焊缝开裂原因

焊缝开裂原因
焊缝开裂原因

钢结构焊接裂纹的原因及预防措施

(一)热裂纹

热裂纹是指高温下所产生的裂纹,又称高温裂纹或结晶裂纹,通常产生在焊缝内部,有时也可能出现在热影响区,表现形式有:纵向裂纹、横向裂纹、根部裂纹弧坑裂纹和热影响区裂纹。其产生原因是由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层形式存在从而形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂纹。此外,如果母材的晶界上也存在有低熔点共晶和杂质,当焊接拉应力足够大时,也会被拉开。总之,热裂纹的产生是冶金因素和力学因素共同作用的结果。针对其产生原因,其预防措施如下:

(1)限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素和有害杂质的含量,特别应控制硫、磷的含量和降低含碳,一般用于焊接的钢材中硫的含量不应大于0.04 5% ,磷的含量不应大于0.055% ;另外钢材含碳量越离,焊接性能越差,一般焊缝中碳的含量控制在0.10% 以下时,热裂纹敏感性可大大降低。(2)调整焊缝金属的化学成分,改善焊缝组织,细化焊缝品粒,以提高其塑性,减少或分散偏析程度,控制低熔点共品的有害影响。(3)采用碱性焊条或焊剂,以降低焊缝中的杂质含摄,改善结晶时的偏析程度。(4)适当提高焊缝的形状系数,采用多层多道焊接方法,避免中心线偏析,可防止中心线裂纹。

(5)采用合理的焊接顺序和方向,采用较小的焊接线能超,整体预热和锤击法,收弧时填满弧坑等工艺措施。

(二) 冷裂纹

冷裂纹一般是指焊缝在冷却过程中温度降到马氏体转变温度范围内(300—200℃以下)产生的,可以在焊接后立即出现,也可以在焊接以后的较长时间才发生,故也称为延迟裂纹。其形成的基本条件有3个:焊接接头形成淬硬组织;扩散氢的存在和浓集;存在着较大的焊接拉伸应力。其预防措施主要有:

(1)选择合理的焊接规范和线能,改善焊缝及热影响区组织状态,如焊前预热、控制层问温度、焊后缓冷或后热等以加快氢分子逸出。(2)采用碱性焊条或焊剂,以降低焊缝中的扩散氧含量。(3)焊条和焊剂在使用前应严格按照规定的要求进行烘干(低氢焊条300℃ ~3 50℃保温lh;酸性焊条l 00℃ ~l50℃保温lh;焊剂200℃~250.C保温2h),认真清理坡口和焊丝,太除油污、水分和锈斑等脏物,以减少氢的来源。(4)焊后及时进行热处理。一是进行退火处理,以消除内应力,使淬火组织回火,改善其韧性;二:是进行消氢处理,使

氢从焊接接头中充分逸出。(5)提高钢材质量,减少钢材中的层状夹杂物。(6)采取可降低焊接应力的各种工艺措施。

钢结构焊接检验中的相关问题

(一)焊缝等级、检验等级、评定

等级的区别与联系要求进行内部质量探伤的焊缝,按质量等级分一级和二级,称一级焊缝和二级焊缝,此即为焊缝等级。检验等级系指检验检测达到的精度,即检测仪器与检测方法结合而得到的检测结果的精确程度。超声波探伤采用G B /T ll 34 5 l 9 89标准按检测等级由低到高分为A、B、C三个级别,射线探伤采用GB/T 3 3 2 3一l 9 8 7标准按检测等级由低到高分为A、A B、B三个级别,它们分别规定了手工超声波探伤的检测方法、探测面、检测范围和允许缺陷当量(dB值)以及射线探伤所要达到的灵敏度(透照厚度与像质计的关系)。

评定级别是指探伤人员在检出缺陷后依据标准对缺陷测量进而确定的焊缝内部质量级别。具体来说,超声波探伤指对波高在测长线与判废线之间(Ⅱ区)缺陷测长后,依标准GB/Tl1345 l989表6进行缺陷定级;射线探伤是指测量底片上缺陷指示长度和大小,依标准GB /T3 3 2 3一l987表6.表7、表9、表l0并综合评级(见该标准l 6.1~l 6.4),这一条是每一个探伤人员必须熟练掌握的。

(二)超标缺陷处理与复探、扩探GB 50205 钢结构工程施工质量验收规范》只规定了检测方法。检测比例和合格级别,对于缺陷的处理没有明确要求。

参照JG l 8 l 建筑钢结构焊接技术规程》和其他行业焊接检验标准规范的要求,对十检出的缺陷可作如下处理:(1)检测出的不允许缺陷必须返修,返修后按同种检测方法检测合格后方认为该焊缝合格。(2)对要求抽查检验的焊缝,发现不允许缺陷后,应在被检测区域两端整条焊缝长度的各l 0%且不小于00inin(长度允许时)的区域扩检。a)若在扩检区域未发现超标缺陷,应认为该焊缝合格。b)若在扩检区域发现超标缺陷,则该条焊缝全检。(3)对于现场安装要求抽查检验的焊缝,发现不允许缺陷后,按下述原则扩检;a)增加该类型同一焊工焊接的两条焊缝检测,若此两条扩检焊缝未发现超标缺陷,应认为该批焊缝合格。b)若此两条扩检焊缝发现超标缺陷,则每一条含超标缺陷的焊缝按卜述原则再各抽检两条焊缝。C)若再次抽检的焊缝未发现超标缺陷,应认为该批焊缝合格。d)若再次抽检的焊缝仍发现有超标缺陷,则该焊工焊接的该类型焊缝全检。同时,可协商适当增加其余焊缝检测比例。

