CF.FC=2A/41,一般为TRU 掉电或在拆走TRU 后没有更改IDB 数据所致; j、 CF.FC=2A/42,一般为ECU 故障; 2、TRXC 类 a、 TRXC.FC=1A/13,一般为载波坏,并有红灯告警; b、 TRXC.FC=1B/0,一般为CU 故障,更换OK; 3、TX 类 a、 TX .FC=1B/4,一般为天馈线故障,并载波的TX 自动闭塞(此时的发射天线的VSWR 肯定高于2.2); 4、TF 类 a、 TF .FC=1B/1,一般为DXU 故障,此时应考虑更换DXU 了; 案例1: 故障现象:基站GSM 900 CELL 1 TX 1B4,引起整个小区全阻。本小区配置:CDU-D

型,1个机架6个载波配置。 故障分析:TX 1B4故障是由于TX天线VSWR超过门限值引起的,可能原因:TX天馈线有故障或断开或接头进水,CDU有故障,也可能是TRU/CU的测量接收机故障。 故障处理:首先判断天馈线是否有问题,用Sitemaster仪表测量本小区的2根天馈线,根据测量发现这2根天馈线的驻波比均正常,都在1.2左右,这说明天馈线是正常的,应该是硬件问题; 之后开始检查硬件,复位DXU设备,观察设备指示灯,发现第2个CU设备有红灯亮,马上更换此CU设备,换好CU设备之后,叫BSC开通载波,整个小区都恢复正常。 故障总结:一般在处理TX 1B4故障时,特别是此故障引起整个小区全阻的情况,首先判断天馈线是否正常,是否进水,若天馈线正常,再检查CU是否正常,就算一个CU设备坏,都会引起整个小区全阻的情况。 案例2: 故障现象: 基站GSM 1800 CELL3 CF I2A24,2A36,引起后面2个载波无法通信。本小区配置:CDU-C+型,1个机架6个载波配置。 故障分析: CF I2A24,2A36故障是由于TRU或CDU有故障引起。 故障处理: 首先判断载波是否有问题,跟别的小区对换载波之后,CDU还是无法调谐到,CDU指示灯不亮或亮红灯;之后开始更换CDU硬件,复位相对应的载波设备,叫BSC开通载波,载波开通正常。 故障总结:

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

住宅用电负荷需要系数选择表

住宅用电负荷需要系数选择表 1.表中通用值系目前采用的住宅需用系数值,推荐值是为计算方便而提出,仅供参考。 2.住宅的公用照明及公用电力负荷需要系数,一般可按选取。 3.本表摘自《全国民用建筑工程设计技术措施·电气》(2003)。 、 规划单位建设用地负荷指标 } 注: 1.城市建设用地包括:居住用地、公共设施用地、工业用地、仓储用地、对外交通用地、道路广场用地、市政公用设施用地、绿化用地和特殊用地八大类。不包括水域和其它用地。 2.超出表中三大类建设用地以外的其它各类建设用地的规划单位建设用地负荷指标的选取,可根据所在城市的具体情况确定。 3.ha——公顷。

规划单位建筑面积负荷指标 结合当地实际情况和规划要求,因地制宜确定。 各类建筑物的用电指标 注:表中所列用电指标的上限值是按空调采用电动压缩机制冷时的数值。当空调冷水机组采用直燃机时,用电指标一般比采用电动压缩机制冷时的用电指标降低25—35VA/m2。 说明: 1.“规划单位建设用电、建筑面积负荷指标”仅可用于规划设计阶段,该表摘自于《城市电力规划规范》GB50293—1999。 2.单体建筑物方案设计时,可采用本图集“各类建筑物的用电指标”表进行负荷估算。该表摘自《全国民用建筑工程设计技术措

