遗传学第二版课后习题答案(1)

遗传学第二版课后习题答案(1)
遗传学第二版课后习题答案(1)

第2章孟德尔式遗传分析: 习题解

1 题解a:(1) 他们第一个孩子为无尝味能力的女儿的概率是1/8;

(2) 他们第一个孩子为有尝味能力的孩子的概率是3/4;

(3) 他们第一个孩子为有尝味能力儿子的概率是3/8。

b:他们的头两个孩子均为品尝者的概率为9/16。

2 题解:已知半乳糖血症是常染色体隐性遗传。因为甲的哥哥有半乳糖症,甲的父母必然是致病基因携带者,而甲表现正常,所以甲有2/3的可能为杂合体。乙的外祖母患有半乳糖血症,乙的母亲必为杂合体,乙有1/2的可能为杂合体,二人结婚,每个孩子都有1/12的可能患病。

3 题解:

a:该病是常染色体显性遗传病。

因为该系谱具有常显性遗传病的所有特点:

(1)患者的双亲之一是患者;

(2)患者同胞中约1/2是患者,男女机会相等;

(3)表现连代遗传。

b:设致病基因为A,正常基因a,则该家系各成员的可能基因型如图中所示

c:1/2

4 题解a:系谱中各成员基因型见下图

b:1/4X1/3X1/4=1/48

c:1/48

d:3/4

5题解:将红色、双子房、矮蔓纯合体(RRDDtt)与黄色、单子房、高蔓纯合体(rrddTT)杂交,在F2中只选黄、双、高植株((rrD-T-))。而且,在F2中至少要选9株表现黄、双高的植株。分株收获F3的种子。次年,分株行播种选择无性状分离的株行。便是所需黄、双、高的纯合体。

6 题解:正常情况:YY褐色(显性);yy黄色(隐性)。用含银盐饲料饲养:YY褐色→黄色(发生表型模写)因为表型模写是环境条件的影响,是不遗传的。将该未知基因型的黄色与正常黄色在不用含银盐饲料饲养的条件下,进行杂交,根据子代表型进行判断。如果子代全是褐色,说明所测黄色果蝇的基因型是YY。表现黄色是表型模写的结果。如果子代全为黄色,说明所测黄色果蝇的基因型是yy。无表型模写。

7 题解: a:设计一个有效方案。用基因型分别为aaBBCC、AAbbCC、AABBcc的三个纯合体杂交,培育优良纯合体aabbcc。由于三对隐性基因分散在三个亲本中。其方法是第一年将两个亲本作杂交。第二年将杂合体与另一纯合亲本杂交。第三年,将杂种自交,分株收获。第四年将自交种子分株行播种。一些株行中可分离出aabbcc 植株。

b:第一年将两个亲本作杂交。子代全为两对基因杂合体(AaBbCC或AaBBCc或AABbCc),表现三显性。第二年将杂合体与另一纯合亲本杂交,杂交子代有4种基因型,其中有1/4的子代基因型是AaBbCc。第三年,将杂种自交,分株收获。第四年将自交种子分株行播种。观察和统计其株行的表型和分离比。有三对基因杂合体的自交子代有8种表型,约有1/64的植株表现aabbcc。

c:有多种方案。上述方案最好。时间最短,费工最少。

8 题解:因为纯合体自交,子代全是纯合体,而一对基因的杂合体每自交一代,杂合体减小50%。杂合体减少的比例是纯合体增加的比例。所以,该群体自交3代后,三种基因型的比例分别为:

Aa:0.4 X(1/2)3 =0.05

AA: 0.55+(0.4-0.05)/2=0.725=72.5%

aa: 0.05+ (0.4-0.05)/2=0.225=22.5%

9 题解:a:结果与性别有关。

b:是由于X染色体上的隐性纯合致死。

c:将F1中的202只雌蝇与野生型的雄果蝇进行单对杂交。将有一半的杂交组合的子代的性比表现1:1。将有一半的杂交组合的子代的性比表现2雌:1雄。

10 题解:亲本基因型:AaRr;Aarr。

11 题解:两对基因的自由组合。A,a基因位于常染色体,P,p位于X染色体上。亲本红眼雌果蝇的基因型为:AApp亲本白眼雄果蝇的基因型为:aaPY

12 题解: 已知: F2: 118白色:32黑色:10棕色.根据F2的类型的分离比,非常近12:3:1。表现显性上位的基因互作类型。经c2检验,P>0.5,符合显性上位的基因互作。

13 题解a: 根据题意,F2分离比为9紫色:3绿色:4兰色,是两对自由组合基因间的互作。其中一对基因对另一对基因表现隐性上位。两杂交交本的基因型是:

AABBEECCDD X aabbEECCDD

或AAbbEECCDD X aaBBEECCDD

b: 根据题意,F2分离比为9紫色:3红色:3兰色:1白色。因为1/16白色植株的基因型是aaBBee. 因此两杂交亲本的基因型是:

AABBEECCDD X aaBBeeCCDD

或AABBeeCCDD X aaBBEECCDD

c: 根据题意,F2表现:13紫色:3兰色,是D基因突变对途径2产生抑制作用.因此两杂交亲本的基因型是: AADDCCBBEE X aaddCCBBEE

或AAddCCBBEE X aaDDCCBBEE

d: 根据题意,F2表现9紫色:3红色:3绿色:1黄色。由于F2中有1/16的黄色,其基因型只能AAbbee。因此两杂交亲本的基因型是:

AABBEECCDD X AAbbeeCCDD

或AABBeeCCDD X AAbbEECCDD

14 题解:由于F2中有95株紫花,75株白花。分离比很接近9:7,表现两个显性基因互补。F1的基因型为AaBb,开紫花。F2中有9/16的A_B_ ,开紫花,有3/16A_bb3/16aaB_1/16aabb全部开白花。两基因在生物合成途径中的互作如下:

A基因B基因

↓↓

前体物(白色)→A物质(白色)→紫色素

第3章连锁遗传分析与染色体作图: 习题解

2 解: 据题意: P AB/ab X ab/ab,两基因间的交换值是10%,求:子代中AaBb比例?

两对杂合体与双隐性纯合体测交,子代AaBb是来自AB与ab配子的结合,AaBb的比例为:

(1-0.1)/2=0.45。

3 题解:据题意: EEFF与eeff杂交,F1 EeFf与eeff进行测交,测交子代出现:EF2/6、Ef1/6、eF)1/6、ef2/6。

测交子代表现不完全连锁特点: 重组值=1/6+1/6=1/3=33.3%

4 题解: 据题意: HIX hi→1/2 HI; 1/2 hi .子代只有亲组合,无重组合,说明两基因表现完全连锁。

5 题解: 据题意: M: 雄性可育; F:雌性不育

m: 雄性不育; f:雌性可育

雌: 雄=1:1; 雌雄同株极少

a: 雄性植株的基因型: MF/mf; 两基因紧密连锁

b: 雌性植株的基因型: mf/mf

c: MF/mf X mf/mf →1 MF/mf :1 mf/mf

d: 两基因紧密连锁,杂合体雄株偶尔发生交换,产生交换型配子。

6题解:据题意,两基因连锁,两基因间的交换值=20%。

7 题解:根据题意:a-b重组值为10%,

b-c重组值为18%,

并发系数为0.5。

8 题解:据题意用中间位点法确定基因顺序:v b y

v-b交换值:(74+66+22+18)/1000=18%

b-y交换值:(128+112+22+18)/1000=28%

染色体图:v 18 b 28 y

9 题解:据题意:

a:三个基因位于X染色体上;

b:杂合体雌性亲本的两条X染色体图为:X+ Z+Y

X Z Y+

三个基因的顺序和图距为: X 6 Z 7 Y

C:并发系数为0.24。

10 题解:a 他们孩子中,三个性状都像火星人的概率为34%;

b 他们孩子中,三个性状都像地球人的概率为34%;

c 他们孩子中,三个性状是火星人的耳朵和心脏,地球人的肾上腺的概率为1.5%;

d 他们孩子中,三个性状是火星人的耳朵;地球人的心脏和肾上腺的概率为6%。

11 题解:据题意,

a 无干涉时: 自交子代中约有5个为abc/abc;

b 无干涉时: ABc、abC两种类型各有30个;

