智能农业灌溉系统方案设计

智能农业灌溉系统方案设计
智能农业灌溉系统方案设计

智能农业灌溉系统方案设计

托普物联网认为所谓智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。

针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。

智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。

智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能农业灌溉系统。

智能农业灌溉系统

背景

灌溉造成水资源浪费

美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能农业灌溉系统则可有效地控制水流量,达到节水目的。

HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。

水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,它们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。

在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。

不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。

智能农业灌溉系统整体方案图

结构

系统结构

采用了可以无限扩展的开放式设计思路,并采用先进的集木式构建。整个系统由多组集群控制单元组成,每组集群控制单元管理一片区域,每一个片区由多台控制器、电磁阀、传感器组成。因此本系统可以根据用户的需求,方便快速地组建智能农业灌溉系统。用户只需增加各级控制设备的数量即可实现整个系统的无限扩容。本系统可适用于小到某块棉田的自动灌溉,大到整个兵团所有作物地块,包括绿地的自动灌溉。并且系统容量越大,平均投资成本愈低,生产效率也越高。本系统遵循了以下设计原则:

1、系统模块化、层次化设计,以提高效率,增加可维护性,便于扩展;

2、灵活的硬件配置,用户可以任意升级、更换被控硬件设备,而不需要更换软件;

3、人机界面友好,实现灌溉过程的无人值守,减少人员的工作强度,提高灌溉效率;

4、抗电磁干扰的能力强,保证系统在野外强电磁干扰的恶劣环境下能可靠地运行;

5、故障自动检测功能,提高系统的健壮性,各种设备的布局要求美观。

通信方式

控制系统

系统上行数据与下行数据均采用了基于广域网的先进的无线传输方式进行传输。上行数据包括:空气温度、湿度;土壤温度、显度;电磁阀及各控制器的工作状态等信息。下行数据是指中央计算机向各控制单元发出的各种控制指令,包括电磁阀的开关指令;各工作单元的状态查询指令以及对各控制单元的参数预设等。由于采用了先进的无线数字网络,因此本系统能够快速地任意规模地构建而且不受时间、空间和其它条件的限制。无线数字网络还具有误差小、抗干扰能力强、成本低、便于扩展等多种优点,使无线数字网成为智能农业灌溉系统首选的组网方式。

无线通信技术的使用,拓宽了控制器的应用范围,只要有无线信号覆盖的地区,都可以实现远距离无线采集与控制。实现了计算机和控制器等多方面的互动性,系统还具有自动报警功能,控制器检测出系统异常,会及时将故障相关信息上报给中央计算机系统,以便迅速地定位并排出故障。

软件设计

数据的传递路径

软件是控制系统的灵魂,需要与硬件配合,将实时数据与专家系统的设定值进行比较判断,来控制电磁阀的开启和延续时间的长短,实现智能控制。中央控制室的计算机系统使用了大型关系数据库,能对各种数据进行分类存储和自动备份,并能根据定制条件进行查询。本系统能够实现全自动、无人值守的数据处理,并预留WEB接口,远程用户可以通过浏览器查询有关的灌溉信息。

本系统采用了图形用户界面,用户操作简单方便。实时或定时采集的田间土壤水分、土壤温度、空气温湿度等数据,均可以实时地以图形或者表格方式在中央控制计算机上显示。用户可以通过图

形界面设定每个地块的灌溉策略,实现定时、定量的无人值守的自动灌溉。

从数据的传递路径可将本系统分为三个层次,即数据汇集层、数据处理层、数据应用层,如右图所示:

集群控制

田间控制单元

田间控制单元

田间控制单元控制着电磁阀和各种数据采集仪器。土壤湿度传感器一般是采集土壤水份含量大小,也叫土壤水分传感器。本系统选用世界最先进的土壤水分传感器,它把土壤水含量转化为标准的电压信号,经过A/D转换、信号处理后传到集群控制单元,微电脑处理器根据获得的土壤信息确定灌溉量,然后输出控制信号并结合中央计算机指令,控制电磁阀的开关,即可以实现自动灌溉。土壤湿度传感器用来测量土壤的湿度,以了解土壤的真实灌溉需求,据此确定灌溉与否以及灌溉时间长短。本系统还配有EC(电导率)值和pH值传感器,可对进水和出水进行EC值和pH值的检测,以便控制自动营养液的配给。

系统控制方式灵活性灌溉控制系统,具有多种灌溉控制方式:系统可以脱离上微机而常年独立运行,有手动灌溉,自动连续灌溉,自动间隙灌溉等不同灌溉方式,系统可以任意设定轮灌组,每个轮灌组可以设定按照任意天间隔进行灌溉,每天可以设定多组不同启动时间。

供电系统

遵循方便、稳定、可靠的原则,结合的气候条件,本系统各个控制单元均采用了目前最先进的太阳能设备,用于供给控制单元电能。太阳能电站具有能效转换高、维护成本低、部署方便等诸多优点,成为本系统田间供电最理想的选择。考虑到长时间阴雨天气、太阳能系统需要检修等特殊情况,作为太阳供电系统的备份,使用了风能发电装置,作为供电系统的必要补充。

六要素气象站

由于气象条件的空间变异特征明显,因此在示范区内配备气象数据监测仪器,自动采集所需的气象数据,作为当地气象参数的补充。自动观测气象站是由一个能自动测量、记录与存贮数据的记录仪与一套相应的传感设备所组成的一个气象观测记录系统,该站安装的农业气象自动站其探测内容在室外有风向、风速、空气温湿度、辐射和降水量;总共为6个气象要素。

功能

为了最大限度地节约喷灌用水和实现智能控制,灌溉系统必须具备以下功能:

1.数据采集功能:可接收土壤湿度传感器采集的模拟量。模拟量信号的处理是将模拟信号转变成数字信号(A/D转换)。

2.控制功能:具有定时控制、循环控制的功能,用户可根据需要灵活选用控制方式。

①自动控制功能:可编程控制器通过程序将传感器检测的湿度信号与预先设定的标准湿度范围值相比较,如果检测的湿度值超出了设定湿度值,(低于设定值则调大电动机转速,高于设定值则调小电动机转速)则自动调节电动机转速,进行灌溉操作。