焊缝裂纹的原因

有时候我发现焊道会有裂纹,这是怎么产生的, 如何解决这问题? 裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。 A、.裂纹的分类 根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。(2)微观裂纹:在显微镜下才能发现。(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。 从产生温度上看,裂纹分为两类: (1)热裂纹:产生于Ac3线附近的裂纹。一般是焊接完毕即出现,又称结晶裂纹。这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。 (2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。 按裂纹产生的原因分,又可把裂纹分为: (1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。 (2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。 (3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。 B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。 C、.热裂纹(结晶裂纹) (1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓"液态薄膜",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。弧坑裂纹是另一种形态的,常见的热裂纹。 3 焊接缺陷及对策 热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中 (2)影响结晶裂纹的因素 a合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。 b.冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会; c.结晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。

焊接横向裂纹产生的原因及控制

焊接横向裂纹产生的原因及控制 焊接横向裂纹产生原因主要有以下几个方面: 1、应力作用。即钢管成型后的残余应力和焊接应力。 2、焊接工艺不合理。如焊缝成形系数过小、预热温度不够或未进行焊前预热、焊接线能量过大、焊接后热处理不当、保温时间太短等。 3、由于氢的存在。如焊剂烘干不够,预热温度不充分或未进行焊前预热、以及多层焊的层间温度不够。 4、冶金因素。焊接过程中有低熔点杂质进入,如铜及铜合金。铜的来源主要有焊丝表面所镀的用于防止焊丝锈蚀的铜,或者导电嘴、铜合金导电杆内壁被磨损产生的铜。这些铜屑从导电嘴内孔进入焊剂,在焊接过程中接触焊接熔池导致横向裂纹。 控制措施: 1、焊管成型。为了合理控制残余应力,不仅需要采用针对性的设备和工艺,还需要在钢管成型前进行必要的成型工艺评定,对成型的设备、材料、产品的规格、预弯的程度、成型的速度、成型的压力、参数等进行试验和评定,合格后方进行焊管成型。 2、焊前预热。要根据具体的材质、具体的工作环境确定预热及层间温度。 3、焊接工艺。 1)埋弧焊时,为了减少焊接热输入,不建议采用多丝焊,建议尽量采用单丝多道焊,焊道平行排列,且每条焊道的宽度控制在15min以内;层间温度控制在110-250℃。 2)严格控制焊道宽度 焊道越宽,产生横裂的可能性越大。焊接时,要尽量地采用窄焊道,多分道,减少焊道宽度,减少热输入。 4、焊接材料 1)焊丝。选择低强度的焊丝,这样可以适当降低焊缝的碳当量,提高焊缝的塑性,有助于减少焊接裂纹的产生。同时注意使用不镀铜的焊丝,防止铜或铜合金进入焊缝熔池。另外需要注意防潮和防生锈。 2)焊剂。焊剂在使用前必须按照焊剂厂家推荐的烘干工艺烘干,烘干后在烘箱内进行保温,不可烘干后就倒出来,防止受潮。及时对使用中的焊剂进行磁选,磁选后放进保温桶中储存,防止在空气中受潮。及时更换焊剂,防止流落到焊剂内的铜及铜合金交换污染。 3)焊后保温、缓冷。春秋两季,焊接好后可以在室温下直接暴露在空气中缓冷。春冬两季,焊接好以后可以在室温下用保温棉把焊缝两面覆盖,在空气中缓冷。 4) 消氢处理。具体做法:焊接完成后立即用陶瓷电热毯对焊缝及其附近区域加热至200℃,保温2h后关电缓冷。

(完整word版)疲劳断裂总结

第三部分疲劳断裂 疲劳断裂是金属结构失效的一种主要型式,典型焊接结构疲劳破坏事例表明疲劳断裂几率高,具有广泛研究意义。疲劳破坏发生在承受交变或波动应变的构件中,一般说来,其最大应力低于材料抗拉强度,甚至低于材料的屈服点,因此断裂往往是无明显塑性变形的低应力断裂。 疲劳断裂过程的研究表明,疲劳寿命不是决定于裂纹产生,而是决定于裂纹增大和扩展。因此,本章将在介绍疲劳断裂的基本特征和基本概念基础上,利用断裂力学原理着重分析疲劳裂纹的扩展机理、规律、影响因素及疲劳寿命估算。 §3-1疲劳的基本概念 在交变载荷作用下,金属结构产生的破坏现象称为疲劳破坏。为防止结构在工作时发生疲劳破坏传统疲劳设计采用σ―N曲线法确定疲劳强度。 一、应力疲劳和应变疲劳 1、应力疲劳 在低应力、高循环、低扩展速率的疲劳称为应力疲劳,也叫弹性疲劳。七特点是在应力循环条件下,裂纹在弹性区内扩展,且裂纹扩展速率低。 2、应变疲劳 在高应力、低循环、高扩展速率下的疲劳称为应变疲劳,也叫塑性疲劳。其特点是应变幅值很高,最大应变接近屈服应变,故疲劳裂纹扩展速率高(达每次循环10-2mm),寿命短(小于104周)。 二、疲劳强度和疲劳极限 1、乌勒(W?hler)疲劳曲线 (1)结构在多次循环载荷作用下,在工作应力σ(σmax)小于强度极限σb 时即破坏,在不同载荷下使结构破坏所需的加载次数N也不同,表达结构破坏载荷σ和所需加载次数N之间的关系(σ―N)即为乌勒(W?hler)疲劳曲线。 (2)疲劳曲线在加载次数N很大时趋于水平,若以σ―lgN表示则为两段直线关系 (3)图示(略) 2、疲劳强度(条件疲劳极限) (1)疲劳曲线上对应于某一循环次数N的强度极限σ即为该循环下的疲劳 强度(σ r ) (2)σ r =f(N)σ r 对应σmax,一般N<107 3、疲劳极限 (1)结构对应于无限次应力循环而不破坏的强度极限即疲劳极限(2)为σ―lgN疲劳图中的水平渐近线