ABC、abc两种类型各有70个;

AbC、aBc两种类型各有120个;

Abc、aBC两种类型各有280个。

C 干涉=0.2时: ABc、abC两种类型各有24个;

ABC、abc两种类型各有76个;

AbC、aBc两种类型各有126个;

Abc、aBC两种类型各有276个。

12 题解:据题意分析,III4的儿子患血友病的概率为5%,Ⅲ5的儿子患血友病的概率为45%。

13 题解:据题意 a 两F1杂交,后代中有3.36%的llhh; b 两F1杂交,后代中有18.28%的Llhh。

第4章基因精细结构的遗传分析: 习题解

2 题解:∵因为基因是一个功能单位,只有不同基因的两个突变型能发生互补。同一基因的两个突变是不发生互补作用的。∴a+/b+如有互补作用,表明a和b具有不同功能,属于不同基因。

a+/b+如没有互补作用,表明a和b缺乏相同功能,a和b属于同一基因内不同位的突变。

3 题解:因为脉孢菌自身不能合成生物素,而青霉菌自身能合成生物素。

4 题解:据实验结果: 1、2、3、4、5、6、8突变体间都不能互补,应属于同一顺反子。

1、2、3、4、5、6、8都能与7的反式杂合体发生互补,表明7属于另一个顺反子。

所以his的8个突变位点属于两个顺反子。

5 题解:据反式杂合体在基本培养基上的生长情况,8个突变型属4个顺反子。1、2,3与4,5与6,7与8各属一个顺反子。

6 题解:据题中所给出的独立基因及其引起生长的物质分析,这些独立基因在这些物质的合成途径中的关系是:

7 题解:据题中给出的顺反子Y中的各种缺失突变体缺失的区段和10个点突变体间的重组结果分析表明,10个点突变的位点顺序是: 3 10 7 2 8 4 1 5 6 9

8 题解:据题意分析表明a与b是等位基因,b与c是非等位基因。

9 题解:a 突变体A、D可能是点突变。

突变体B、C可能是缺失突变。

b: 该突变在B缺失区外的C缺失区(如图)。

10 题据题意分析,9个缺失突变体可分为5个互补区。其

互补区域如下图所示。

11 题解: 据题意

a: (1)重叠基因能以较少的DNA序列,携带较多的遗传信息,提高遗传物质效率。

(2)有利于基因表达调控(如色氨酸操纵子中存在的翻译的偶联).

(3)基因的重叠部分,一个bp的改变,将引起几个基因的突变,不利生物的生存.使生物体的适应性减小.

b: 因为是一条DNA单链的同一片断,碱基顺序的数目和顺序相同,如果DNA链的极性确定的,就只有一种氨基酸顺序。如果DNA链的极性不确定的,就有两种氨基酸顺序。

c: 同一DNA双链,氨基酸顺序有:两种.

12 题解据题意a、b、c、d、e为为T4rⅡ的缺失突变。根据凡是能与缺失突变发生重组,产生野生型,其位置一定不在缺失区内,凡是不能与缺失突变发生重组产生野生型的突变,其位置一定在缺失区内的原理。据实验结果分析,5个缺失突变体缺失区段如图所示。

实验结果:分析结果:

a b c d e

1 + + - + +

2 + + - - -

3 - - + - +

4 + - + + +

13 题解: 据题意

a: 因为一个b的改变就可引起基因产生突变。所以,最小的突变子就是一个碱基或是一个碱基对。由1500b 组成的顺反子所含突变子数的最大限度是1500。

b: 这个数太高,因为存在简并密码.

第5章病毒的遗传分析: 习题解

2 题解:因为:C+与C两种噬菌体同时感染细菌,并在内复制,包装时约有一半噬菌体有C+蛋白质外壳,但包装有C基因的原故。

3 题解:据题意

a: m-r两基因相距12.84cM,r-tu相距20.81cM,

m-tu相距33.6cM。

b: 3个基因的连锁顺序是: m r tu

c: 并发系数为1.21,说明存在负干涉,即一个单交

换的发生,可促进邻近区域交换的发生。

4 题解:据题意:a-b-c三个基因连锁,其连锁顺序和图距是:

a 21.9

b 14.8 c

重组值两端两个基因(a-c)的重组值(27.2%)小于两单交换的重组值,说明两端两个基因间发生了双交换.

5 题解:据题a: 三个基因的顺序是:a c b 它们基因间距离不能累加的原因是两端两个基因间(a-b)发生了双交换,而两点试验不能发现双交换。

b: 假定三基因杂交,a b+ c x a+ b c+,双交换类型ab+c+,a+bc的频率最低。

c: 从b所假定的三因子杂交中,各种重组类型噬菌体的频率如下: a c+ b、a+ c b+ 分别为0.875%,

a c

b 、a+ c+ b+分别为0.625%, a c+ b+、a+

c b分别为0.125%。

6 题解:据题意分析,其7个基因顺序为:amA amC ts4 ts2 amB Ts3 Ts1

7题:据题意和基因互补的原理,5种突变分属于3个互补群: sus11与sus14属同一互补群;sus13与sus2属同一互补群;sus4单独是一个互补群。

8题:据题意:有突变型A、B、C,

A B C A

A - - -

B C

B - - +

由于A与B、C都不能重组,说明A的缺失部分最长,且缺失部位与B、C都有重叠。新突变体的位置不能确定:因为B、C的缺失与A的重叠部位不能确定。新突变体可在B的一端,也可在C的一端,还可在B与C 缺失部位之间。

9 题解:据题意两基因重组值为1.56%。

10题解:据题意

co-mi重组值=652/12324=5.3%

mi-s重组值=121/1270=9.5%

c-s重组值=39/1413=2.8%

c-mi重组值=159/2577=6.2%

11 题解:温和噬菌体有哪几种状态?决定因素是什么?

温和噬菌体有游离(裂解)和整合(溶源)状态。如l噬菌体有4大操纵子:阻遏蛋白操纵子;左向早期操纵子(OL);右向早期操纵子(OR)和右向晚期操纵子。l噬菌体的裂解生长与溶源化取决于两种阻遏蛋白cI和cro的合成。cI和cro蛋白都是阻遏蛋白。cI阻遏蛋白是一种lDNA阻遏物,能结合操纵子OL和OR,阻止OL和OR基因的转录。当cI的合成占优势时,建立溶源化状态。相反,cro蛋白合成占优势,没有cI蛋的合成,l进入裂解生长。

第6章细菌的遗传分析: 习题解

1 题解: 名词解释P163

2 题解: 据题意10/200=5%

3 题解: 据交换值愈大,两个基因在染色体上相距愈远的原理,三个两点杂交不能确定4个基因的顺序。排列顺序有四种可能:

ant ind trp his

ant trp his ind

ant ind his trp

ant his trp ind

4 题解: 据题意因F`pro和F`lac来自同一Hfr菌株A。说明pro和lac基因位于F因子插入位点的两侧。F`pro 和F`lac插入正常的细菌染色体形成双重proHfrB和双重lacHfrC。插入位点两侧都是pro和lac。HfrB和HfrC 在接合时,基因转移的方向取决于原F`原点。因为F`pro和F`lac来自同一Hfr菌株A,因此, HfrB和C的F因子的插入位点和转移基因方向相同。HfrB的pro基因比lac先转移。而HfrC则是lac基因比pro先转。

5题解:(1)recB的产物对降解有相当大的作用。因为没有recA的产物时,(recA- recB+)总使降解增加。相反,没有recB的产物时,(recA+ recB-)很少降解。(2)另一个基因(recA)可能是一种作用于操纵基因的调节物。

6 题解: 用lac+DNA转化lac-菌株后,在lactose-EMB形成的:

红色菌落:是供体菌lac+基因经转化进入受体菌形成的lac+转化子。

白色菌落:未被转化的受体菌lac-形成的菌落。

扇形边缘:是因供体菌的一条DNA单链重组到受体菌的DNA分子中, 形成了杂种DNA.经半保留复制, 形成lac+、lac-两种细菌。两种细菌在一起,一种能分解乳糖,生长快。一种不能分解乳糖,生长慢,就形成扇形菌落。

7题: 据题意

Hfr品系转移基因顺序和方向如图。

1BKARM

2DLQEOC

3OEQLDN

4MCOEQLDN

5 RAKBN

8题: 据题意

因为亲组合特别多,说明两基因连锁。

重组率=(a-b+)+(a+b-) X100% = 2.5%

a+b+

加a物质加b物质基本培养基

a-b+ a+b- a+b+

a+b+ a+b+

40 20 10

子代中:a+:20,占总数20%。

b+:40,占总数40%,说明a+后进入受体菌。

重组值= a+b- = 10/20=50%

a+b+ + a+b-

10题解: 据题意供体菌受体菌

trpC+ pyrF-trpA- →trpC- pyrF+ trpA+

转导子基因型后代数目

trpC+ pyrF- trpA- 279

trpC+ pyrF+ trpA- 279

trpC+ pyrF- trpA+ 2(双交换)

trpC+ pyrF+ trpA+ 46

三基因的顺序:trpC—trpA—pyrF pyrF-与trpC+共转率:(279+2)/606=0.46

trpA-与trpC+共转率:(279+279)/606=0.92

共转率与图距的关系:d=L(1-3√X)

pyrF与trpC的图距=10(1-3√0.46)

trpA与trpC的图距=10(1-3√0.92)

11题解: 据题意

Hfr gal+lac+(A)X F-gal-lac-(B)→F-gal+早,多;lac晚,少.

F+ gal+lac+(C)X F-gal-lac-(B)→F+lac+早,多;无gal+

从AXB中知: gal和lac位于F因子插入位点两侧,gal原点最近。

从CXB中知: C菌株是F因子从细菌染色体上错误切割下来,且带有细菌lac+的菌株F`lac。

将菌株A与B混合培养一段时间(不到90分钟)后,取混合液接种在lac-EMB上。紫红色菌落带有分解lac 的基因。将该菌落的细菌又与F-lac-str r B杂交。如该细菌是F-lac+ str r B,则无重组子产生。如该细菌F`lac+ str r B,则有较多重组子产生。

12题解: 据题意P158 表6-5

(1) trp-his:(418+3660+2660+107)/19965=34.3%

his-tyr:(685+418+107+1180)/17990=13%

trp-tyr:(685+3660+2660+1180)/20232=40.5%

(2) 它们的连锁次序: trp 34.3 his 13 tyr

第八章、遗传重组: 习题解

1 题(略)

2 题解: 简单的同源重组,发生在同源染色体的非姊妹染色单体之间。

3题解: RecA是细菌同源重组过程中所必须的蛋白质。RecA在细菌同源重组中的作用:

①NTP酶活性:水解A TP,促进联会;

②单链DNA(ssDNA)结合活性:结合ssDNA,保护它免受核酸酶的水解;

③DNA解旋酶活性:DNA双链解开成单链;

④促进DNA同源联会的作用。

4 题解: Holliday模型,发生单链交换以后的局部异源双链在细胞内的错配修复系统识别下将其中的一条链切除。前提:酶系统只选择性的切除两条异源双链中的一条,而不是随机切除一条链。

5 题解: 分析结果:三次转换,a1—1次;a2—0次;a3—2次。推测:a3离断裂位点最近,a1次之,a2最远。基因转换具有方向性,故可以确定三个位点的顺序为: (重组位点)a3—a1—a2。

6 题解: 分析杂交结果:A m1 m2+ B × a + + m3 b

单链一 A m1 m2+ B

单链二 A m1+ + b

单链三 a m1 m2+ B

单链四 a + + m3 b

A/a无变化;

m1和m3位点发生转化: + →m1; m3→+;

m2和B位点发生交换: m2/+交换;B/b交换

根据极化子模型:A/a—(重组位点)—m1 — m3— m2—B/b 前提:m1 、m3、m2 位于标记位点A/B 之间

7 题解: 同题4,单链交换以后选择(特异)性的修复两条异源双链中的一条单链。

8 题解: 交联桥易发生分支移动,使“χ”结构中的4条双链中非相邻的链解离。

解离后的4条单链容易发生交换两两互补,使原来的4条双链变成2条双链——比4条双链更加稳定。但完整的“8”结构不易解离。

9 题解: 由于Gly可以与Cys之间相互

替换,可推测Gly的密码子仅可能为

GGU或GGC,Asp可以替换为Ala进

一步证明了这一点,并且说明Ala的密

码子仅为GCU或GCC(见下图)。从各

氨基酸可能的密码子可以推测:Cys可

以与Asp重组形成Gly;也可以与Asp

之间重组形成Gly。但是Asp和Ala之

间不能重组形成Gly。

第十四章核外遗传: 习题解

2 题解: 核外遗传,植物叶片的颜色主要由质体,特别是叶绿体的多少来确定。叶绿体由细胞核和叶绿体自身的遗传物质共同控制,由于题中正反交的结果不同,应考虑叶绿体自身遗传物质的不同,所以是属于核外遗传的范畴。核外遗传与母性影响相区别:母性影响的本质来自核基因表达的蛋白,对子代最初的影响(持久的母性影响也是如此,不过一旦决定,以后再无法改变,如锥实螺螺口方向的遗传)。本题中涉及的是叶绿体,它在植物的生长发育过程中会不断的分裂、代谢、更新。

3 a. 全是放毒者,因为细胞质中有κ粒。注意核有三种基因型:KK、Kk或kk,只是kk不能持续维持κ粒的毒性,但最初的子代中是有毒性的。

b. 长时间结合产生的全是放毒者,核有KK、Kk或kk三种,都有κ粒;短时间结合既有放毒者(核仍然为KK、Kk或kk ,胞质来自放毒者,具有κ粒)也有敏感者(核KK、Kk或kk ,胞质来自敏感者,不具有κ粒)。

c.全是敏感者,核KK或kk,但都无κ粒。

d.结果与上(b)完全一样[**c中不会产生Kk的敏感者]。

4 题解: 核外遗传的特点:①正反交的结果不一致,往往只表现出母方的性状;②杂交的F2代中不表现出典型的孟德尔分离比;

③本质上控制性状的遗传物质(基因)存在于细胞质中。

5 题解: (1) 如果这个无意突变不影响内含子的剪接,这个突变对蛋白质的表达没有影响,因为突变位点位于内含子序列内,随着剪接过程被去除。

(2) 如果这个突变位点能够影响内含子的剪接,使内含子不能被去出,则相当于移码突变,使表达的蛋白质肽链比正常的要长,如果内含子的碱基数不是3的整数倍,则原先后续的肽链的氨基酸的组成也会发生改变。

6 题解: 列表比较线粒体基因组与核基因组之间的差别:

7题解: 列表比较人类线粒体基因组与酵母核基因组之间的差别

8 题解: 叶绿体基因组具有一定程度的自主性(可以再深入详述): ① 叶绿体具有DNA ,携带有一系列基因; ② 具有相对独立的基因表达和调控系统;

③ 密码子与和基因的密码子代表的信息不同——各自的 信息传递途径有别。 以上可以说明叶绿体基因组具有一定程度的自主性,但同时

④ 线粒体的代谢需要有核基因表达的蛋白质的参与说明线粒体基因组对核基因组具有一定程度的依赖性,所以它只具有半自主系性。

9 题解: 理论上可以研究植物核质关系和相关基因的功能。实践中可以用于遗传育种(三系育种)。

第十五章 染色体畸变: 习题解

1 题解: 主要应用染色体染色结合分带可以加以区别:

(1) 缺失和重复在同源染色体配对时都会形成突起。重复能在形成突起的相邻位置和同源染色体上找到与之相同的带纹(共出现3次)。而缺失不能在同一条或同源染色体上观察到与之相同的带纹(仅1次)。 (2) 倒位在同源染色体配对时形成倒位环。