施·电气》(2003)。 有线电视网的光节点,可以覆盖的用户数在800~2000,由于电视普及率大大高于电话普及率,光节点覆盖半径在1km范围,就可以拥有大量的用户。同轴电缆每500m设置一级放大器,最多可以达4级,由于同轴电缆的每公里造价比铜缆贵,同轴电缆的长度也不宜太长。 对于光节点的覆盖户数,目前业界的一种倾向认为500户一个光节点为标准。这实际上是国外的一种经验模式,而国内城市一般人口密度高、住宅密度大,如果按500户一个光节点规划设计,其费用投入将十分巨大。我们认为在现阶段根据住宅片区地理情况及用户经济情况的不同,光节点之下三级放大器级联,覆盖半径左右、覆盖户数1000~2500户左右较为适宜。对于用户经济条件好、知识层次高的住宅片区,片区规划时可将光节点所带的用户数设计得少一些;对于城郊地段可将光节点所带用户数设计得多一些。随着网络系统的发展,待时机成熟时,再按每个光节点平均500户的规模逐渐拆分。 对于用户数较多的小区,随着多功能业务的逐渐开展,可在光站内部选择安装一个甚至两至四个反向光发射模块。这样网络结构基本不变,表面上看光节点覆盖的户数不变,而实际上回传通道一分为二,不仅使反间汇聚噪声一分为二,而且反向带宽也扩展了一倍。

毕业论文基站故障维护及实例分析

基站故障维护及实例分析 摘要现代人的生活中,已经很难离开移动通信技术,而移动基站作为通信顺畅的保障,基站设备的维护和管理就显得异常重要。如何保证移动通信网络的网络质量已成为通信网络中比较重要的部分。除了通信技术的越来越完善、通信设备的越来越成熟,移动基站在移动通信过程中起到了基础性和保证性的作用。本文从移动基站的维护方面入手,论述了基站维护的一般步骤,并简要介绍了故障定位的常见方法,主要研究基站故障的处理方法,包括通话类故障的处理、网络类故障的处理、加载类故障的处理,基站报警故障等故障的分析处理,最后并列举了基站维护实例。 关键词移动基站;设备;故障维护;管理 1引言 随着网络时代的的飞快发展,移动通信进入了高速发展的通信时期,因此,移动基站的维护对于网络发展来说,显得越来越重要,尤其是随着移动基站数越来越多,网络越来越庞大,基站维护是网络运行的重要保障基础。为了保证设备正常运行,机房装有许多配套设备,这些配套设备必须24小时监控,任何一种异常情况都必须得到及时有效地处理。否则,将对机房中各系统的正常工作带来严重危害,后果不堪设想。为了能保证设备的正常运转,提升网络指标,这就需要我们维护人员对这些基站进行定期或不定期的维护。基站作为移动通信的重要组成部分,它是不可或缺的,通信技术的不断更新,需要基站也要做出相应的变化,基站是网通信的基础,因此,保证基站的正常运行是保证整个通信顺利进行的保障。本文就以无线基站的故障维护进行介绍。 2基站维护步骤 2.1基站维护的一般步骤 基站维护的一般步骤分为四步,即故障信息收集,故障分析,故障定位,故障排除四个步骤,如图2-1所示。 图2-1系统维护的步骤 在故障处理过程中,必须遵守所在地的安全规范和相关的操作规程,否则可能会导致人身伤害或设备损坏。基站维护的一般要求为只有经过BSS系统培训的,掌握BSS系统的理论基础、熟悉BSS设备的原理和组网的专业人员才能对设备进行相关操作。 基站维护的设备操作的注意事项要求维护人员严格遵守设备的操作规范,在接触设备