埋弧焊纵焊缝终端裂纹原因分析及预防措施示范文本

埋弧焊纵焊缝终端裂纹原因分析及预防措施示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

埋弧焊纵焊缝终端裂纹原因分析及预防 措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、概述 在压力容器制造中,当采用埋弧焊焊接筒体纵焊缝时,经 常会在纵焊缝的端部或靠近端部处产生裂纹(以下简称终端 裂纹)。对此问题已有不少人进行了研究,认为产生终端裂纹 的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向 膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而 筒体在卷制及制作装配过程中也存在着冷作硬化应力和组 装应力;在焊接过程中,因终端定位焊缝及引弧板的拘束作用, 在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊 缝和引弧板上时,由于该部位受热膨胀变形,使焊缝终端的横 向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的

焊缝金属受到较大的拉应力而形成终端裂纹。根据上述原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的筒体时也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端裂纹。经过反复试验和分析,我们认为纵缝终端裂纹的产生,虽然与终端焊缝处不可避免地存在着较大的拉伸应力有关,同时还与其他几个极为重要的原因有关。 二、终端级故产生的旅因分析 1. 终端焊缝部位温度场的变化 埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大。

金属疲劳断口的宏现形状特征

收藏【技术类】 金属疲劳断口的宏现形状特征 (2011-1-21 13:38:36) 疲劳断口保留了整个断裂过程的所有痕迹,记录了很多断裂信息。具有明显区别于其他任何性质断裂的断口形貌特征,而这些特征又受材料性质、应力状态、应力大小及环境因素的影响,因此对疲劳断口分析是研究疲劳过程、分析疲劳失效原因的重要方法。 一个典型的疲劳断口往往由疲劳裂纹源区、疲劳裂纹扩展区和瞬时断裂区三个部分组成,具有典型的“贝壳”状或“海滩”状条纹的特征,这种特征给疲劳失效的鉴别工作带来了极大的帮助。 1、疲劳裂纹源区 疲劳裂纹源区是疲劳裂纹萌生的策源地,是疲劳破坏的起点,多处于机件的表面,源区的断口形貌多数情况下比较平坦、光亮,且呈半圆形或半椭圆形。因为裂纹在源区内的扩展速率缓慢,裂纹表面受反复挤压、摩擦次数多,所以其断口较其他两个区更为平坦,比较光亮。在整个断口上与其他两个区相比,疲劳裂纹源区所占的面积最小。 当表面承受足够高的残余压应力或材料内部存在严重的冶金缺陷时,裂纹源则向次表面或机件内部移动。有时在疲劳断口上也会出现多个裂纹源,每个源区所占面积往往比单个源区小,源区断口特征不一定都具有像单个源区那样典型的形貌。裂纹源的数目取决于材料的性质、机件的应力状态以及交变载荷状况等。通常,应力集中系数越大,名义应力越高,出现疲劳源的数目就越多,如低周疲劳断口上常有几个位于不同位置的疲劳裂纹源区。 当零件表面存在某类裂纹时,则零件无疲劳裂纹萌生期,疲劳裂纹在交变载荷作用下直接由该类裂纹根部向纵深扩展,这时断口上不再出现疲劳源区,只有裂纹扩展区和瞬时断裂区。 2、疲劳裂纹扩展区 疲劳裂纹扩展区是疲劳裂纹形成后裂纹慢速扩展形成的区域,该区是判断疲劳断裂的最重要特征区域,其基本特征是呈现贝壳花样或海滩花样,它是以疲劳源区为中心,与裂纹扩展方向相垂直的呈半圆形或扇形的弧形线,又称疲劳弧线。疲劳弧线是裂纹扩展过程中,其顶端的应力大小或状态发生变化时,在断裂面上留下的塑性变形的痕迹。 贝纹花样是由载荷变动引起的,因为机器运转时不可避免地常有启动、停歇、偶然过载等,均可留下塑性变形的痕迹一贝纹线(疲劳弧线)。贝纹线的清晰度不仅与材料的性质有关,而且与介质情况、温度条件等有关,材料的塑性好、温度高、有腐蚀介质存在时,则弧线清晰。所以,这种弧线特征总是出现在实际机件的疲劳断口中,而在实验室的试件疲劳断口中很难看到明显的贝纹线,此时疲劳断口表面由于多次反复压缩而摩擦,使该区变得光滑,呈细晶状,有时甚至光洁得像瓷质状结构。一般贝纹线常见于低应力高周疲劳断口中,而低周疲劳以及许多高强度钢、灰铸铁中观察不到此种贝纹状的推进线。 贝纹线与裂纹扩展方向垂直,它可以是绕着裂纹源向外凸起的弧线,表示裂纹沿表面扩展较慢,即材料对缺口不敏感,例如低碳钢;相反,若围绕裂纹

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

ASTM 金属疲劳与断裂标准一览

ASTM 金属疲劳与断裂标准一览 ASTM 金属疲劳与断裂标准一览 E468-90(2004)显示金属材料定幅疲劳试验结果的方法 Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials E561-05 R-曲线测定 Standard Practice for R-Curve Determination E602-03 圆柱形试样的锐切口张力的试验方法 Standard Test Method for Sharp-Notch Tension Testing with Cylindrical Specimens E606-92(2004)e1 应变控制环疲劳试验 Standard Practice for Strain-Controlled Fatigue Testing E647-05 疲劳裂缝增大率测量用测试方法 Standard Test Method for Measurement of Fatigue Crack Growth Rates E1457-00 测量金属蠕变开裂增长速度的试验方法 Standard Test Method for Measurement of Creep Crack Growth Rates in Metals E1290-02 测量裂缝尖端开口位移(CTOD)裂缝韧性的试验方法 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement E1823-96(2002) 疲劳和裂纹试验相关的标准术语 Standard Terminology Relating to Fatigue and Fracture Testing E1921-05 测定铁素体钢在转变范围内基准温度的标准试验方法 Standard Test Method for Determination of Reference Temperature, To', for Ferritic Steels in the Transition Range E740-03 用表面破裂张力试样做断裂试验 Standard Practice for Fracture Testing with Surface-Crack Tension Specimens Steels Using Equivalent Energy Methodology E1049-85(1997) 疲劳分析的周期计数 Standard Practices for Cycle Counting in Fatigue Analysis E1152 Test Method for Determining J-R Curves3 E1169-02 耐久性试验的实施 Standard Guide for Conducting Ruggedness Tests E1221-96(2002) 测定Kla铁素体钢的平面应变,断裂抑制,破裂韧性的试验方法 Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, KIa, of Ferritic Steels