②定时控制功能:系统可对电磁阀设定开、关时间,当灌溉的湿度值达到设定的湿度值时,电动机自动停止灌溉。

③循环控制功能:用户在可编程控制器内预先编好控制程序,分别设定起始时间、结束时间、灌溉时间、停止时间,系统按设定好的时间自动循环灌溉。

3.变速功能:当前所测的土壤湿度值与预先设定的最适宜草坪生长的湿度值50%—60%RH比较,分为大于、等于、小于三种结果,即可将湿度分为高湿度、中湿度、低湿度三种状态。在控制面板上表现为高湿度、中湿度、低湿度三个指示灯。变频器根据土壤湿度的三个状态自动调节电动机的转速,电动机设有高速,中速,低速3种旋转速度,分别对应高速,中速,低速三个指示灯。

4.自动转停功能:控制系统根据土壤的干湿度情况自动启动喷灌,控制电动机以所需的转速转动,喷头喷灌5分钟,停2分钟,再喷5分钟后自动停转。

5.电动机过载保护功能:当电动机过载时,电动机立即停止转动,灌溉过程中止,并且故障指示灯闪烁报警,过载消除后自动恢复运转。

6.阴雨天自动停止:利用湿度传感器的开关量作为一个可编程控制器的输入信号,实现控制相关程序的功能。

7.省电功能:定时控制器在断电时正常计时,故采用其作为可编程控制器的电源控制。在定时灌溉控制时间之内,由定时器接通可编程控制器的电源,可编程控制器按预先编制的程序依次打开

各控制设备电源,并根据输入信号的变化随时调整程序的执行。在非系统工作时间里,定时器自动断开可编程控制器的电源,这样既减少了系统耗费的电能又延长了设备的使用寿命。

8.急停功能:当出现紧急意外事故时,按下急停按钮,电动机立即停止运转,阀门关闭,喷头停止灌溉。

9.故障自动检测功能:当灌溉系统出现故障,如水管破裂(水压为零),传感器故障,电动机故障,变频器故障,电磁阀故障等,水泵立即停止运行,电磁阀关闭,故障报警灯闪烁并伴有警笛声响起。操作人员可以按下“消音”按钮以解除铃响,但故障指示灯仍在闪烁,直到故障消除,故障指示灯才自动停止闪烁。

微机控制

節水

系统可广泛应用于农业或园林灌溉系统的自动控制或手动控制。

随着现代农业及园林业的发展,随着水资源的不断升值,传统灌溉方式正在被现代智能型微机控制灌溉系统所取代,与传统灌溉方式相比,TLG-2型智能灌溉控制系统有如下优点:a.微机控制喷灌和滴灌,大大节省日趋宝贵的水资源,具有巨大的社会效益和经济效益。

b.根据植物对土壤水份的需求特点设定不同的灌溉方式,使植物按最佳生长周期生长,达到增产增收的目的。

c.自动灌溉,大大节省人力资源,提高劳动生产率。

方案

每种植物都有适合其生长的湿度,湿度过大,植物的根系就会在土壤中腐烂,湿度过小,就不足以满足植物生长所需要的水分。灌溉就是最大限度地满足土壤的湿度在适宜植物生长的湿度范围之内。经资料查证最适宜草坪生长的湿度是50%—60%RH。此信号与50%—60%RH比较,可以分为:大于,等于,小于三种情况。系统按可编程控制器内预先编好的程序自动按一定的灌水量进行灌溉。最终实现不需要人的直接参与,由系统自动实现灌溉,人的作用只是调整控制程序和检修控制设备。

可编程控制器、传感器、变频器是实现智能灌溉不可缺少的设备。但要想使整个草坪都得到相同的水量,对草坪实现均匀而智能的灌溉,必须要设计一套完整的系统。一套完整的智能农业灌溉系统由水源、电源、可编程控制器、开关量、模拟量输入、现场仪表,显示面板等组成。

水源:包括各种可能使用的水源的类型,如自来水、河流、井水、池塘等。视距离灌溉区的远近而定,重要的是所选水源必须要有足够的供水量。

电源模块:稳定可靠的电源供应是整个系统安全、可靠运行的重要前提,要求电源模块稳定、可靠,留有一定的功率余量。

可编程控制器主控模块:负责发出和接收各种运行程序指令,是整个控制系统的中枢部分,要求具有高可靠性和稳定性,通信方式灵活,具有可扩展的功能。

开关量、模拟量输入、输出模块:该部分是可编程控制器装置正确接收信息和发出指令的关键设备,要求有高可靠性、稳定性,能实现某些电、磁的隔离功能。

现场仪表:可编程控制器系统通过接收现场仪表设备发出的信号判断被控设备的运行状况,以及是否符合设备运行的环境条件,因此要求现场仪表设备具有高可靠性、稳定性和精确性。

显示面板:通过显示面板上的指示灯,使操作人员能清晰的看到系统的运行状态,便于控制和维修。

其他辅助设备:辅助设备如冷却风扇、UPS不间断电源等是完善整个系统所必须的,对提高系统的可靠性和使用寿命有很大的帮助。

工作原理

1.智能农业灌溉系统工作原理

智能农业灌溉系统工作原理

灌溉系统工作时,湿度传感器采集土壤里的干湿度信号,检测到的湿度信号通过A/D模块转换,将标准的电流模拟信号转换为湿度数字信号,输入到可编程控制器。可编程控制器内预先设定50%—60%RH为标准湿度值,实际测得的湿度信号与50%—60%RH比较,可以分为:在这个范围内,超出这个范围,小于这个范围三种情况。可编程控制器将控制信号传给变频器,变频器根据湿度值,相应的调节电动机的转速,电动机带动水泵从水源抽水,需要灌溉时,电磁阀就自动开启,通过主管道和支管道为喷头输水,喷头以各自的旋转角度自动旋转。灌溉结束时电磁阀自动关闭。为了避免离水源远的喷头不能被供给足够的压力,在电磁阀的一侧安装一块压力表,保证个喷头的水压满足设定的喷灌射程,避免发生因为水压不足,喷头射程减少的现象。整个系统协调工作,实现对草坪灌溉的智能控制。