机械故障诊断的发展现状与前景

《机械故障诊断技术》读书报告 MAO pei-gang 南阳理工机械与汽车工程学院 473004 动平衡诊断案例分析综述 Diagnosis of dynamic balance Case Analysis were Review 摘要 简要阐述组动平衡故障诊断中所使用的现代测试与分析技术。通过五个动不平衡故障的诊断与处理实例,指出了波德图、频谱图等现代分析技术对于组动平衡故障诊断的价值和意义;总结了基于现代测试与分析技术的动平衡故障的主要特征。;验证了影响系数法对于动平衡故障处理的准确性及实用性。对于提高动平衡故障诊断的准确性及其精度具有推广和借鉴意义。 关键词:动平衡故障诊断振动分析 Abstract The modern measuring and analyzing technologies applied in the dynamic balance fault diagnoses are described briefly。In view of five dynamic unbalance fault diagnoses and treatments。the significance and purpose of the modern analyzing technologies such as Bode Plot,Spectrum Plot for the dynamic balance fault diagnoses are put forward,and its characteristics based on testing and analyzing technologies are summarized.The accuracy and practicability of the influence coefficient method for its treatment are proved.The instructions and experiences of improving the

住宅小区用电负荷计算方法(原创)

住宅小区用电负荷计算方法(原创) 一、负荷等级概念: 1.一类建筑用一级负荷双电源、二类建筑二级负荷双回路、三 类建筑三级负荷。 2.对于住宅类按层数分几类几级负荷比较实用,19层以上一类 建筑一级负荷、11~18层二类建筑二级负荷、其它为三类建筑 三级负荷。 3.一二类负荷中消防、电梯、应急照明、污水泵、送排风机、 监控室、电话网络机房等为一二级负荷而其它负荷为三类负荷。 二、对于上述一二类负荷(小区内公共负荷也集中由专用变取)应由专用变压器带而不是与住宅负荷变压器合用,并设置两台变压器互切备用,按规定这样备用的两台变压器当中每一台都应能带所有的一二类负荷,但是实际当中没有必要,每台变压器稍多留(甚至就正常计算)出来一些就可以了。如二类负荷总功率是900KW,那设两台专用变压器每台就带450KW(这里不考虑功率因数,需要系数,就是举个例子)如果是普通负荷我可以选两台500KVA的变压器,但现在我要多留出一些,我选两台630KVA变压器,而每台多留出来的180就可以达到部分二类负荷故障时备用的目的(因为不可能所有的二类负荷所在线路同时出现故障,再者消防设备基本不用而用的时候可以强切非消防应急设备负荷。此观点如果先辈们对此观点有不同意见,希望一起讨论。 三、两种计算方法:1)单位面积指标法;2)需要系数法;

四、两种方法的出处:《全国民用建筑工程设计技术措施.电气2009版》《全国 民用建筑工程设计技术措施节能专篇.电气2003版》《民用建筑电气设计 规范》、 五、两种方法应用的前提:是不走配套费,而是按实结算(回迁、经济适用房、棚改区、别墅类项目等),如果走配套费,电业局爱算多大算多大,反正都是80~90元每平的费用里出! 六、两种方法的概念: 1.单位面积指标法:依据建筑不同用电类别、用途而在经验表格中查相应的单位面积用电指标然后*建筑的面积。S=用电指标*建筑面积。住宅类、办公类、商业类等由下表可估算出变压器的容量及小区的负荷强度,此法用于估算,如对于需要进行二次装修设计而现无准确的设备容量的大型售楼处 、超市等向电业局电力报装估算时用。2.需要系数法:用在初步设计或施工图阶段,单台设备需要系数为1,多台设备时需要系数就会小于1,这样就可以把带多台设备的开关或电缆规格降低等级,从而节省资源。各楼号用电负荷、公共设备用电负荷都已经有了。这时可以累加各负荷额定功率再与需要系数表中对应负荷的系数相乘而得到相应的容量。但注意应用时要注意范围:是对同一线路、配电箱、