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因 及防治措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

钢结构焊接裂纹的原因及防治措施本文基于焊接产生裂纹的理论知识,通过实践经验,对钢结构裂纹产生的内外在原因进行了深入分析。 焊接裂纹是钢结构在制造过程出现的危害最严重的缺陷,我公司主要承担为安阳钢铁备件制造、安装及系统检修,在钢结构的制造过程中,有时焊缝会出现焊接裂纹,给工程施工带来一定的影响,具体表现在:裂纹能引起严重的应力集中,降低焊接接头的承载能力,任其发展的话最终会导致焊接结构的破坏,降低工程质量,缩短结构寿命,严重时可能造成安全事故,间接延误工期并增加施工成本,影响公司的形象,所以说裂纹在钢结构的制造过程中一经发现必须彻底清除,进行修补,确保产品质量.以下对钢结构制造过程中裂纹产生的原因及其防治措施进行分析。 1.内在原因分析及相应的预防措施 一般焊接裂纹按其产生的温度和时间分为热裂纹、冷裂纹和再热裂纹。 1.1.热裂纹 热裂纹是指在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹,故又称为高温裂纹.其产生的原因是由于焊接熔池在结

晶过程中存在偏析现象,偏析出的物质多为低熔点共晶和杂质.它们在结 晶过程中以液态间层形式存在,凝固以后的强度也较低,当焊接应力足够 大时就会将液态间层或刚凝固不久的固态金属拉开形成裂纹.此外如果母材的晶界上也存在低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,在一定条件下,焊接应力足够大时也会被拉开形成所谓热影响区液化裂纹.总之,热裂纹的产生是冶 金因素和力学因素共同作用的结果.热裂纹特征是:多贯穿在焊缝表面,且断口被氧化成氧化色.它主要的表现形式:纵向裂纹、横向裂纹、根部裂纹、弧坑裂纹及热影响区裂纹.针对其产生的原因采取以下预防措施:a) 限制钢材和焊材中的硫、磷元素的质量分数.b)改善熔池金属的一次结晶,细化晶粒提高焊缝金属的抗裂性:广泛采用的方法是向焊缝金属中加入细化晶粒的元素.c)控制焊接工艺参数,适当提高焊缝成型系数:可采用多层多道焊法,避免中心线偏析,可防止中心线裂纹。 1.2.冷裂纹 冷裂纹是焊接接头冷却到较低温度时产生的焊接裂纹.它与热裂纹不同, 是在焊后较低温度下产生的,可以焊后立即出现,有时要经过一段时间才 能出现,这种拖后一段时间才能出现的裂纹也称为延迟裂纹.冷裂纹主要 发生在中碳钢、高碳钢、低合金钢或中合金钢中,产生的原因主要有三个因素:1)钢的淬硬倾向大;2)焊接接头受到的拘束应力;3)较多的扩散氢的存在和浓集.这三个条件同时存在时,就容易产生冷裂纹.在许多情况下,

浅论金属材料疲劳断裂的原因及危害

青岛黄海学院机电工程学院2013—2014学年第二学期期中考试 科目:工程材料及机械制造基础 姓名:杜希元 学号: 1101111084 班级: 2011级本科三班 专业:机械制造及其自动化

浅论金属材料发生疲劳断裂的原因及危害 摘要:从人类开始制造结构以来,断裂就是社会面对的一个问题。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。但由于技术的落后,还不能查明疲劳破坏的原因,直到显微镜和电子显微镜等高科技器具的相继出现之后,使人类在揭开金属疲劳秘密的道路上不断取得新的成果。本文浅论金属材料发生疲劳断裂的原因及危害,使人们初步了解金属疲劳断裂的相关知识。 关键词:疲劳断裂原因危害 一、金属材料的疲劳现象 工程中有许多金属零件,如齿轮、弹簧、滚动轴承、叶片、发动机曲轴等都是在变动载荷下工作的。根据变动载荷的作用方式不同,金属零件承受的应力可分为交变应力和循环应力。在交变应力下,虽然零件所承受的应力低于材料的抗拉强度甚至低于材料的屈服强度,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。 人的疲劳感觉来自于长期的劳累或一次过重的负荷,金属材料也是一样。金属的机械性能会随着时间而慢慢变弱,这就是金属的疲劳。在正常使用机械时,重复的推、拉、扭或其他的外力情况都会造成机械部件中金属的疲劳。这是因为机械受压时,金属中原子的排列会大大改变,从而使金属原子间的化学键断裂,导致金属裂开。 二、金属材料疲劳的种类 金属材料的疲劳现象,按条件不同可分为下列几种: (1)高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。 (2)低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。