2.智能农业灌溉系统工作原理图

综上所述,要实现智能灌溉,系统需要有可编程控制器、传感器、A/D模块、变频器、电动机、水泵、电磁阀、管网和喷头等设备。

①可编程控制器:负责发出和接收各种运行程序指令,是整个控制系统的中枢部分。

②传感器:由于本次设计时间比较仓促,忽略了温度对灌溉的影响,因此没有使用温度传感器,只使用了土壤湿度传感器。通过传感器采集土壤里的湿度信号,判断是否需要灌溉。

③A/D模块:因为可编程控制器不能接收模拟信号,所以需将传感器的电压或电流信号转换成数字信号。

④变频器:通过改变电动机的转速调节喷灌流量,达到节水的目的。

⑤电动机、水泵:由电动机带动水泵从水源抽水,为喷灌系统提供一定的压力。

⑥电磁阀:控制喷头的喷灌与否。

⑦喷头:实现均匀喷洒,便于充分吸收。

⑧管网:灌溉系统输送水的管路。

意义

智能农业灌溉系统不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。基于传感器技术的智能农业灌溉系统是中国发展高效农业和精细农业的必由之路。

智能化灌溉系统的设计与实现

智能化灌溉系统的设计与实现 O 引言 我国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能灌溉系统在这种背景下应运而生了。智能灌溉系统不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。基于传感器技术的智能灌溉系统是我国发展高效农业和精细农业的必由之路。智能灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 我国北方各省水资源缺乏,然而多年来使用传统方式为植株浇水不仅效率低、成本高而且浪费十分来重。对于大面积种植的棉田实现精准灌溉,不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低生产的成本。 由传统的充分灌溉向非充分灌溉发展,对灌区用水进行监测预报,实际动态管理。采用传感器来监测土壤的墒情,实现灌溉管理的自动化。高效农业和精细农业要求我们必须提高水资源的利用率。要真正实现水资源的高效,仅凭单项节水灌溉技术是不可能解决的。必须将水源开发、输配水、灌水技术和降雨、蒸发、土壤墒情以及农作物需水规律等方面做统一考虑。做到降雨、灌溉水、土壤水和地下水联合调用,实现按期、按需、按量自动供水。如何利用有限的水资源,走“节水农业”已经成为农业生产获得最佳的效益和持续稳定发展的增长点。因此使用自来水发电的智能灌溉系统,控制喷灌和微灌系统,能有效地减少田间灌水过程中的渗漏和蒸发损失。现有的灌溉系统都要外接电源,存在一定的安全隐患且较麻烦。本系统可在无供电条件的地区使用,其最大优点为节水、节能、节约劳动力。 1 设计目标与实现方案描述 针对现有的智能化灌溉系统都需要外加电源供电,存在一定安全隐患,而且现有的自动灌溉装置的程序一般固化在系统的程序存储器内,只能简单地设置灌溉时间及循环时间,不能灵活根据季节不同自动调节等缺点,该系统将小型直流发电机接上风叶至于密封特制的盒子中,用水流带动风叶旋转来发电,再将电能储存到蓄电池中以给监控电路和电磁阀供电。该装置是以湿敏电阻和光敏电阻检测信号,自来水发电用作供电的一种无需外接电源的自动灌溉装置。该装置监控电路由信号采集部分,灌溉控制部分,电源部分,执行部分4部分组成。如图1所示。 1.1 信号采集部分 1.1.1 土壤湿度检测 采用硅湿敏电阻作为检测土壤湿度的传感器,它在25℃时响应时间小于5 s,检测土壤含水量范围为O~100%。 当湿敏传感器插入土壤时,由于土壤含水量不同,使得湿敏传感器的阻值也不同。通过湿敏电阻和IC1NE555判断湿度强弱,如果是土壤较干燥,湿敏电阻阻值较大,NE555翻转,输出高电平(约为电源电压)。 调整时,将湿敏电阻插入水内,调Rp1使NE555的3脚输出为12 V,然后将湿敏电阻从水中取出并擦干,调Rp1使输出0 V,这样反复调节多次即可达到要求。 1.1.2 日光强弱检测 通过光敏电阻和NE555判断光线是否强烈,如果是中午光线较强烈,IC2 NE555的3脚输

智能灌溉系统的研究与设计综述

毕业设计(论文)题目智能灌溉系统的研究与设计 教学点 专业 年级 姓名 指导教师 定稿日期:2011 年6月1 日

摘要 本系统系统通过选择合适的传感器将对土壤中含水量以及空气湿度等重要物理量进行采集,通过信号及采集部分将其转化为数字信号,交给单片机系统进行处理,通过智能控制部分,在需要时驱动相关外设,进行自动精确定位地灌溉。具体流程图如下: 工作过程流程图

关键字:智能控制精确定位密封湿度传感器差动放大顺序通电 液晶显示 机械设计部分 整体的机构形式如下所述: 水由出水口接入,经过水泵增压后,经过导水软管,最后从管的另一端喷射出来。机械臂主要由导水软管,套筒,舵机,步进电机和与电机配合的传动装置组成。套筒下端固结有加工上锥齿的圆环,电机通过锥齿轮传动,带动套筒转动。舵机固定在套筒上,当套筒旋转时,舵机也随套筒旋转。导水软管穿过套筒与固定在套筒上端的舵机相固结,当舵机臂摆动时导水软管喷头处完成竖直方向的调整,以使喷出的水能够调整远近。而套筒转动则实现了喷水方向的调整。这样,通过水平旋转及竖直摆动,实现了喷灌的精确定位。考虑到水对电机、齿轮传动部分的腐蚀影响,电机及其与套筒的传动部分通过密封箱密封,导线引出,连接到控制电路部分及电源部分,以实现对机械系统的电力输入及控制。机械臂通过套筒下端深埋入土壤进行固定。这种方案是我们经过多次调整最后确定出来的。下图为我们用机械仿真软件pro/engineer制作的图形(具体见附图)