(3) 相互易位可以在中期观察到“十”字型结构,有时在后期可以观察到“8”或“0”结构。

3 题解: 臂内倒位的杂合子,虽然能够发生交换,但由于交换以后形成的配子中往往有染色体缺失或重复,使配子中缺少大片段的基因,致死,所以交换后的结果在下一代中检测不出来,类似于没有发生交换,因此实际能够检测的只使易位杂合体片段以外的部分。则能检测到的易位杂合体的重组频率是36cM ×3/4=27cM 。 臂内倒位的纯合子,倒位片段发生交换以后能够在子代中检测出来,所以测定的遗传距离仍为36cM 。

4 题解: 被检测的野生型果蝇为缺失显性基因DE 的缺失杂合体ABCDEF/ABC--F 。

5 题解: a. 123?476589臂内倒位; b. 123?46789为缺失; c. 1654?32789为臂间倒位 d. 123?4556789为重复。

6 题解: a. 1-4可能是缺失:其中1缺失h 、i ;2缺失k 、l ;3缺失m ;4缺失k 、l 、m 。 b. 点突变(如无义突变)或倒位(如类似于果蝇的卷翅性状)。

7 题解: 剂量效应:雄性个体为 v + v 野生型,主要受v +影响;而雌性个体为 v + v 和 v 两个v 的积累优于v +,则表现出v 性状——辰砂子色眼;而雌性亲本来源与 v + 和 v 不对称交换,使一条染色体为 v + v ;而另一条染色体不带v 基因。

线粒体基因组

核基因组 DNA 形状 一般合闭环状 双链线状 DNA 长度 短 长

重复性 一般无重复

轻度、中度和高度重复

多聚序列 具有短的多聚序列

无多聚序列

复制与分裂同步性

复制与分裂不同步 复制与细胞分裂同步

遗传自主性

具有半自主性 具有完全的自主性

编码的肽链数 少(十几个) 多 编码的rRNA 数 2个,较小 4个,较大 编码的tRNA 数 少(20多个)

多(50多个)

密码子

相同的密码子代表的氨基酸有差异

8 题解: 对果蝇来说,倒位纯合绝大多数都是致死的。例如果蝇的卷翅性状,由倒位引起,只能以杂合形式存在,纯合是致死的。

9 题解: a. 臂内倒位

b. 形成倒位环,见书P415。

10 题解: a. 相间分离为“8”型;

b. 相邻分离为“0”型,见书P419。

11 题解: 染色体发生单向易位,使含Cy的染色体与Y染色体融合为一条染色体,在细胞分裂发生染色体组合时,Cy染色体和Y染色体一起移向细胞的一极,Cy+染色体只有和X染色体移向另一极,造成在子代中卷翅全为雄性,而野生型全为雌性。

第十六章基因突变: 题解

2 题解: 错意突变往往只影响基因中的个别碱基,而移码突变,如果插入或缺失的碱基不是3的整数倍,会造成大片段的碱基代表的遗传信息错位,从而使表达的蛋白质与原来的蛋白质的组成或顺序相差很大。

3 题解: 如脱嘌呤和脱氨基,(见书P444.)。

4 题解: 5-溴尿嘧啶是胸腺嘧啶的类似物,甲基磺酸乙酯是烷化共价修饰剂,诱变机理见书(P445, P446)。

5 题解: 错意突变,表达的蛋白质仍然具有部分活性,营养缺陷型突变体在缺乏营养物质时,能够缓慢地参与合成代谢,所以细菌生长缓慢;当添家营养物质时,机体所有的代谢都能够正常进行,能够正常生长。

6 题解: 原因可能是与A杂交,但自身表现为野生型的菌株(B)存在一个突变了的位点(m位点,与ad-3位点之间彼此相距很近,重组距离10-3,且m的表达对ad-3具有抑制作用),当A与B杂交时,m和ad-3之间发生重组,使m和ad-3基因位于同一个细菌中,此时ad-3虽然仍然存在,但由于受m的抑制,表型为野生型,类似于发生了ad-3的回复突变。

检测:让得到的野生型(含有ad-3和m位点)与任意的野生型菌之间杂交,两位点之间仍然会10-3的概率发生重组,当ad-3单独位于一个细胞里时,又会表现出突变类型,类似于发生了正向突变(突变频率与回复突变频率相同,为10-3——取决于ad-3与m之间的重组距离)。

7 题解: a. 终止密码子UAG、UAA、UGA在DNA上对应的碱基组成是TAG/ATC、TAA/ATT、TGA/ACT,可以看出DNA双链上富含A-T碱基对。因此能使A-T转变成G-C的诱变剂,容易诱使终止密码子转变成编码氨基酸的密码子,是无义突变的逆过程。所以,不能用这种诱变剂处理野生菌株,引入无义突变。

b. 羟胺(HA)可以给野生菌株带来无义突变。

c. 不能使无义突变发生回复突变,因为它只能导致DNA中的G-C转变成A-T。

第十七章群体遗传与进化

2 题解: A1 基因的频率: (384×2+210)/854=57.3%

A2 基因的频率: (260×2+210)/854=42.7%

3 题解: 题中bb基因型频率为4%;BB+Bb基因型的频率为96%。则b基因的频率为0.2;B基因的频率为1-0.2=0.8。BB基因型的频率为0.82=0.64;Bb基因型的频率为0.32。

4 题解: Pn=P0(1-u)n=0.8×(1-4×10-6)50000=0.655

5 题解: a. LM基因频率p=0.525,LN基因频率q=0.475。p2=0.2756,q2=0.2256,2pq=0.4987,估算各基因型的理论值,作χ2检验:

b. p2=0.2756,q2=0.2256,2pq=0.4987,估算各种基因型随机婚配的理论值,作χ2检验:

6 题解: a. 以交互震荡的方式接近平衡点。平衡点的值为:

(0.8+0.2×2)/3=0.4

b. Pn- pn = (-1/2)n (P0-p0) … … … ①

(2Pn+pn)/3 = (2P0+p0)/3… … ②

由上两个方程可求得:

Pn = (2P0+p0)/3 + (P0-p0)(-1/2)n/3

pn = (2P0+p0)/3 - 2(P0-p0)(-1/2)n/3

7 题解: a. 平衡群体中q=0.1,p=0.9,女性

中q2=0.01,所以有1%的女性是色盲。

b. 男女色盲比例:q/q2=1/q,因为q<1,

所以男性色盲的

比例比女性大,而且q越小,相差

越大。

c. d. (见右表)

e. 男性中:XB频率p=0.4, Xb频率q=0.6;

女性中:XB频率p=0.8, Xb频率q=0.2

后代女性:

后代男性:

f. 后代男性等位基因频率即是亲代母性中等位基因的频率(0.2).

后代女性等位基因频率:(0.48+0.08)/2+0.12=0.4;

或者直接算术平均: (0.2+0.6)/2=0.4

8 题解: 迁移群体XB p=0.9, Xb q=0.1。土著群体XB p0=0.7,

Xb q0=0.3。迁移经过混合后(加权),

q1=q’=(0.3×1000+0.1×1000)/2000=0.2;

p1=1-0.8=0.2。一个世代的交配后,

(1)男性中红绿色盲的比例,即亲代女性

的Xb 频率0.2。

(2)女性中红绿色盲的比例(混合后男女

Xb的频率相同,p1=0.8, q1=0.2):

9题解: 这3个群体经历了2次奠基者效应:

首先,这三个群体可能来自共同祖先,他们是最初迁移到这三个部落所在位置的几个个体的后代,在这最初的几个个体中,就有人携带有白化病基因,与其他的大群体相比而言,这几个个体所构成的小群体中白化病基因的频率要高得多,由他们所建立的后代群体也相应的很高。这可以从三个群体的文化相关得到佐证。

其次,但三个群体的频率由不相同,这可能是由最初的几个人所建立的后代群体发生了分离,逐步分离成了三个群体,这三个群体彼此相对隔离,由于他们所处的环境有一定的差异,环境对基因的选择压力不同,平衡状态下群体之间的频率也差别。这可以从三个群体之间的语言不同得到佐证。

10 题解: a. 推导见表,

所以下一代A基因的频率为:

P=(0.9p2/0.9+ pq/0.9)=19/36=0.528

b. 设选择系数s=1-ωAA=1-0.9=0.1;

t=1-ωaa=1-0.7=0.3

当平衡时,Δp=0,即qt-sp=(1-p)t-sp=0,推出p=t/(s+t);同理可以推出q=s/(s+t),可以看出,平衡时的p、q值只与选择系数s和t有关,而与起始的p、q值无关。所以,平衡时A基因的频率为p=0.3/(0.3+0.1)=0.75;a基因的频率为q=0.1/(0.3+0.1)=0.25

11 题解: u=s×q2,则s=u/q2=10-5/0.1%=1%

12 题解: BB和Bb基因型的个体选择系数相同s=1-ω=1-0.3=0.7,选择推导Δp (见下表):

B为显性基因,则BB+Bb基因型的值为4×10-6,由于BB值很小, 4×10-6则约为Bb基因型的值(2pq)[q 远大于p约为1],可以算出P=2×10-6。

显性纯合体和杂合体的选择系数相同,

普通遗传学(第2版)杨业华课后习题及答案

1 复习题 1. 什么是遗传学?为什么说遗传学诞生于1900年? 2. 什么是基因型和表达,它们有何区别和联系? 3. 在达尔文以前有哪些思想与达尔文理论有联系? 4. 在遗传学的4个主要分支学科中,其研究手段各有什么特点? 5. 什么是遗传工程,它在动、植物育种及医学方面的应用各有什么特点? 2 复习题 1. 某合子,有两对同源染色体A和a及B和b,你预期在它们生长时期体细胞的染色体组成应该是下列哪一种:AaBb,AABb,AABB,aabb;还是其他组合吗? 2. 某物种细胞染色体数为2n=24,分别指出下列各细胞分裂时期中的有关数据: (1)有丝分裂后期染色体的着丝点数 (2)减数分裂后期I染色体着丝点数 (3)减数分裂中期I染色体着丝点数 (4)减数分裂末期II的染色体数 3. 假定某杂合体细胞内含有3对染色体,其中A、B、C来自母体,A′、B′、C′来自父本。经减数分裂该杂种能形成几种配子,其染色体组成如何?其中同时含有全部母亲本或全部父本染色体的配子分别是多少? 4. 下列事件是发生在有丝分裂,还是减数分裂?或是两者都发生,还是都不发生? (1)子细胞染色体数与母细胞相同 (2)染色体复制 (3)染色体联会 (4)染色体发生向两极运动 (5)子细胞中含有一对同源染色体中的一个 (6)子细胞中含有一对同源染色体的两个成员 (7)着丝点分裂 5. 人的染色体数为2n=46,写出下列各时期的染色体数目和染色单体数。 (1)初级精母细胞(2)精细胞(3)次级卵母细胞(4)第一级体(5)后期I (6)末期II (7)前期II (8)有丝分裂前期(9)前期I (10)有丝分裂后期 6. 玉米体细胞中有10对染色体,写出下列各组织的细胞中染色体数目。 (1)叶(2)根(3)胚(4)胚乳(5)大孢子母细胞

遗传学课后习题答案

遗传学复习资料 第一章绪论 1、遗传学:是研究生物遗传和变异的科学 遗传:亲代与子代相似的现象就是遗传。如“种瓜得瓜、种豆得豆” 变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。 2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗 传和变异。遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。遗传、变异和选择是生物进化和新品种选育的三大因素。 3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构 模式理念,这是遗传学发展史上一个重大的转折点。 第二章遗传的细胞学基础 原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。 染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。 染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为: (1)DNA合成前期(G1期);(2)DNA合成期(S期); (3)DNA合成后期(G2期);(4)有丝分裂期(M期)。 同源染色体:生物体中,形态和结构相同的一对染色体。 异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。 无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。在细胞分裂的整个过程中,不象有丝分裂那样经过染色体有规律和准确的分裂。 有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。即细胞分裂为二,各含有一个核。分裂过程包括四个时期:前期、中期、后期、末期。在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。

刘祖洞遗传学课后题答案

第二章 孟德尔定律 1、 为什么分离现象比显、隐性现象有更重要的意义 答:因为 (1) 分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的; (2) 只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株(AACC )与真实遗传的绿茎、马铃薯叶植株(aacc )杂交,F2结果如下: 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 247 90 83 34 (1)在总共454株F2中,计算4种表型的预期数。 (2)进行2 测验。 (3)问这两对基因是否是自由组合的 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃 薯叶 观测值(O ) 247 90 83 34 预测值(e ) (四舍五入) 255 85 85 29 454 .129 )2934(85)85583(85)8590(255)255247()(2 22 222 =-+ -+-+ -=-=∑e e o χ 当df = 3时,查表求得:<P <。这里也可以将与临界值81.72 05.0.3=χ比较。 可见该杂交结果符合F 2的预期分离比,因此结论,这两对基因是自由组合的。 11、如果一个植株有4对显性基因是纯合的。另一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少 解:(1) 上述杂交结果,F 1为4对基因的杂合体。于是,F2的类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/28 。 (2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲 本的占1/4。所以,当4对基因杂合的F 1自交时,象显性亲本的为(3/4)4 ,象隐性亲本的 为(1/4)4 = 1/28 。 第三章 遗传的染色体学说

遗传学课后答案

一) 名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题: 1.1900年(2))规律的重新发现标志着遗传学的诞生。 (1)达尔文(2)孟德尔(3)拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学称之(4) (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学 3.遗传学中研究基因化学本质及性状表达的内容称( 1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)细胞遗传学 4.通常认为遗传学诞生于(3)年。 (1)1859 (2)1865 (3)1900 (4)1910 5.公认遗传学的奠基人是(3): (1)J·Lamarck (2)T·H·Morgan (3)G·J·Mendel (4)C·R·Darwin 6.公认细胞遗传学的奠基人是(2): (1)J·Lamarck (2)T·H·Morgan (3)G·J·Mendel (4)C·R·Darwin 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表: 有丝分裂的遗传意义: 首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义: 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。 例如,水稻n=12,其非同源染色体分离时的可能组合数为212 = 4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2. 水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3. 用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示 4. 某生物有两对同源染色体,一对是中间着丝粒,另一对是端部着丝粒,以模式图方式画出:

遗传学课后习题及答案解析

Chapter 1 An Introduction to Genetics (一) 名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题: 1.1900年(2))规律的重新发现标志着遗传学的诞生。 (1)达尔文(2)孟德尔(3)拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学, 称之( 4 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学 3.遗传学中研究基因化学本质及性状表达的容称( 1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)细胞遗传学 4.通常认为遗传学诞生于(3)年。 (1)1859(2)1865(3)1900(4)1910 5.公认遗传学的奠基人是(3): (1)J·Lamarck(2)T·H·Morgan(3)G·J·Mendel(4)C·R·Darwin 6.公认细胞遗传学的奠基人是(2): (1)J·Lamarck(2)T·H·Morgan(3)G·J·Mendel(4)C·R·Darwin Chapter 2 Mitosis and Meiosis 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表:

有丝分裂的遗传意义: 首先:核每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n )雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体 2n 。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n 对染色体,就可能有2n 种自由组合方式。 例如,水稻n =12,其非同源染色体分离时的可能组合数为212 = 4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2. 水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3. 用基因型Aabb 的玉米花粉给基因型AaBb 的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示:

遗传学课后习题与答案

第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律就是生物界普遍存在的一种遗传现象,而显性现象的表现就是相对的、有条件的;2、只有遗传因子的分离与重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、在番茄中,红果色(R)对黄果色(r)就是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr (2)Rr×rr (3)Rr×Rr (4) Rr×RR (5)rr×rr 3、下面就是紫茉莉的几组杂交,基因型与表型已写明。问它们产生哪些配子?杂种后代的基因型与表型怎样?(1)Rr × RR (2)rr × Rr (3)Rr × Rr 粉红 红色白色粉红粉红粉红 合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd (4)Wwdd×WwDd 5、在豌豆中,蔓茎(T)对矮茎(t)就是显性,绿豆荚(G)对黄豆荚(g)就是显性,圆种子(R)对皱种子(r)就是显性。