焊接热裂纹产生原因及防止措施

焊接热裂纹产生原因及防止措施 摘要:本文主要分析了焊接热裂纹产生机理及影响因素,并根据分析依据制定出防止产生裂纹的措施。 关键词:焊接热裂纹产生原因防止措施 随着钢铁、石油化工、电力等工业的发展,在焊接结构方面都取向大型化、大容量和高参数的方向发展,有的还在低温、深冷、腐蚀介质等环境下工作,因此,各种低合金、高强钢、中高合金钢、超高强钢,以及各种合金材料的应用日益广泛。但是随着这些钢种和合金材料的应用,在焊接生产上带来了许多新问题,其中较为普遍而又十分严重的就是焊接热裂纹,它是引起焊接结构发生破坏事故的主要原因。为了能有效的减少由于焊接热裂纹引起的事故,很有必要对焊接热裂纹产生原因进行分析,并制定出防止产生裂纹的措施。 一、焊接热裂纹的分类 热裂纹又可分为:结晶裂纹、高温液化裂纹、多边化裂纹。在这里将对常见的结晶裂纹、高温液化裂纹、多边化裂纹进行讨论、分析。 二、焊接热裂纹形成机理与影响条件 1.结晶裂纹形成机理与影响条件 1.1结晶裂纹形成机理 焊缝在结晶过程中先结晶的金属较纯,后结晶的金属杂质较多,并富集在晶界,这些杂质所形成的共晶都具有较低的熔点。低熔点共晶被排挤在柱状晶体交遇的中心部位,形成一种所谓《液态薄膜》,此时由于收缩而受到了拉伸应力,这时焊缝中的液态薄膜就成了薄弱地带,在拉伸应力的作用下就有可能在这个薄弱地带开裂而形成结晶裂纹。结晶裂纹多发生在焊缝中树枝状晶的交界处。 1.2影响结晶裂纹的因素 1.2.1冶金因素的影响。结晶裂纹的冶金因素主要是合金状态图的类型、化学成分和结晶组织形态,随着合金状态图结晶温度区间的增大,结晶裂纹的倾向也增大。 1.2.2合金元素的影响。合金元素对产生结晶裂纹的影响十分复杂,但又非常重要,是影响裂纹最本质的因素。多种合金元素的相互影响,往往比单一元素复杂的多。如在碳钢和低合金钢中,硫磷都会增高结晶裂纹的倾向,即便是微量存在也会使结晶区间大为增加。钢中的碳元素是影响结晶裂纹的主要元素,并能

手工电弧焊中焊缝裂纹产生原因分析及预防措施

手工电弧焊中焊缝裂纹产生原因分析及预防措施 1、焊接裂纹形成原因 焊接中的常见焊接裂纹一般分为三大种类型: 1.1 热裂纹:热裂纹是在高温下产生的, 而且都是沿奥氏体晶界开裂,它的主要形态是结裂纹。即焊缝在结晶过程中,在固相线附近由于凝固金属的收缩,晶粒间的液态薄膜承受不了拉力,以致沿晶界开裂。 1.2 冷裂纹:是在相当低的温度(即在钢的马氏体转变温度附近,约200-300℃)由于约束应力,淬硬组织和氢的作用,焊接接头产生裂绞,即属于冷裂纹。 1.3 脆裂:在温度急剧下降时由于金属及焊缝变脆;而发的低应力破坏的现象,即称为脆裂。根据金属裂断前的总变形量(宏观变形),可把断裂分为延性断裂和脆性断裂两大类。延性断裂,金属在断裂前和断裂中发生显著塑性变形,一般在应力超过金属的强度极限{超载}后发生断裂。而脆性断裂,在断裂前几乎不产生明显塑性变形,通常在不超过金属屈服强度即断裂,因此亦称低应力破坏。 从以上讨论可以知道,在各种具体情况下产生裂纹的原因是不同的,有时可能是几种因素共同作用的结果。然而,不管是热裂纹,冷裂纹,脆裂,它们都具有一个共同的规律,即、焊接时由于各种原因在熔池内部常发生变化,在一定条件下会发生作用而形成裂纹。在手工电弧焊中我们要通过裂纹的特征来判断裂纹的类型,

找出裂纹形成的原因,从而采取相应措施。 2、影响生成裂纹的因素及防止措施 2.1 热裂纹。主要讲结晶裂纹,它是热裂纹的一种普遍形态。影响结晶裂纹主要有下列因素: 2.1.1 结晶温度区的范围愈大,则增加脆性温度区,即增加裂纹倾向。结晶温度区大小与合金含量有很大关系;即随着合金成份的增加,结晶温度区间也增大。 2.1.2 碳当量愈大,则增加裂纹倾向,因为各种元素对结晶裂纹的影响不同,例如严重影响结晶裂纭纹的元素有C,S,P,Cn,Ni;少量影响不大,多量则促使裂纹的元素有Si,Mn,Cr等。为了相对判断焊缝金属裂纹倾向,建立了碳当量的计算方式,以便相应进行考察。 2.1.3 残液m形态,如为薄膜状则裂纹倾向大,如为球粒状则裂纹倾向小。 2.1.4 一次结晶组织,如粗大则裂纹倾向大,如为球粒状则裂纹倾向小。 2.1.5 力的因素对产生结晶裂纹也有影响,当焊的拉伸应力在某一温度区间超过了金属的晶间强度,即会产生晶向裂纹。 2.2 冷裂纹。冷裂纹可以在焊后立即出现,也可以是延迟裂纹,而后一种是冷裂纹中的比较普遍的形态。冷裂纹的产生与钢的碎硬倾向;焊接接头的氢含量及其分布;焊接接头的拘束应力有直接关系。并且这三者是相互促进和相互影响,在不同情况下,其中任