我们的创新体现在我们的设计过程当中。在喷口的设计中,由于市场上所售的喷头多利用水压将水达到某个固定位置,因此不能实现喷灌位置的可调性要求。因此喷管管口需要重新设计。在喷头处,我们曾试验过多个方案。其中一个就是拟定用钢管作导水管,将水直接引到喷头,而喷头处设计成喷口可以转动的形式,通过增加一个电机并通过细杆与喷头处连实现竖直方向的转动,水平方向的转动还是靠另一个电动机带动套筒来实现(具体见附proe仿真图)。但是这种设计有两个问题我们没能解决。第一个问题就是密封的问题,喷口转动时对其密封要求较高,且此处水压较高,更增加密封难度。第二个问题就是底部的电机如何使上部的喷头进行竖直方向的摆动。此处传动距离较长,增加材料势必增加水平转动电机的负载,且此电机好密封,极易漏水烧毁电机。于是我们直接采用了接导水软管的方法。导水软管是用一种软橡皮材料做成的,我们在进行试验时,一端接从水泵流过的水,一端穿过套筒固定在舵机上,有较好的弹性,使灌溉机械臂在转动时,水管不会产生较大的阻力矩,也不会发生塑性变形影响使用。这种形式的优点是结构简单,使用方便,一根管足以解决喷头出的设计问题。缺点是电机带动套筒的转角不能持续朝一个方向转动,否则水管会打结使水流不通,且从水管浇灌到地面的水流呈柱状,对地面冲击较大。软管长期拉伸压缩会造成水管脱胶,碎裂等问题。 在实际设计计算中,需进行软管的拉压的疲劳强度的校核,及齿轮传动的校核计算。通过查机械设计的手册可以计算出所需的材料及其他要求。 在进行设计的过程中,我们查阅了上市的喷头的基本的工作原理,对其有了初步的了解。在进行结构设计得过程中,我们查阅了相关的机械原理、机械设计方面的书籍,增长了我们

智能节水灌溉系统的设计原理及使用方法

智能节水灌溉系统的设计原理及使用方法 智能节水灌溉系统也叫智能农业物联网精细农业自控系统,是托普云农物联网为保证农业作物需水量的前提下,实现节约用水而提出的一整套解决方案。智能节水灌溉系统简单的说就是农业灌溉不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;智能节水灌溉系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。 一、智能节水灌溉系统的功能设计 智能节水灌溉系统要实现上述功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能节水灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向

技术密集型转变奠定了重要的基础。 智能节水灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能节水灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能节水灌溉系统。 二、智能节水灌溉系统的设计背景 灌溉造成水资源大量浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能节水灌溉系统则可有效地控制水流量,达到节水目的。HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能节水灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 三、智能节水灌溉系统工作原理 灌溉系统工作时,湿度传感器采集土壤里的干湿度信号,检测到的湿度信号

智能灌溉控制系统系统特点

我国的智能灌溉控制系统是经由国家农业信息化工程技术研究中心自主研发的集自动控制技术,传感器技术、通讯技术、计算机技术等于一体的灌溉管理系统。随着越来越多的的城区开始应用智能灌溉控制系统,人们对智能灌溉控制系统也开始逐渐重视,下面我们一起来看看智能灌溉控制系统的特点。 其中机井灌溉控制系统是通过IC卡机井灌溉控制箱对农田机井进行取水管理,以IC卡刷卡取水的方式取代了传统的专人管理方式;实现了农业用水计量、水资源信息的自动化采集和测控。针对机井分布情况、灌溉区域的不同,提出不同方式的组网方案。 我国自主研发的智能灌溉系统有着系统可靠性高,操作相对简便;软硬件应用中文作为界面,易于学习和掌握,操作过程对国人来说更加容易;适合各种灌溉方式如滴灌、喷灌、微灌,地面灌等;具有多种的控制连接方式:该系统具有满足不同条件下(地形,布局,规模等)的控制连接模式,各控制设备之间可采用无线或有线方式连接;该系统的扩容性,灵活性较强,可进行分区域、多路的集中或分散智能控制,即适用于小面积,简单的灌溉控制,也适用于大面积,复杂的灌溉网络的控制;系统具有完成数据分析,控制等功能,控制系统还能够处理传感器数据信息,利用传感器或条件输入设备作为灌溉运行的控制条件,实现智能化灌溉;系统可可根据需要实现中控室、手机短信、现场遥控及现场手动控制功能;可控制灌溉系统以外的其它设备,如:道路

或公共场所灯光,大门、喷泉、水泵等;成本低(仅有进口产品的一半价格),后期维护,保养简便等特点。 以上是对智能灌溉控制系统特点的介绍,下面介绍一家生产智能灌溉控制系统的公司。南京淋达智能技术有限公司(LD future),是中国科技团队联合美国洛杉矶加州大学(UCLA)清洁能源研究中心共同推进技术创新,并与国内风险投资机构共同投资成立的物联网高科技企业。公司专注于通过物联网与移动互联网的技术创新实现全球水资源、能源的高效利用,致力于推动智慧城市中的智慧园区灌溉、智慧小区灌溉物联网智能技术产业化。

智能农业灌溉系统方案设计

智能农业灌溉系统方案设计 托普物联网认为所谓智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能农业灌溉系统。 智能农业灌溉系统 背景

灌溉造成水资源浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能农业灌溉系统则可有效地控制水流量,达到节水目的。 HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,它们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 智能农业灌溉系统整体方案图 结构 系统结构