EPON设备应用及故障案例分析

EPON设备应用及故障案例分析 文章对EPON设备及其应用进行了阐述并对中兴EPON终端设备9806的功能特点及产品出现的故障案例进行了分析。 标签:EPON设备;故障;9806功能特点 1 EPON 技术的概述及应用 光纤到户(FTTH)宽带接入是固定宽带接入的最终形式,对于建筑物来讲,有两种方式可以将光纤连接到用户:第一种是将每个家庭或大楼直接用光纤连接,第二种是利用光信号分支的分光器及一根光纤的无源光网络(PON)技术,提供多用户光纤到家服务。PON系统以无源光作为传输介质,其特点是成本及维护费用低、业务透明度好,系统可靠性高,所以被看作未来固定宽带接入的趋势,其包括EPON、BPON、CPON等。从无源光网络的架构体系的基础发展而来的EPON采用了扩展的具有低成本、业务能力强等特点的以太网数据链路层协议。结构如下图1: 图1 EPON结构图 业界对该概念的提出高度关注,第一公里以太网联盟也发布了EPON的技术规范IEEE 802.3ah。由于EPON产品成熟度及价格相对便宜,其已成为非常受迎的FTTH技术,特别是EPON基于千兆端口将单根光纤的接入速率提高到1000Mbps,目前已成为最受欢迎的光纤接入技术。 EPON设备由三部分构成:OLT设备(光线路终端)、POS设备(无源分光器)及ONU设备(光网络单元)。光线路终端放在中心机房,光网络单元与其合体放在网络接口单元附近,光线路终端是一个交换机或路由器,向上提供广域网接口,向下提供接口连接PON。 针对用户需求不同,EPON的应用有以下几种模式: 1.1 光纤到路边(FTTC)模式 一般将这种模式应用于普通住宅,户外安装无源分光器,路边安装ONU。一套OLT让小区大量的用户受用,因为EPON系统有利于对用户的需要平滑升级。 1.2 光纤到大楼(FTTB)模式 由于有些大楼不容易布网张,将无源分光器放在户外,楼内安装ONU。运用EPON+VDSL系统,通过ONU及VDSL的设备将宽带接入和PSTN业务利用电话线给客户提供。

电气设备经典故障案例分析与处理讲课教案

电气设备经典故障案例分析与处理 (培训讲义涂永刚) 一、供配电系统经典故障: 案例1:一二线煤磨变压器跳停故障 1、故障经过:2010年8月7日,当班操作员反映一二线煤磨系统掉电,电气人员来到电力室发现煤磨变压器跳停,高压柜分闸,综保显示故障信息‘4’,即速断,经仔细检查发现变压器下属设备低压柜处一二线煤磨照明空开上端保险进线线路短路损坏所致,随即将变压器所属高压柜退出停电挂牌,对损坏线路进行更换,并对整排低压柜母排进行了清灰处理,随即恢复变压器送电; 2、原因分析:①保险上端接线松动,接触电阻增大发热,是致使线路短路的原因之一;②照明线路空开下端负载分布不均,其中一相电流很大,致使保险上端发热损坏,导致短路。 3﹑防范措施:①对电力室内所有保险和接线情况进行全面检查、梳理、整改,避免松动现象再次出现;②对电力室内所有照明电源三相电流分布情况用钳形电流表进行测量,避免电流分布不均,且电气人员在处理照明故障时禁止随意调换电源。 案例2:海螺A线窑尾窑尾控制系统掉电 1、故障经过:2010年1月25日下午1:30分,中控操作员发现A线窑跳停,整个窑尾系统无信号,随即通知电气相关人员检查。电气人员接到电话后在现场发现PC柜模块全部失电,检查PC柜UPS 电源进线没有电,判断为UPS电源断路器故障,到B线原料电力室检查发现去A线窑尾电力室的断路器已经分断。现场拆掉负载,用摇表测量后确认电缆有一相对地,判断为从UPS去PC柜的电源线短路。随后加装临时电源,对PC柜进行了送电恢复生产。26日在对电缆沟抽水后进行电缆检查,电缆沟中间发现有接头,检查完好。随后在A线原料电缆沟出口处发现潜水泵下面的电缆皮损坏,铜丝