第05章金属的疲劳

第05章金属的疲劳 1.解释下列名词 (1) 应力范围△σ;(2) 应变范围△ε;(3) 应力幅σa;(4) 应变幅(△εt/2,△εe/2,△εp/2);(5) 平均应力σm;(6) 应力比r;(7) 疲劳源;(8) 疲劳贝纹线;(9) 疲劳条带;(10) 驻留滑移带;(11) 挤出脊和侵入沟;(12)ΔK;(13) da/dN;(14) 疲劳寿命;(15) 过渡寿命;(16) 热疲劳;(17) 过载损伤。 2.解释下列疲劳性能指标的意义 (1)疲劳强度σ-1、σ-1p、τ-1、σ-1N;(2) 疲劳缺口敏感度qf;(3) 过载损伤界;(4) 疲劳门槛值△Kth。 3.试述金属疲劳断裂的特点。 4.试述疲劳宏观断口的特征及其形成过程。 5.试述疲劳曲线(S—N)及疲劳极限的测试方法。 6.试述疲劳图的意义、建立及用途。 7.试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般方法。 8.试述影响疲劳裂纹扩展速率的主要因素,并和疲劳裂纹萌生的影响因素进行对比分析。 9.试述疲劳微观断口的主要特征及其形成模型。 10.试述疲劳裂纹扩展寿命和剩余寿命的估算方法及步骤。 11.试述σ-1与ΔKth的异同及各种强化方法影响的异同。 12.试述金属表面强化对疲劳强度的影响。 13.试述金属循环硬化和循环软化现象及产生条件。 14.试述低周疲劳的规律及曼森一柯芬关系。 15.试述多冲疲劳规律及提高多冲疲劳强度的方法。 16.)试述热疲劳和热机械疲劳的特征及规律;欲提高热锻模具的使用寿命,应该如何处理热疲劳与其它性能的相互关系? 17.正火45钢的σb=610MPa,σ-l=300MPa,试用Goodman公式绘制靠σmax(σmin)一σm疲劳图,并确定σ-0.5、σ0和σ0.5等疲劳极限。 18.有一板件在脉动载荷下工作,σmax=200MPa,σmin =0,其材料的σb=70MPa、σ0.2=600MPa、KIC=104MPa·m1/2,Paris公式中c=6.9×10-12,n=3.0,使用中发现有0.1mm 和 1mm的单边横向穿透裂纹,试估算它们的疲劳剩余寿命。 19.疲劳断口和静拉伸断口有何不同?在什么情况下可以预期疲劳断口在肉眼观察下和静拉伸断口相似?如何从断口上判断载荷大小和应力集中情况。 20.试从疲劳破坏特点解释以下疲劳宏观规律 (a)一般金属材料,无论何种处理状态,其疲劳极限σ-1≈0.3~0.5σb,总低于静载下的屈服强度。 (b)为什么无缺口轴向疲劳极限一定比无缺口旋转弯曲疲劳极限低10%一25%?试举几个有影响的因素 (c)完全对称循环与不对称应力循环相比,为什么σ-1是最低的疲劳强度,而应力比R越大可承受的最大应力σmax越高,或者在相同的σmax晴况下,疲劳寿命越长? 21.什么叫低周疲劳和高周疲劳?为什么高周疲劳多用应力控制,低周疲劳多用应变控制?用应变控制进行低周疲劳试验有哪些优点,取得了哪些有价值的结果?

焊接裂纹产生原因

焊接裂纹产生原因 形成焊接裂纹的原因是多方面的,但可以归纳为力学因素和冶金因素两方面。 3.1 力学因素 导致裂纹产生的力学因素主要为拘束应力。压力钢管焊接时采用多层多道焊,焊接第一层焊缝时,由于焊缝截面远小于构件的截面,因此拘束应力和拘束变形将集中在截面比母材小很多并且变形相对容易的焊接区内,造成第一道焊缝的焊接区是最容易出现裂纹的区域。拘束度越大,焊接区域承受的拘束应力和应变越大,造成焊接裂纹的危险性也越大。焊缝在压缝完成后,特别工地环缝不可避免地会产生拘束度偏大,从而致使点焊区域承受的拘束应力和应变偏大。焊接时,由于焊接区域的温度升高,点焊区域拘束应力得以释放,易造成裂纹的产生。有时钢管丁字接头部位容易产生裂纹就是因应力过分集中造成。 3.2 冶金因素 3.2.1 冶炼杂质对高温脆性区的影响 钢中的杂质元素如C、S、P、B会明显地扩大高温脆性区的温度范围。60kgf/mm2钢种是一种含C、S、P量很低的Cr-Mo-V系合金钢。Mn含量较高,约为1.20%~1.60%,可以减小高温脆性区,因而60kgf/mm2钢是一种可以减小高温脆性区的钢种。 3.2.2 钢的淬硬致脆倾向 60kgf/mm2钢种碳当量Ceq=0.35%,裂纹敏感系数Pcm=0.185%,钢的淬硬致脆倾向不明显,是一种焊接性及抗裂性良好的钢种。 3.2.3 钢中氢的致脆 氢是焊接冶金过程残留在钢中的气体杂质。由于钢中残留的氢使钢的塑性恶化而形成氢脆。 3.2.4 焊接粗晶区晶界的弱化 由于合金结晶过程的选择作用和相临晶粒间的相位不同,使得晶界总是含有比晶粒内部多得多的杂质和缺陷:而且由于晶界很薄,因而晶界的变形能力总是远低于晶粒本身的变形能力。在正常受力下,晶粒本身承担厂主要的塑性变形,保证了合金的塑性和强度。但NK 钢种因含有Cr、Mo、V等成分,Cr、Mo、V元素属于强碳化物及强氮化物形成元素,HITEN610U 2 它们将会使晶界弱化或相对弱化。经计算,经验公式Psr=Cr+Cu+2Mo+5Ti+7Nb+10V-2,Psr<0,因而该材料不易发生晶界断裂。