基于无线传感器网络的精细农业智能节水灌溉系统_中文

基于无线传感网络的精细农业智能节水灌溉系统 肖克辉2,1 ,肖德琴 2,1 ,罗锡文 1 (1.华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州510642; 2.华南农业大学大学信息学院,广州510624) 摘要:在精细农业相关应用和理论研究基础上,自行设计用于检测农业水分含量和水层高度的无线传感器,构建农田水分无线传感器网络体系结构,设计基于水分无线传感网络的智能节水灌溉控制系统,通过实时农田水分数据和农作物水分需求专家数据形成灌溉决策,由灌溉控制系统实施定量灌溉,在水稻生长过程中的实际应用表明,该系统体现出可行性和高效性,有利于精细农业的发展和水资源的可持续利用。 关键词:无线传感网络;智能灌溉控制系统;精细农业;构架 0 前言 通过不同集成微型传感器的相互合作,无线传感网络常用于检测并获取监测对象中的各种信息。利用嵌入式信息处理和随机自组织无线网络,将信息发送到用户终端来实现“无处不在的计算”理念。基于无线传感网络的自动化、自组织和以数据为中心等特点,它能够应用于获取土壤水分数据,然后自动地将这些数据融合传输形成一个高效的田间水分数据采集平台,从而实现智能节水灌溉。 传统的田间灌溉通常由人亲自控制,而且需要大量的人力和物力,这将导致缺乏实时性和精确性,这也有悖于长期农业生产的发展趋势和水资源的可持续利用。无线传感网络被广泛地应用于精细农业和智能灌溉来克服上述存在的问题。 G Vellidis 和他的同事开发了一个典型的实时智能检测的传感器阵列来检测土壤水分,测试土壤水分使用现成的组件。这个阵列由一个位于中间位置的接收机组成,这台接收机连接在一台笔记本电脑和田间的多个传感器节点上。具有精密灌溉技术的集成传感器提供了一个闭环的灌溉系统,能够确定从智能传感器阵列的哪一位置将时间和数量输入到实时定位灌溉应用程序中。

自动化智能滴灌系统设计方案

自动化智能滴灌控制系统设计方案 陕西颐信网络科技有限责任公司 西安天汇远通水利信息技术有限责任公司

目录 一. 系统概述............................................................................................................ - 3 - 二. 系统组成............................................................................................................ - 4 - 三. 通信网络............................................................................................................ - 5 - 四. 功能设计............................................................................................................ - 6 - 4.1. 监测中心级设计 ...................................................................................... - 6 - 4.2. 首部控制级设计 ...................................................................................... - 6 - 4.3.1. 设计原则 ....................................................................................... - 7 - 4.3.2. 主要功能 ....................................................................................... - 7 - 4.3.3. 硬件设计 ....................................................................................... - 8 - 4.3.4. 软件设计 ..................................................................................... - 10 - 4.3. 田间控制级设计 .................................................................................... - 13 - 4.3.1. 田间控制器主要功能 ................................................................. - 13 - 4.3.2. 田间控制器性能指标 ................................................................. - 14 - 4.3.3. 田间路由器节点主要功能 ......................................................... - 14 - 4.3.4. 田间路由器节点性能参数 ......................................................... - 14 - 4.3. 5. 供电方式 ..................................................................................... - 14 - 五. 系统特性.......................................................................................................... - 15 - 六. 设计研究意义.................................................................................................. - 16 -

农业智能灌溉系统解决方案

农业智能灌溉系统解决方案 农业智能灌溉系统又叫物联网智能滴灌控制系统,是托普云农为实现现代农业所提倡的节水、节肥、省力、高效而研发出的一种自动化控制灌溉浇水系统。 农业智能灌溉系统是将灌溉节水技术、农作物栽培技术及节水灌溉工程的运行管理技术有机结合,同时集电子信息技术、远程测控网络技术、计算机控制技术及信息采集处理技术于一体,通过计算机通用化和模块化的设计程序,构筑供水流量、压力、土壤水分、作物生长信息、气象资料的自动监测控制系统,进行水、土环境因子的模拟优化,实现灌溉节水、作物生理、土壤湿度等技术控制指标的逼近控制,从而将农业高效节水的理论研究提高到现实的应用技术水平。农业智能灌溉系统实用性强,灌溉定时定量,适用范围广,功能强大,操作简单,可广泛应用于粮食、蔬菜、花卉、果树、大棚等灌溉管理。 一、农业智能灌溉系统组成: 浙江托普物联网研制的农业智能灌溉系统由首部枢纽、管路和滴头组成。 1.首部枢纽:包括水泵(及动力机)、施肥罐、过滤器、控制与测量仪表等。其作用是抽水、施肥、过滤,以一定的压力将一定数量的水送入干管。 2.管路:包括干管、支管、毛管以及必要的调节设备(如压力表、闸阀、流量调节器等)。其作用是将加压水均匀地输送到滴头。 3.滴头:其作用是使水流经过微小的孔道,形成能量损失,减小其压力,使它以点滴的方式滴入土壤中。滴头通常放在土壤表面,亦可以浅埋保护。

二、农业智能灌溉系统系统工作原理: 1.灌溉控制 灌溉分为人工干预、定时定量、条件控制3种灌溉控制方式,不论哪一种控制方式,当达到灌溉开始条件时,先打开田间阀和主控阀,然后启动水泵,开始进行灌溉。当一组阀门灌溉结束时,先打开下一组阀门,再关闭正在灌溉的阀门(水泵一直处于运行状态)。当所有需要灌溉的田间阀灌溉完毕,先关闭水泵,再关闭主控阀和田间阀,这样,一个灌溉过程结束。 2.营养控制 营养液控制方式也分为人工干预、定时定量、条件控制三种。当进行营养液时,计算机系统根据选定的配方和已设定好的营养液PH、EC值,利用文丘里注肥器进行水肥混合,同时在线实时监测混合营养液的PH、EC值,根据PH、EC设定值与检测值之间的偏差来调整混肥阀的注肥频率,在短时间内使营养液的检测值和设定值之差达到允许的范围内。当一组田间阀门结束时,先打开下一组阀门,再关闭正在运行的阀门。当所有需要的田间阀完毕,先关闭泵和水泵,再关闭正在运行的所有阀门,结束控制。 3.过滤器自动反冲洗控制 过滤器反冲洗有2种控制方式,一种为自动控制,一种为计算机手动控制。自动控制是利用差压开关监测过滤器进、出口两端差压,当过滤器由于堵塞,两端差压达到设定值时,立即中断当前的工作,对过滤器组依次进行反冲洗,冲洗时长可任意设定,冲洗完毕,恢复系统原来的运行状态。过滤器反冲洗手动控制是当认为过滤器需要反冲洗时,通过启动反冲洗程序界面上的启动键,随时可进行过滤器的反冲洗,冲洗方式与自动控制相同。 4.优先权控制