小区用电负荷计算

小区用电负荷计算 作者: aluxixi 时间: 2011-07-28 点击: 36 次浏览 某高层用电负荷估算 一、相关资料: 建筑面积:60000㎡;地址:新乡市 设计数量:583户;设计高度:28层 电地暖设计:<80W/㎡且按建筑面积70%铺装; 二、资料分析: 总建筑面积60000㎡(除办公用部分面积共计583户,平均每户建筑面积100㎡左右) 三、一般通用设计参与数据及计算: (一)智能小区每户用电标准值(KW); 1、气象区划分: 一类指最热月(7月)最高平均气温<25℃的地区; 二类指最热月(7月)最高气温平均28~30℃的地区; 三类指最热月(7月)最高平均气温>30℃的地区; 2、住宅划分:

普通住宅相当于建筑面积75㎡以下的住宅,高档住宅相当于建筑面积120㎡以上的豪华住宅,介于两者之间的为中档住宅。 3、对于高层住宅,每户应增加0.6KW作为电梯及生活、消防水泵、公用照明、事故及应急照明等智能化管理的用电负荷。 4、住宅综合功率因数COSΦ取0.8~0.9,住户用电需要系数取0.5~0.6。 (二)、依据上述通用设计标准,结合本高层建筑,实际情况取其中间值进行计算: 1、小区住户用电负荷:(75㎡>102㎡>120㎡)取8KW/户; 2、住宅公共用电负荷:0.6KW×583户=350KW; 3、住户总用电负荷为:8KW×583户=4664KW; 4、合计总用电负荷为:4664+350=5014KW; 5、建筑供电变压器容量:S=5014/COSΦ(0.85)=5899KVA 5899×0.55=3244KVA 该高层建筑用电负荷3244KVA(选用2台1600KVA变压器) 四、家用电器设施功率基本情况: 1、洗衣机0.35-0.4KW 2、电视机0.1-0.2KW 3、组合音响0.1~0.3KW 4、空调 1.5~4.5KW 5、电饭锅0.8KW 6、排烟机0.2KW

无线路由器故障经典案例追踪分析

在企业环境下部署无线网络,方便了企业内部的移动办公。而无线路由器则是无线网络的核心组件,它的运行状态决定了无线网络的传输能力。正因如此,维护无线路由器,使其安全高效地运行是管理员首先要考虑的问题。 下面列举几个无线路由器的经典案例,希望对大家有所帮助。 案例1:无法登录无线路由器的设置页面进行路由设置 原因:排除硬件及其连接故障,主要是之前登陆时所创建的连接有误。 排除故障: 第一步:首先检查路由器与电脑的硬件无线连接情况,检查路由器LAN口上的指示灯是否正常。 第二步:如果计算机中装有防火墙或实时监控的杀毒软件,都暂时先关闭,然后将本机IP 地址设为与路由器同一网段,再将网关地址设为路由器的默认IP地址。 第三步:打开浏览器的Internet选项对话框,在连接选项中,如果曾经创建过连接则勾选从不进行拨号连接选项,点击局域网设置按钮,将已勾选的选项全部取消选中即可。 案例2:提示网络不通,连接错误 原因:硬件错误,连接故障及其无线网卡的设置都可能造成网络连接故障。 排除故障: 第一步:首先要检查的是连接配置上有无错误,在确保路由器电源正常的前提下查看宽带接入端,路由器上的指示灯可以说明宽带线路接入端是否正常,由说明书上可以辨认哪一个亮灯为宽带接入端及用户端,观察其灯闪亮状态,连续闪烁为正常,不亮或长亮不闪烁为故障。我们可以换一根宽带胶线代替原来的线路进行连接。 第二步:如果故障依旧,查看路由器的摆放位置与接收电脑的距离是否过远或中间有大型障碍物阻隔。这时请重新放置路由器,使无线路由器与接收电脑不要间隔太多障碍物,并使接收电脑在无线路由器的信号发射范围之内即可。 第三步:无线网卡的检查也必不可少,可以更换新的网卡并重新安装驱动程序进行调试,再网卡中点击查看可用的无线连接刷新网络列表后设置网卡参数,并再属性中查看有无数据发送和接收情况,排除故障。 提示:当然路由器自身的硬件故障也是导致线路不通的直接原因,但这并不是我们所能解决的范围,应及时联系厂商进行维修或更换。

相关文档
最新文档