现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr ×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6、在番茄中,缺刻叶与马铃薯叶就是一对相对性状,显性基因C控制缺刻叶,基因型cc就是马铃薯叶。紫茎与绿茎就是另一对相对性状,显性基因A控制紫茎,基因型aa的植株就是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何? 解:题中F2分离比提示:番茄叶形与茎色为孟德尔式遗传。所以对三种交配可作如下分析: (1) 紫茎马铃暮叶对F1的回交:

遗传学课后题答案章

遗传学课后题答案章

————————————————————————————————作者:————————————————————————————————日期:

第二章孟德尔定律 1、答:因为 (1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、解: 序号杂交基因型表现型 1 RR×rr Rr 红果色 2 Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色 3 Rr×Rr 1/4RR,2/4Rr,1/4rr 3/4红果色,1/4黄果色 4 Rr×RR 1/2RR,1/2Rr 红果色 5 rr×rr rr 黄果色 3、解: 序号杂交配子类型基因型表现型 1 Rr × RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红 2 rr × Rr r;R,r 1/2Rr,1/2rr 1/2粉红,1/2白色 3 Rr × Rr R,r 1/4RR,2/4Rr,1/4rr 1/4红色,2/4粉色,1/4白色 4、解: 序号杂交基因型表现型 1 WWDD×wwdd WwDd 白色、盘状果实 2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状 2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状 3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状 4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状 5.解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr ×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6.解:题中F2分离比提示:番茄叶形和茎色为孟德尔式遗传。所以对三种交配可作如下分析: (1) 紫茎马铃暮叶对F1的回交: AaCc×AAc c→AACc、AAcc、AaCc、Aacc 表型二种,比例为1:1 (2) 绿茎缺刻叶对F1的回交: AaCc×aaC C→AaCC、AaCc、aaCC、aaCc 表型二种,比例为1:1 (3)双隐性植株对Fl测交: AaCc×aacc AaCc Aacc aaCc aacc 1紫缺:1紫马:1绿缺:1绿马

遗传学课后答案

第四章连锁遗传和性连锁 1.试述交换值、连锁强度和基因之间距离三者的关系。 答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频 率,或等于交换型配子占总配子数的百分率。交换值的幅度经常变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞 数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。 2.在大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。今以带壳、散穗与 裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐纯合体测交,其后代为: 带壳、散穗201株裸粒、散穗18株 带壳、密穗20株裸粒、密穗203株 试问,这2对基因是否连锁?交换值是多少?要使F2出现纯合的裸粒散穗20株,至少应中多少株? 答:F1表现为带壳散穗(NnLl)。 测交后代不符合1:1:1:1的分离比例,亲本组合数目多,而重组类型数目少,所以这两对基因为不完全连锁。 交换值%=((18+20)/(201+18+20+203))×100%=8.6% F1的两种重组配子Nl和nL各为8.6%/2=4.3%,亲本型配子NL和nl各为(1-8.6%)/2=45.7%; 在F2群体中出现纯合类型nnLL基因型的比例为: 4.3%×4.3%=18.49/10000, 因此,根据方程18.49/10000=20/X计算出,X=10817,故要使F2出现纯合的裸粒散穗20株,至少应种10817株。 3.在杂合体ABy/abY,a和b之间的交换值为6%,b和y之间的交换值为10%。在没有 干扰的条件下,这个杂合体自交,能产生几种类型的配子;在符合系数为0.26时,配子的比例如何? 答:这个杂合体自交,能产生ABy、abY、aBy、AbY、ABY、aby、Aby、aBY8种类型 的配子。 在符合系数为0.26时,其实际双交换值为:0.26×0.06×0.1×100=0.156%,故其配子的比例为:ABy42.078:abY42.078:aBy2.922:AbY2.922:ABY4.922:aby4.922:Aby0.078:aBY0.078。 3.设某植物的3个基因t、h、f依次位于同一染色体上,已知t-h相距14cM,现有如下杂 交:+++/thf×thf/thf。问:①符合系数为1时,后代基因型为thf/thf的比例是多少?②符合系数为0时,后代基因型为thf/thf的比例是多少? 答:①1/8②1/2 5.a、b、c3个基因都位于同一染色体上,让其杂合体与纯隐性亲本测交,得到下列结果: +++74 ++c382 +b+3 +bc98 a++106

遗传学课后习题及答案

Chapter 1 AnIntroduction toGenetics (一)名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题:?1.1900年(2))规律的重新发现标志着遗传学的诞生. ?(1)达尔文(2)孟德尔(3) 拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学, 称之( 4 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学?3.遗传学中研究基因化学本质及性状表达的内容称(1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学 (4)细胞遗传学 4. 通常认为遗传学诞生于(3)年。?(1)1859 (2)1865 (3) 1900 (4)1910?5.公认遗传学的奠基人是(3): (1)J·Lamarck (2)T·H·Morgan(3)G·J·Mendel (4)C·R·Darwin?6.公认细胞遗传学的奠基人是(2):?(1)J·Lamarck (2)T·H·Morgan(3)G·J·Mendel(4)C·R·Darwin Chapter2Mitosisand Meiosis 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表:

有丝分裂的遗传意义: 首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。 例如,水稻n=12,其非同源染色体分离时的可能组合数为212 =4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2。水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3。用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示: 4. 某生物有两对同源染色体,一对是中间着丝粒,另一对是端部着丝粒,以模式图方式画出:(1)减数第一次分裂的中期图; (2)减数第二次分裂的中期图。

遗传学课后习题及答案完整

作业——绪论 1,名词解释 遗传学:是研究遗传变异及其规律的科学。或研究遗传物质的本质和传递及遗传信息表达和进化的科学。 遗传:亲代与子代间相似性的传递过程。具有稳定性和保守性。 变异:子代与亲代及子代个体间的差异。具有普遍性和绝对性。 2,拉马克的两个重要法则 (1)用进废退:动物器官的进化与退化取决于用于不用,经常使用的器官就发达、进化,不使用的器官就退化或消失。 (2)获得性遗传: 每一世代中由于用于不用而加强或削弱的性是可以遗传给下一代,即用进废退获得的性状能遗传。 3,遗传学诞生于那一年? 遗传学诞生于1900年。 4,遗传学发展过程是如何概括的? (1)两个阶段:遗传学分为孟德尔以前(1900年以前)和孟德尔以后(1900以后) (2)三个水平:遗传学分为个体水平、细胞水平和分子水平。 (3)四个时期: 遗传学诞生前期; 细胞遗传学时期; 微生物与生化遗传学时期;

分子遗传学时期。 作业——第一章遗传的细胞学基础 一、名词解释 1、异固缩:显微镜下观察染色质着色不均匀,深浅不同的现象 2、二价体:由染色体进一步缩短变粗,各对同源染色体彼此靠拢,进行准确的配对,这种联会的一对同源染色体称为二价体。 3、端粒:染色体末端特化的着色较深部分。由端粒DNA和端粒蛋 白组成。 4、染色体组型分析:根据染色体数目,大小和着丝粒位置,臂比,次溢痕,随体等形态特征,对生物核内染色体进行配对,分组,归类,编号,进行分析的过程。 5、体联会:体细胞在有丝分裂过程中,出现的同源染色体联会的现 象 二、唾线染色体的特点? 1、巨大性和伸展性; 2、体联会:体细胞在有丝分裂过程中,出现的同源染色体联会的现象。 3、有横纹结构:深色部位一带纹区,浅色部分一间带区。 4、多线性 5、染色中心和5条臂 三、下列事件是发生在有丝分裂,还是减数分裂?或是两者都发生还 是两者都不发生? 有丝分裂:1、子细胞染色体数与母细胞相同 6、子细胞中含有一对同源染色体的两个成员 减数分裂:3、染色体联会 5、子细胞中含有一对同源染色体中的一个 两者都有:2、染色体复制 4、染色体发生向两极运动 7、着丝点分裂 四、某植物细胞内有两对同源染色体(2n=4),其中一对为中间着丝点,另一对为近端着丝点,是绘出以下时期的模式图。 (1)有丝分裂中期(2)减数第一次分裂中期(3)减数第二次分裂中期 (1) (2) (3)