智能农业灌溉系统

智能农业灌溉系统方案设计 智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。 智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16雅V 30% 背景 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%而水资源利用率高的国家已达70%-80%因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。

系统结构 本设计采用了可以无限扩展的开放式设计思路,并采用先进的集木式构建。整个系统由多组集群控制单元组成,每组集群控制单元管理一片区域,每一个片区由多台控制器、电磁阀、传感器组成。因此本系统可以根据用户的需求,方便快速地组建智能农业灌溉系统。用户只需增加各级控制设备的数量即可实现整个系统的无限扩容。本系统可适用于小到某块棉田的自动灌溉,大到整个兵团所有作物地块,包括绿地的自动灌溉。并且系统容量越大,平均投资成本愈低,生产效率也越高。 本系统遵循了以下设计原则: 1、系统模块化、层次化设计,以提高效率,增加可维护性,便于扩展; 2、灵活的硬件配置,用户可以任意升级、更换被控硬件设备,而不需要更换软件; 3、人机界面友好,实现灌溉过程的无人值守,减少人员的工作强度,提高灌溉效 率; 4、抗电磁干扰的能力强,保证系统在野外强电磁干扰的恶劣环境下能可靠地运行; 5、故障自动检测功能,提高系统的健壮性,各种设备的布局要求美观。 通信方式 系统上行数据与下行数据均采用了基于广域网的先进的无线传输方式进行传输。上行数据包括:空气温度、湿度;土壤温度、显度;电磁阀及各控制器的工作状态等信息。下

智能灌溉系统

摘要 灌溉系统自动化水平较低是制约我国高效农业发展的主要原因。就此,文章设计了以单片机控制为中心的模拟智能灌溉系统。该系统可对不同土壤的湿度进行监控,并根据作物对土壤湿度的要求进行适时、适量灌水。 单片机控制部分采用的是型号STC89C52的单片机,主要有显示单元、ADC 采集单元、RTC 单元、EEPROM 存储单元、继电器控制电路及报警输出电路组成。单片机可将电位器输出的模拟电压信号通过AD 转换成数字信号,通过 DS1302 芯片提供时间信息;通过按键完成灌溉系统控制和湿度阈值调整功能,再通过 LED 完成系统工作状态指示功能。实现了土壤湿度测量、土壤湿度和时间显示、湿度阈值设定及存储等基本功能。 关键词:智能灌溉,单片机

目录 第一章绪论 (1) 1.1 前言 (1) 1.2国内外现状 (1) 1.3智能灌溉系统的简介 (2) 1.4本次设计中担任的工作 (2) 第二章系统硬件电路的设计 (3) 2.1本设计任务和主要内容 (3) 2.2模拟智能灌溉系统框图 (3) 2.3 STC89C52单片机简介 (3) 2.4实时时钟模块 (5) 2.4.1 DS1302 基本功能 (5) 2.5按键模块 (6) 2.6模数转换模块 (6) 2.6.1PCF8591基本功能 (7) 2.7继电器的驱动模块 (8) 2.8数码显示模块 (9) 2.8.1数码管的简介 (9) 2.8.2锁存器M74HC573 (10) 2.8.3译码器74HC138 (10) 2.9存储模块 (11) 第三章原理图的设计 (12) 3.1Protel DXP的简介 (12) 3.2智能灌溉系统原理图的设计 (12) 3.2.1启动Protel DXP 2004 (12) 3.2.2电路原理图文件的新建和保存 (12) 3.2.3元件的查找和放置 (13) 3.3智能灌溉系统印制电路板(PCB)的设计 (16) 3.3.1新建印制电路板文件 (16) 3.3.2规划印制电路板 (16) 3.3.3将电路原理图文件传输到PCB中 (16) 第四章系统软件的设计 (21) 4.1流程图 (21) 总结 (23)

自动化灌溉设计方案

目录 自动化灌溉与信息化管理系统方案 (2) 1、现场智能感知平台: (4) 1.1、井房首部设备智能监控系统 (5) 1.2、田间无线灌溉控制系统 (7) 1.3.无线土壤墒情监测系统 (10) 1.4.综合智能气象监测系统 (11) 2、无线网络传输平台 (14) 3、数据管理平台 (15) 4、应用平台(监控中心及移动管理控制端) (17) 5、主要技术参数 (20)

自动化灌溉与信息化管理系统方案 自动化灌溉与信息化管理系统是针对农业大田种植分布广、监测点多、布线和供电困难等特点,融合最新的物联网和云计算技术,采用高精度土壤温湿度传感器和智能气象站,远程在线采集土壤墒情、气象信息,实现墒情自动预报、灌溉用水量智能决策、远程/自动控制灌溉等功能。 该系统根据不同地域的土壤类型、灌溉水源、灌溉方式、种植作物等划分不同类型区,在不同类型区内选择代表性的地块,建设具有土壤含水量,地下水位,降雨量等信息自动采集、传输功能的监测点;通过灌溉预报软件结合信息实时监测系统,获得作物最佳灌溉时间、灌溉水量及需采取的节水措施为主要内容的灌溉预报结果,定期向群众发布,科学指导农民实时实量灌溉,达到节水目的。 系统组成: 大田灌溉自动化与信息化管理系统分为现场智能感知平台、无线网络传输平台、云数据管理平台、应用平台(监控中心及移动管理控制端)四个层次,其中,田间脉冲电磁阀、无线阀门控制器、远程水泵智能控制器、云服务器、主控制中心和村级(企业)控制中心、移动控制终端等组成灌溉无线控制系统,能够实现现地无线遥控、远程随时随地监控、轮灌组定时自动轮灌等控制方式,并且实时监测机井和阀门状态,灌溉流量和管网压力,保障运行安全,及时提示报警信息。在此基础上,扩充田间土壤墒情监测、农田气象监测、作物和泵

智能喷灌系统(详细版)