金属疲劳断裂的特点

4.1金属疲劳破坏的特点 零件在交变应力作用下损坏叫做疲劳破坏。据统计,在机械零件失效中有80%以上属于疲劳破坏。例 如大多数轴类零件,通常受到的交变应力为对称循环应力,这种应力可以是弯曲应力、扭转应力、或者是两者的复合。如火车的车轴,是弯曲疲劳的典型,汽车的传动轴、后桥半轴主要是承受扭转疲劳,柴油机曲轴和汽轮机主轴则是弯曲和扭转疲劳的复合。再如齿轮在啮合过程中,所受的负荷在零到某一极大值之间变化,而缸盖螺栓则处在大拉小拉的状态中,这类情况叫做拉-拉疲劳;连杆不同于螺栓,始终处在小拉大压的负荷中, 这类情况叫做拉-压疲劳。我们还可以列举很多常用的机械零件所受的负荷情况,综合这些情况就会得到上面 已经提过的结论:大多数零件的失效是属于疲劳破坏的。 4.1.1疲劳破坏的特点 尽管疲劳载荷有各种类型,但它们都有一些共同的特点。 第一,断裂时并无明显的宏观塑性变形,断裂前没有明显的预兆, 而是突然地破坏。 第二,引起疲劳断裂的应力很低,常常低于静载时的屈服强度。 图4-0换劳断口的甕■嵋片第三,疲劳破坏能清楚地显示出裂纹的发生、扩展和最后断裂三个组 成部份。 4.1.2疲劳断口分析 我们已经知道,疲劳损坏有裂纹的发生、扩展直至最终断裂三部分,对疲劳宏观断口的分析就可以证 实这点(见图4-0 )。 一个典型的疲劳断口总是由疲劳源,疲劳裂纹扩展区和最终断裂区三部份构成。 疲劳断口有各种型式,它取决于载荷的类型,即所受应力为弯曲应力、扭转应力还是拉-压应力,同时与应力的大小和应力集中程度有关。 图4-1是弯曲疲劳的断口。在承受低名义应力时,对于应力集中较小的,疲劳裂纹扩展区占的面积相对说比较大,而且最终断裂区并不正好位于疲劳源的对侧,而是以逆旋转方向偏离一个位置。对于应力集中较大的,不仅扩展区减小,而且最终断裂区已不在轴的表面,渐渐移向中心。在承受高名义应力时,即使对应力集中小的轴,表面的疲劳源已有多处,裂纹扩展形成棘轮形,最终断裂区位于轴的中心。对于高应力集中的轴,表面的疲劳源更多。

焊接冷裂纹产生原因及防止措施

焊接冷裂纹产生原因及防止措施 【摘要】本文主要分析了焊接冷裂纹产生机理及影响因素,并根据分析依据制定出防止产生裂纹的措施。 【关键词】焊接冷裂纹;产生原因;防止措施 随着钢铁、石油化工、电力等工业的发展,在焊接结构方面都取向大型化、大容量和高参数的方向发展,有的还在低温、深冷、腐蚀介质等环境下工作,因此,各种低合金、高强钢、中高合金钢、超高强钢,以及各种合金材料的应用日益广泛。但是随着这些钢种和合金材料的应用,在焊接生产上带来了许多新问题,其中较为普遍而又十分严重的就是焊接裂纹。焊接裂纹不仅给生产带来许多困难,造成停产、停工,而且可能带来灾难性的事故。世界上好多焊接结构所出现各种事故中,除少数是由于设计不当、选材不合理和运行操作上的问题之外,绝大多数是由裂纹而引起的脆性破坏,因此,裂纹是引起焊接结构发生破坏事故的主要原因。为了能有效的减少由于焊接裂纹引起的事故,保障安全生产,保障生命财产,很有必要对焊接裂纹产生原因进行分析,并制定出防止产生裂纹的措施。 一、焊接裂纹的分类 在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,裂纹的形态和分布特征都是很复杂的,有焊缝的表面、内部裂纹,有热影响区的横向、纵向裂纹,有焊缝和焊道下的深埋裂纹,也有在弧坑处出现的弧坑裂纹。如果按产生裂纹的本质来分,可分为:热裂纹、再热裂纹、冷裂纹、层状撕裂、应力腐蚀裂纹五大类。在这里我们将对冷裂纹进行讨论、分析。 二、焊接冷裂纹形成机理与影响因素 (一)焊接冷裂纹的形成机理 大量实践和理论研究证明,钢种的淬硬倾向,焊接接头含氢量及其分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。 高强钢在淬硬时,特别是在焊接条件下,近缝区的加热温度很高,使奥氏体晶粒发生严重长大,当快速冷却时,粗大的奥氏体将转变为粗大的马氏体,从金属强度理论可以知道,马氏体是一种脆硬的组织,发生断裂时将消耗较低的能量,因此,焊接接头有马氏体存在时,裂纹易于形成和扩展。另外,在焊接过程中,由于热源的高温作用,焊缝金属中溶解了很多的氢,当焊缝由奥氏体转变为铁素体、珠光体等组织时,氢的溶解度突然下降,而氢在铁素体、珠光体中的扩散速度很快,因此氢就很快地从焊缝越过熔合线向未发生分解的奥氏体热影响区扩散。由于氢在奥氏体中的扩散速度较小,不能很快把氢扩散到距熔合线较远的母材中去,因而在熔合线附近就形成了富氢地带。当滞后相变的热影响区由奥氏体向马氏体转变时,氢便以过饱和状态残留在马氏体中,促使这个地区进一步脆化。