遗传学课后题答案

第二章 孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为 (1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条 件的; (2)只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存 在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株(AACC )与真实遗传的绿茎、马铃薯叶植株(aacc )杂交,F2紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 247 90 83 34 (1 (2)进行χ2测验。 (3)问这两对基因是否是自由组合的? 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 观测值(O ) 247 90 83 34 预测值(e ) (四舍五入) 255 85 85 29 454 .129 )2934(85)85583(85)8590(255)255247()(2 22 222 =-+ -+-+ -=-=∑e e o χ 当df = 3时,查表求得:0.50<P <0.95。这里也可以将1.454与临界值81.72 05.0.3=χ比 较。 可见该杂交结果符合F 2的预期分离比,因此结论,这两对基因是自由组合的。 11、如果一个植株有4对显性基因是纯合的。另一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少? 解:(1) 上述杂交结果,F 1为4对基因的杂合体。于是,F2的类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/28。 (2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲本的占1/4。所以,当4对基因杂合的F 1自交时,象显性亲本的为(3/4)4,象隐性亲本的为(1/4)4 = 1/28。 第三章 遗传的染色体学说 2、水稻的正常的孢子体组织,染色体数目是12对,问下列各组织的染色体数目是多少? (1)胚乳;(2)花粉管的管核;(3)胚囊;(4)叶;(5)根端;(6)种子的胚;(7)颖片; 答;(1)36;(2)12;(3)12*8;(4)24;(5)24;(6)24;(7)24;

遗传学答案

习题参考答案 1、图中所示的事一个罕见的常染色体隐性遗传疾病苯丙酮尿症 (PKU)的系谱 题解a:系谱中各成员基因型见下图 (a) 尽可能多的列出各成员的基因型。 (b) 如果A 与B 结婚,则她们的第一个孩子患 PKU 的概率为多大? (c) 如果她们的第一个孩子就是正常的,则她们的第二个孩子患 PKU 的概率 (d) 如果她们的第一个孩子患病,则她们第二个孩子正常的概率就是多大? b:1/4X1/3X1/4=1/48 c:1/48 d:3/4 2、在小鼠中,等位基因A 引起黄色皮毛,纯合时不致死。等位基因R 可以单独引起黑色皮 毛。当A 与R 在一起时,引起灰色皮毛;当a 与r 在一起时,引起白色皮毛。一个灰色的 雄鼠与一个黄色雌鼠交配,F1表型如下: 3/8黄色小鼠,3/8 灰色小鼠,1/8 黑色小鼠,1/8 白色小鼠。请写出亲本的基因型。 巳 从閘,< e > x 黄鼠c 罕) F1 3/8黄屁 ;3/8 : 1/8黑風 : 1/s A_rr A_R_ aaR_ aarr 3、果蝇中野生型眼色的色素的产生必需显性等位基因 A 。第二个独立的显性基因 P 使得 色素呈紫色,但它处于隐性地位时眼色仍为红色。不产生色素的个体的眼睛呈白色。两个纯 系杂交,结 果如下: IT

P 红眼〈罕1 X 白眼 F1 禁眼< ^ > X 红出艮< 4 > F2 3FE 紫知艮 : 3*8 红冃艮 : 2/S 白耳艮 解释它的遗传模式,并写出亲本、F1与F2的基因型。 Aa 位于常染色体上,P/p 位于X 染色体上;基因型aa 的个体眼睛呈白色, 基因型A_X_的个体眼睛呈紫 色,基因型A —XX 3 、A_X P Y 的个体眼睛呈红色。 4、 一条真实遗传的棕色狗与一条真实遗传的白色狗交配 ,所有F1的表型都就是白色的。 F1自交得到的F2中有118条白色狗、32条黑色狗与10条棕色狗。给出这一结果的遗 传学解释。 5、假设在矮牵牛的花瓣中存在着两种色素 ,红色与蓝色,者混合呈现出正常的紫色、两种色 素的生化合成途径如下的示、“白色”就是指该复合物不就是色素、(白色的花瓣就是完全缺 乏色素的结果、)红色素就是由一个黄色的中间产物形成的 ,这个中间产物的浓度在有颜色的 花瓣中的含量就是很少的、 P 棕色 X 白色 ddbb AABB F1 白色 AaBb 厂— 118 F2 12冃芭 A B A bb 32 1黑色 aaB W 1粽色 aabb 在此卡显性基因4对另一显性 基因B 是上位性的。 分析:子二代分离为12:3:1,可看作 9 3-3 1的衍生.白色与有色 (黑+棕)之比3」,而在有 色内 詛,黒与棕之比也是34 表明遗传很有可能涉及有两对 基因之差u 備设T 基因人控制白色’即基因型 A_B_. A bb 为白色= 2看显性富丽时,H (罢色) 和b (棕芭)不表现显隐性 关系: 3一无品性基因盘即煦日寸,8 〔黑色)和b (棕莅)表现显 隐性关系.

遗传学课后答案

第四章连锁遗传与性连锁 1.试述交换值、连锁强度与基因之间距离三者的关系。 答:交换值就是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。交换值的幅度经常变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。 2.在大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。今以带壳、散穗与裸粒、密穗的 纯种杂交,F1表现如何?让F1与双隐纯合体测交,其后代为: 带壳、散穗201株裸粒、散穗18株 带壳、密穗20株裸粒、密穗203株 试问,这2对基因就是否连锁?交换值就是多少?要使F2出现纯合的裸粒散穗20株,至少应中多少株? 答:F1表现为带壳散穗(NnLl)。 测交后代不符合1:1:1:1的分离比例,亲本组合数目多,而重组类型数目少, 所以这两对基因为不完全连锁。 交换值% =((18+20)/(201+18+20+203))×100%=8、6% F1的两种重组配子Nl与nL各为8、6% / 2=4、3%,亲本型配子NL与nl各为(1-8、6%) /2=45、7%; 在F2群体中出现纯合类型nnLL基因型的比例为: 4、3%×4、3%=18、49/10000, 因此,根据方程18、49/10000=20/X计算出,X=10817,故要使F2出现纯合的裸粒散穗20株,至少应种10817株。 3、在杂合体ABy/abY,a与b之间的交换值为6%,b与y之间的交换值为10%。在没有干 扰的条件下,这个杂合体自交,能产生几种类型的配子;在符合系数为0、26时,配子的比例如何? 答:这个杂合体自交,能产生ABy、abY、aBy、AbY、ABY、aby、Aby、aBY 8种类型的配子。 在符合系数为0、26时,其实际双交换值为:0、26×0、06×0、1×100=0、156%,故其配子的比例为:ABy42、078:abY42、078:aBy2、922:AbY2、922:ABY4、922:aby4、922:Aby0、078:aBY0、078。 3.设某植物的3个基因t、h、f依次位于同一染色体上,已知t-h相距14cM,现有如下杂 交:+++/thf×thf/thf。问:①符合系数为1时,后代基因型为thf/thf的比例就是多少?②符合系数为0时,后代基因型为thf/thf的比例就是多少? 答:①1/8 ②1/2 5、a、b、c 3个基因都位于同一染色体上,让其杂合体与纯隐性亲本测交,得到下列结果: +++ 74 ++c 382 +b+ 3 +bc 98 a++ 106

遗传学课后习题答案(王亚馥)