智能喷灌系统(详细版) 大家知道喷灌是什么吗?喷灌是把由水泵加压或自然落差形成的有压水通过压力管道送到田间,再经喷头喷射到空中,形成细小水滴,均匀地洒落在农田,达到灌溉的目的。而智能喷灌系统则是为实现现代农业所提倡的节水、节肥、省力、高效而研发出的一种自动化控制灌溉浇水系统。目前在农业领域内有着广泛的应用。本文就简单介绍一下智能喷灌系统及其应用的好处。 一、智能喷灌系统概述: 托普云农滴灌智能控制系统是将灌溉节水技术、农作物栽培技术及节水灌溉工程的运行管理技术有机结合,同时集电子信息技术、远程测控网络技术、计算机控制技术及信息采集处理技术于一体,通过计算机通用化和模块化的设计程序,构筑供水流量、压力、土壤水分、作物生长信息、气象资料的自动监测控制系统,进行水、土环境因子的模拟优化,实现灌溉节水、作物生理、土壤湿度等技术控制指标的逼近控制,从而将农业高效节水的理论研究提高到现实的应用技术水平。滴灌智能控制系统实用性强,灌溉定时定量,适用范围广,功能强大,操作简单,可广泛应用于粮食、蔬菜、花卉、果树、大棚等灌溉管理。 二、智能喷灌系统应用的好处: 1、省工:完全突破传统的灌溉模式,一个人即可轻松呵护成百上千亩作物,不论是智能自动化还是半自动控制,都不过是开开阀门、点下键盘这样简单,劳动强度大幅降低,节省70%左右人工。 2、省肥:通过滴灌系统,结合当下流行的全溶性水溶肥,轻松实现水肥一体化,将肥料精准施加到作物根部。滴灌水的利用率高,则施肥的利用率也高,可节省50%以上的肥料,氮肥利用率可高达70%。 3、省水:改变了传统漫灌浇地而不是浇作物的弊端,根据作物需水特性,实现适时、适量、可控的精准灌溉,避免产生深层渗漏及地面径流,可节水40-70%。滴灌为局部灌溉,只湿润作物根区,不易产生无效灌溉;采用滴灌技术很容易实施频繁灌溉,很容易控制过量灌溉;很容易实施灌溉自动化,实施智能灌溉、精准灌溉;与喷灌比,不受风的影响,无漂移损失;蒸发损失小。 4、省心:系统操作简便,全自动智能控制系统可轻松实现定时、定点、定量的水肥供给,开开阀门、按个按钮即可完成灌溉施肥,非常省心。 以上便是智能喷灌系统的介绍及其应用的好处,浙江托普云农科技股份有限公司致力于

智能农业之水肥一体化智能灌溉系统

智能农业灌溉系统组成要素及功能特点 一、智能农业水肥一体化应用技术: 智能农业灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。通过与供水系统有机结合,实现智能化控制。可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。 用户通过操作触摸屏进行管控,控制器会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程中的重要参数,实现对灌溉、施肥的定时、定量控制,节水节肥、省力省时、提高产量,专用于连栋温室、日光温室、温室大棚和大田种植灌溉作业。 托普云农智能农业水肥一体化技术以自动化精确灌溉、施肥,节省用工和提高效益为核心,在现代农业生产中应用显示出明显的优势。本文就该技术作相关阐述。

二、智能农业水肥一体化系统组成以及适用范围: 托普云农智能农业水肥一体化微滴灌系统主要是由阀门、水表、水泵、自动反冲洗过滤系统、智肥化施肥机、pH/EC控制器、施肥罐、安全阀、电磁阀、田间管道系统等组成。该系统适合在已建成设施农业基地或符合建设微灌设施要求的地方应用,要有固定水源且水质良好,如水库、蓄水池、地下水、河渠水等。比较适合用于经济价值较高的蔬菜和果树等作物上。 三、智能农业水肥一体化微灌、施肥制度制定: 1、微灌制度拟定 智能农业水肥一体化灌溉系统根据作物全生育期需水量与降水量的差值确定灌溉定额、灌水次数、灌水间隔时间、每次灌水延续时间和灌水定额等。还需考虑土壤墒情、温度、设施条件和农业技术措施等。大棚膜下滴灌用水量会比畦灌减少30%~40%,比大水漫灌减少50%以上。 2、施肥制度拟定 智能农业水肥一体化灌溉系统根据作物全生育期需肥总量与土壤中养分含量的差值来确定实际施肥量、每次施肥量、施肥次数、施肥时期和肥料品种,同时作物的需肥特性、肥料利用率、目标产量、施肥方式也是决定施肥制度拟定的因素。微灌施肥通常可比习惯施肥减少30%~50%的肥料用量。 3、微灌和施肥制度拟合 按照作物拟定的微灌制度将肥料同微灌的灌水时间和次数进行合理分配,主要原则就是肥随水走、分阶段拟合。注入肥液浓度一般为0.1%。操作上还要注意,要先走水15min左右,再注入配好的肥料溶液,微灌施肥结束后需用不含肥的水清洗清灌管道15~30min,防止堵塞出水口。此步聚智能农业水肥一体化滴灌系统系统可以自动进行,无需人工控制。 4、肥料选择 智能微灌系统的滴灌管出水口很小,非常容易被各种微小的杂质堵塞,影响到微灌施肥的效果。为此肥料的选择注意以下几个方面:首先必须是全溶性的肥料,溶于水后无沉淀;二是肥料的相溶性要好,搭配使用不会相互作用生成沉淀物;三是施磷肥时尽量通过基肥施入土壤;四是用微量元素时,应选用螯合态微肥,否则与大量元素肥混合使用时易产生沉淀物。在市场上常用的溶解性好的普通肥料有尿素、硝酸铵、硫酸铵、硝酸钙、硝酸钾、磷酸、磷酸二青钾、磷酸一铵(工业级)、氯化钾等,或选用微灌专用固体肥料。