第五章金属的疲劳

第五章金属的疲劳 本章从材料学的角度研究金属疲劳的一般规律、疲劳破坏过程及机理、疲劳力学性能及其影响因素,以便为疲劳强度设计和选用材料,改进工艺提供基础知识。 第一节金属疲劳现象及特点 一、变动载荷 1. 变动载荷 定义:变动载荷是引起疲劳破坏的外力,指载荷大小,甚至方向均随时间变化的载荷,在单位面积上的平均值为变动应力。 2. 循环应力 二、疲劳现象及特点 1. 分类 疲劳定义:机件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象。 (1) 按应力状态不同,可分为:弯曲疲劳、扭转疲劳、挤压疲劳、复合疲劳 (2) 按环境及接触情况不同,可分为:大气疲劳、腐蚀疲劳、高温疲劳、热 疲劳、接触疲劳 (3) 按断裂寿命和应力高低不同,可分为:高周疲劳、低周疲劳,这是最基 本的分类方法 2. 特点 (1)疲劳是低应力循环延时断裂,即具有寿命的断裂 ?断裂应力水平往往低于材料抗拉强度,甚至低于屈服强度。 ?断裂寿命随应力不同而变化,应力高寿命短,应力低寿命长。 ?当应力低于某一临界值时,寿命可达无限长。 (2)疲劳是脆性断裂 由于一般疲劳的应力水平比屈服强度低,所以不论是韧性材料还是脆性材料,在疲劳断裂前不会发生塑性变形及有形变预兆,它是在长期累积损伤过程中,经裂纹萌生和缓慢亚稳扩展到临界尺寸a c时才突然发生的。 因此,疲劳是一种潜在的突发性断裂。 (3)疲劳对缺陷(缺口、裂纹及组织缺陷)十分敏感 ?由于疲劳破坏是从局部开始的,所以它对缺陷具有高度的选择性。 ?缺口和裂纹因应力集中增大对材料的损伤作用,组织缺陷(夹杂、疏松、白 点、脱碳等)降低材料的局部强度,三者都加快了疲劳破坏的开始和发展。 三、疲劳宏观断口特征 (1)疲劳源:在断口上,疲劳源一般在机件表面,常与缺口、裂纹、刀痕、 蚀坑等缺陷相连,由于应力不集中会引发疲劳裂纹。 材料内部存在严重冶金缺陷时,因局部强度降低也会在机件内部产生疲劳源。 ?从断口形貌看,疲劳源区的光亮度最大,因为这里是整个裂纹亚稳扩展过程

焊接裂纹形成的原因及防止措施

焊接裂纹形成的原因及防止措施 焊接裂纹是在焊接应力及其它致脆因素共同作用下,材料的原子结合遭到破坏,形成新界面而产生的缝隙。它具有尖锐的缺口和长宽比大的特征,易引起较高的应力集中,而且有延伸和扩展的趋势,所以,也是最危险的焊接缺陷。 裂纹常有热裂纹、冷裂纹以及再热裂纹(消除应力处理裂纹)。 一、热裂纹形成及防止 常见的热裂纹有两种:结晶裂纹、液化裂纹。 结晶裂纹是焊接熔池初次结晶过程中形成的裂纹,是焊缝金属沿初次结晶晶界的开裂。而液化裂纹是紧靠熔合线的母材晶界被局部重熔,在收缩力的作用下而产生的裂纹。 结晶裂纹产生的原因: 焊接时,熔池在电弧热的作用下,被加热到相当高的温度,而受热膨胀,而母材却不能自由收缩,于是高温的熔池受到一定的压力。当熔池开始冷却时,就以半融化的母材为晶核开始处结晶。最先结晶的是纯度较高的的合金。最后凝固的是低熔点共晶体。低熔点共晶物的多少取决于焊缝金属中C、S、L等元素的含量。当含量较少时,不足以在初生晶粒间形成连续的液态膜。焊接熔池的冷却速度极快,低熔点共晶物几乎与初析相同时完成结晶。因此连续冷却的金属熔池虽然受到收缩应力的作用也不至于产生晶间裂纹。当低熔点共晶体量较多时,情况就不同了,初次结晶的偏析程度较大,并在初次结晶的晶体之间形成晶间液膜,当熔池冷却收缩时,被液膜分割的晶体边界就会被拉开就形成了裂纹。这是主要原因,另有两个其它原因:一是焊缝金属所经受的应变增加速度大于低熔点共晶物凝固的速度;另外,初生晶体的张大方向和残留低熔共晶体的相对位置的影响。 可见,关键的措施就是: 1、应严格控制焊缝金属中C、S、P和其它易形成低熔点共晶体的合金成分的含量,这些元素和杂质的含量越低,焊缝金属的抗裂纹能力越大。当焊缝中C>0.15%,S>0.04%就可能有裂纹出现,如果母材中含碳量很高,就要控制焊接材料的成分,以使混合后的碳含量降下来。 2、改变焊缝横截面的形状也就改变了焊接熔池的结晶方向,使之有利于将低熔点共晶体推向不易产生裂纹的位置。 液化裂纹产生的原因: 焊接时紧靠熔合线的母材区域被加热到接近钢熔点的高温,此时母材晶体本身未发生熔化,而晶界的

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

般分为焊趾裂纹、焊道下裂纹、根部裂纹。防治冷裂纹可以从工件的化学成分、焊接材料的选择和工艺措施三方面入手。应尽量选用碳当量较低的材料;焊材应选用低氢焊条,焊缝应用低强度匹配,对于高冷裂倾向的材料也可选用奥氏体焊材;合理控制线能量、预热和后热处理是防治冷裂的工艺措施。在焊接生产中由于采用的钢种、焊接材料不同,结构的类型、钢度,以及施工的具体条件不同,可能出现各种形态的冷裂纹。然而在生产上经常遇到的主要是延迟裂纹。延迟裂纹有以下三种形式:(1)焊趾裂纹——这种裂纹起源于母材与焊缝交界处,并有明显应力集中部位。裂纹的走向经常与焊道平行,一般由焊趾表面开始向母材的深处扩展。(2)焊道下裂纹——这种裂纹经常发生在淬硬倾向较大、含氢量较高的焊接热影响区。一般情况下裂纹走向与熔合线平行。(3)根部裂纹——这种裂纹是延迟裂纹中比较常见的一种形态,主要发生在含氢量较高、预热温度不足的情况下。这种裂纹与焊趾裂纹相似,起源于焊缝根部应力集中最大的部位。根部裂纹可能出现在热影响区的粗晶段,也可能出现在焊缝金属中。钢种的淬硬倾向、焊接接头含氢量及其分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂 纹的三大主要因素。这三个因素在一定条件下是相互联系和相互促进的。钢种的淬硬倾向主要决定于化学成分、板厚、焊接工艺和冷却条件等。焊接时,钢种的淬硬倾向越大,越

相关文档
最新文档