第2章孟德尔式遗传分析: 习题解 1 题解a:(1) 他们第一个孩子为无尝味能力的女儿的概率是1/8; (2) 他们第一个孩子为有尝味能力的孩子的概率是3/4; (3) 他们第一个孩子为有尝味能力儿子的概率是3/8。 b:他们的头两个孩子均为品尝者的概率为9/16。 2 题解:已知半乳糖血症是常染色体隐性遗传。因为甲的哥哥有半乳糖症,甲的父母必然是致病基因携带者,而甲表现正常,所以甲有2/3的可能为杂合体。乙的外祖母患有半乳糖血症,乙的母亲必为杂合体,乙有1/2的可能为杂合体,二人结婚,每个孩子都有1/12的可能患病。 3 题解: a:该病是常染色体显性遗传病。 因为该系谱具有常显性遗传病的所有特点: (1)患者的双亲之一是患者; (2)患者同胞中约1/2是患者,男女机会相等; (3)表现连代遗传。 b:设致病基因为A,正常基因a,则该家系各成员的可能基因型如图中所示 c:1/2 4 题解a:系谱中各成员基因型见下图 b:1/4X1/3X1/4=1/48 c:1/48 d:3/4 5题解:将红色、双子房、矮蔓纯合体(RRDDtt)与黄色、单子房、高蔓纯合体(rrddTT)杂交,在F2中只选黄、双、高植株((rrD-T-))。而且,在F2中至少要选9株表现黄、双高的植株。分株收获F3的种子。次年,分株行播种选择无性状分离的株行。便是所需黄、双、高的纯合体。 6 题解:正常情况:YY褐色(显性);yy黄色(隐性)。用含银盐饲料饲养:YY褐色→黄色(发生表型模写)因为表型模写是环境条件的影响,是不遗传的。将该未知基因型的黄色与正常黄色在不用含银盐饲料饲养的条件下,进行杂交,根据子代表型进行判断。如果子代全是褐色,说明所测黄色果蝇的基因型是YY。表现黄色是表型模写的结果。如果子代全为黄色,说明所测黄色果蝇的基因型是yy。无表型模写。 7 题解: a:设计一个有效方案。用基因型分别为aaBBCC、AAbbCC、AABBcc的三个纯合体杂交,培育优良纯合体aabbcc。由于三对隐性基因分散在三个亲本中。其方法是第一年将两个亲本作杂交。第二年将杂合体与另一纯合亲本杂交。第三年,将杂种自交,分株收获。第四年将自交种子分株行播种。一些株行中可分离出aabbcc 植株。 b:第一年将两个亲本作杂交。子代全为两对基因杂合体(AaBbCC或AaBBCc或AABbCc),表现三显性。第二年将杂合体与另一纯合亲本杂交,杂交子代有4种基因型,其中有1/4的子代基因型是AaBbCc。第三年,将杂种自交,分株收获。第四年将自交种子分株行播种。观察和统计其株行的表型和分离比。有三对基因杂合体的自交子代有8种表型,约有1/64的植株表现aabbcc。 c:有多种方案。上述方案最好。时间最短,费工最少。 8 题解:因为纯合体自交,子代全是纯合体,而一对基因的杂合体每自交一代,杂合体减小50%。杂合体减少的比例是纯合体增加的比例。所以,该群体自交3代后,三种基因型的比例分别为: Aa:0.4 X(1/2)3 =0.05 AA: 0.55+(0.4-0.05)/2=0.725=72.5% aa: 0.05+ (0.4-0.05)/2=0.225=22.5%

普通遗传学课后习题答案

第一章绪论 1.解释下列名词:遗传学、遗传、变异。 答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 2.简述遗传学研究的对象和研究的任务。 答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。 遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。 3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素? 答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因素。 4. 为什么研究生物的遗传和变异必须联系环境? 答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。生物与环境的统一,是生物科学中公认的基本原则。所以,研究生物的遗传和变异,必须密切联系其所处的环境。 5.遗传学建立和开始发展始于哪一年,是如何建立? 答:孟德尔在前人植物杂交试验的基础上,于1856~1864年从事豌豆杂交试验,通过细致的后代记载和统计分析,在1866年发表了"植物杂交试验"论文。文中首次提出分离和独立分配两个遗传基本规律,认为性状传递是受细胞里的遗传因子控制的,这一重要理论直到1900年狄·弗里斯、柴马克、柯伦斯三人同时发现后才受到重视。因此,1900年孟德尔遗传规律的重新发现,被公认为是遗传学建立和开始发展的一年。1906年是贝特生首先提出了遗传学作为一个学科的名称。 6.为什么遗传学能如此迅速地发展? 答:遗传学100余年的发展历史,已从孟德尔、摩尔根时代的细胞学水平,深入发展到现代的分子水平。其迅速发展的原因是因为遗传学与许多学科相互结合和渗透,促进了一些边缘科学的形成;另外也由于遗传学广泛应用了近代化学、物理学、数学的新成就、新技术和新仪器设备,因而能由表及里、由简单到复杂、由宏观到微观,逐步深入地研究遗传物质的结构和功能。因此,遗传学是上一世纪生物科学领域中发展最快的学科之一,遗传学不仅逐步从个体向细胞、细胞核、染色体和基因层次发展,而且横向地向生物学各个分支学科渗透,形成了许多分支学科和交叉学科,正在为人类的未来展示出无限美好的前景。

遗传课后题

第六章染色体变异 1.植株是显性AA纯合体,用隐性aa纯合体的花粉给它授粉杂交,在500株F1中,有2株表现为aa。如何证明和解释这个杂交结果? 答:这有可能是显性AA株在进行减数分裂时,有A 基因的染色体发生断裂,丢失了具有A基因的染色体片断,与带有a基因的花粉授粉后,F1缺失杂合体植株会表现出a基因性状的假显性现象。可用以下方法加以证明: (1)细胞学方法鉴定:①缺失圈;②非姐妹染色单体不等长。 (2)育性:花粉对缺失敏感,故该植株的花粉常常高度不育。 (3)杂交法:用该隐性性状植株与显性纯合株回交,回交植株的自交后代6显性∶1隐性。 2.玉米植株是第9染色体的缺失杂合体,同时也是Cc杂合体,糊粉层有色基因C在缺失染色体上,与C 等位的无色基因c在正常染色体上。玉米的缺失染色体一般是不能通过花粉而遗传的。在一次以该缺失杂合体植株为父本与正常的cc纯合体为母本的杂交中,10%的杂交子粒是有色的。试解释发生这种现象的原因。 答:这可能是Cc缺失杂合体在产生配子时,带有C基因的缺失染色体与正常的带有c基因的染色体发生了交换,其交换值为10%,从而产生带有10%C基因正常染色体的花粉,它与带有c基因的雌配子授粉后,其杂交子粒是有色的。 10.使普通小麦与圆锥小麦杂交,它们的F1植株的体细胞内应有哪几个染色体组和染色体?该F1植株的孢母细胞在减数分裂时,理论上应有多少个二价体和单价体?F2群体内,各个植株的染色体组和染色体数是否还能同F1一样?为什么?是否还会出现与普通小麦的染色体组和染色体数相同的植株? 答:F1植株体细胞内应有AABBD 5个染色体组,共35条染色体,减数分裂时理论上应有14II+7I。 F2群体内各植株染色体组和染色体数绝大多数不会同F1一样,因为7个单价体分离时是随机的,但也有可能会出现个别与普通小麦的染色体组和染色体数相同的植株。因为产生雌雄配子时,有可能全部7 I 都分配到一个配子中。 12.三体的n+1胚囊的生活力一般远比n+1花粉强。假设某三体植株自交时参与受精的有50%为n+1胚囊,而参与受精的花粉中只有10%是n+1,试分析该三体植株的自交子代群体里,四体所占的百分数、三体所占的百分数和正常2n个体所占的百分数。 答:该三体自交后代的群体为: 该三体自交后代的群体里四体(2n+2)、三体(2n+1)、二体(2n)所占的百分数分别为5%、50%、45%。 第七章细菌和病毒的遗传 2.为什么说细菌和病毒是研究遗传学的好材料? 答:与其他生物体相比,细菌和病毒能成为研究遗传学的好材料,具有以下7个方面的优越性: (1)世代周期短:每个世代以min或h计算,繁殖速度快,大大缩短了实验周期。 (2)易于管理和进行化学分析个体小,繁殖方便,可以大量节省人力、物力和财力;且代谢旺盛,繁殖又快,累积大量的代谢产物。 (3)便于研究基因的突变细菌和病毒均属于单倍体,所有突变都能立即表现出来,不存在显性掩盖

相关文档
最新文档