最新自动化灌溉设计全套方案

精选设计方案类应用文档,如果您需要使用本文档,请点击下载,祝您生活愉快,工作顺利,万事如意! 精选范文、公文、论文、和其他应用文档,希望能帮助到你们! 最新自动化灌溉设计全套方案 目录 自动化灌溉与信息化管理系统全套方案 (2) 1、现场智能感知平台: (5) 1.1、井房首部设备智能监控系统 (5) 1.2、田间无线灌溉控制系统 (7) 1.3.无线土壤墒情监测系统 (10) 1.4.综合智能气象监测系统 (12) 2、无线网络传输平台 (15) 3、数据管理平台 (16) 4、应用平台(监控中心及移动管理控制端) (18) 5、主要技术参数 (21)

自动化灌溉与信息化管理系统全套方案 自动化灌溉与信息化管理系统是针对农业大田种植分布广、监测点多、布线和供电困难等特点,融合最新的物联网和云计算技术,采用高精度土壤温湿度传感器和智能气象站,远程在线采集土壤墒情、气象信息,实现墒情自动预报、灌溉用水量智能决策、远程/自动控制灌溉等功能。 该系统根据不同地域的土壤类型、灌溉水源、灌溉方式、种植作物等划分不同类型区,在不同类型区内选择代表性的地块,建设具有土壤含水量,地下水位,降雨量等信息自动采集、传输功能的监测点;通过灌溉预报软件结合信息实时监测系统,获得作物最佳灌溉时间、灌溉水量及需采取的节水措施为主要内容的灌溉预报结果,定期向群众发布,科学指导农民实时实量灌溉,达到节水目的。 系统组成: 大田灌溉自动化与信息化管理系统分为现场智能感知平台、无线网络传输平台、云数据管理平台、应用平台(监控中心及移动管理控

制端)四个层次,其中,田间脉冲电磁阀、无线阀门控制器、远程水泵智能控制器、云服务器、主控制中心和村级(企业)控制中心、移动控制终端等组成灌溉无线控制系统,能够实现现地无线遥控、远程随时随地监控、轮灌组定时自动轮灌等控制方式,并且实时监测机井和阀门状态,灌溉流量和管网压力,保障运行安全,及时提示报警信息。在此基础上,扩充田间土壤墒情监测、农田气象监测、作物和泵房视频监测等内容,指导科学灌溉,提高灌溉的智能化程度。 灌溉自动化系统总体层次分布图 系统特点: ?全无线传输,自组网协议,电池供电、不需要任何布线,系统安装维护方便; ?无线采用全球免费的公共频段(2.4GHz),省去传统无线的运营费用; ?公网无线和现场无线融合,且具有冗余备份能力,提高了系统可靠性和安全性,突破了系统现地访问限制;

智能控制农业自动化灌溉系统解决方案

基于智能控制的农业自动化灌溉系统解决方案前言 我国是一个水资源严重缺乏,水旱灾害频繁的国家。虽然水资源的总量居世界第6 位,但是按人均水资源量计算,人均占有量只有 2500 立方米,约为世界人均水量的 1/4,在世界排 110 位,已被联合国列为 13 个贫水国家之一。另一方面,我国水资源的分布很不平衡。北方有些地区水资源的占有量仅为 900 立方米,低于国际公认的 1000 立方米的水资源下限。有些地区的人均占有量甚至低于世界最贫水的国家埃及和以色列的水平。我国农业用水量约占总用水量的 80% 左右,由于农业灌溉用水的利用率普遍低下,就全国范围而言,水的利用率仅为 45 % ,而水资源利用率高的国家已达 70% 一 80% ,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。在灌溉系统合理地推广自动化控制,不仅可以提高资源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。灌溉系统自动化的水平较低,这也是制约我国高效农业发展的主要原因。以色列、日本、美国等一些国家已采用先进节水灌溉制度。由传统的充分灌溉向非充分灌溉发展,对灌区用水进行监测预报,实际动态管理。采用传感器来监测土壤的墒情和农作物的生长,实现水管理的自动化。高效农业和精细农业要求我们必须提高水资源的利用率。要真正实现水资源的高效,仅凭单项节水灌溉技术是不可能解决的。必须将水源开发、输配水、灌水技术和降雨、蒸发、土壤墒情和农作物需水规律等方面统一考虑。做到降雨、灌溉水、土壤水和地下水联合调用,实现按期、按需、按量自动供水。 1、自动化控制灌溉系统的工作原理 托普物联网指出所谓的自动化控制灌溉即利用田间布设的相关设备采集或监测土壤信息、田间信息和作物生长信息,并将监测数据传到首部控制中心,在相应系统软件分析决策下,对终端发出相应灌溉管理指令。 托普物联网研制的农业灌溉自动化控制系统的工作原理为:通过土壤、气象、作物等类传感器及监测设备将土壤、作物、气象状况等监测数据通过墒情信息采集站,传到计算机中央控制系统,中央控制系统中的各类软件将汇集的数值进行

自动化智能滴灌系统设计方案

(此文档为Word格式,下载后可以任意编辑修改!)(文件备案编号:) 自动化智能滴灌系统 设计方案 工程名称: 编制单位: 编制人: 审核人: 批准人: 编制日期:年月日

目录 一. 系统概述............................................................................................................ - 3 - 二. 系统组成............................................................................................................ - 4 - 三. 通信网络............................................................................................................ - 5 - 四. 功能设计............................................................................................................ - 6 - 4.1. 监测中心级设计 ...................................................................................... - 6 - 4.2. 首部控制级设计 ...................................................................................... - 6 - 4.3.1. 设计原则 ....................................................................................... - 7 - 4.3.2. 主要功能 ....................................................................................... - 7 - 4.3.3. 硬件设计 ....................................................................................... - 8 - 4.3.4. 软件设计 ..................................................................................... - 10 - 4.3. 田间控制级设计 .................................................................................... - 13 - 4.3.1. 田间控制器主要功能 ................................................................. - 13 - 4.3.2. 田间控制器性能指标 ................................................................. - 14 - 4.3.3. 田间路由器节点主要功能 ......................................................... - 14 - 4.3.4. 田间路由器节点性能参数 ......................................................... - 14 - 4.3. 5. 供电方式 ..................................................................................... - 14 - 五. 系统特性.......................................................................................................... - 15 - 六. 设计研究意义.................................................................................................. - 16 -

相关文档
最新文档