马蹄焰玻璃窑炉窑炉气氛的控制

马蹄焰玻璃窑炉窑炉气氛的控制
马蹄焰玻璃窑炉窑炉气氛的控制

马蹄焰玻璃窑炉内火焰气氛的控制

朱柏杨

玻璃液对窑内气氛的变化反应极为灵敏。在无特殊要求的情况下,一般以中性焰为佳,但实际上多数采用弱还原焰。器皿玻璃配合料在使用芒硝做澄清剂时,应将熔化部的前半部调整为还原性火焰,而在澄清部应保持中性或弱氧化性气氛。澄清部采用氧化气氛利于氧化亚铁的氧化与玻璃液的澄清。特别对保温瓶和铅玻璃的熔制,必须采用氧化气氛,否则,铅玻璃及其原料会被还原出金属铅。

1、窑炉火焰气氛的概念:窑炉火焰气氛是指在熔制的过程中,窑炉内的燃烧产物中所含的游离氧与还原成分的百分比,一般将窑炉火焰气氛分为氧化气氛和还原气氛两种。

1.1、窑炉火焰游离氧含量在8%以上的称为强氧化气氛,游离氧含量在4%~5%的称为普通氧化气氛,游离氧含量1%~1.5%的称为中性气氛,当游离氧的含量小于1%,并且CO含量在3%以下时,称为弱还原气氛,CO含量在5%以上的称为强还原气氛。

1.2、气氛对熔制影响也很大,有时甚至是关键因素。在实际生产中,采用何种气氛制度来熔化玻璃配合料,要根据玻璃配方中原料的组成以及熔制过程中各阶段的熔化反映情况来确定。当玻璃配合料中所含氧化物和碳较少,且粘性低、含铁量较高时,适合氧化气氛熔化,反之,则适合于还原气氛。

1.3、气氛会影响玻璃配合料在高温下的熔化反应速度与均化澄清效果,尤其对器皿玻璃的颜色、透光度和表面质量的影响,更显突出。如果在熔窑液面上长期被煤气覆盖,即使空气过剩系数再大,烟气中CO的含量再小,火焰气氛也是还原性的。反之,如果在熔窑液面上长期被助燃风覆盖,则火焰气氛是氧化性的。但不利于微气泡的吸收和排除,单纯调整助燃风量基本不起作用。

2、窑炉火焰气氛对产品性能的影响:玻璃产品在烧成过程中会发生一系列的物理化学反应,如水分的蒸发,盐类的分解,有机物、碳和硫化物的氧化,晶型的转变,晶相的形成等。这些物理化学反应的速度,除了受温度影响之外,气氛对其也有很大的影响,如果控制不当,就会使玻璃产品产生各种缺陷。

2.1、气氛影响铁的化合价:在实际生产中,当氧化气氛烧成时,配合料中的Fe2O3在含碱量较低的玻璃相中熔解度较低,可析出胶态的Fe2O3使制品显淡淡的棕黄色,当还原气氛烧成时,形成的FeO熔化在玻璃相中呈淡绿色。当熔制气氛的波动(通过观察玻璃中制品颜色的变化了解气氛波动情况)达到一定程度时,玻璃就产生微气泡。

2.2、气氛会使SiO2还原和CO分解:在一定的温度下,还原气氛可使SiO2还原为气态的SiO,在较低的温度下它将按2SiO→SiO2+Si分解,因而在制品表面形成Si的雾斑。还原气氛中的CO在一定的温度下会按2CO→CO2+C分解。因此澄清池在还原气氛中很可能因CO分解在玻璃液体中会再被氧化成CO2形成气泡。

2.3、器皿玻璃尽量采用还原性配合料,尤其在高白玻璃生产中采用还原性配合料是不容置疑的。

2.4、保持熔制氧化还原气氛的稳定。熔制气氛既包括配合料的气氛,又包括火焰气氛。玻璃熔

制气氛由配合料的氧化还原性和火焰气氛两个因素决定,配合料的氧化还原性一般由芒硝含率、碳粉含率、硝酸钠含率等决定。

3、窑炉火焰气氛的控制:

3.1、保持热点区火焰弱还原性气氛,热点以后区域火焰呈弱氧化性气氛至关重要。生产中可以采用调整出喷火口火焰亮度、刚度、气氛等调整措施。

3.2、器皿玻璃在热点区以前的火焰气氛最好为弱还原性气氛,保持热点区火焰弱还原性气氛。在热点区是玻璃体形成的主要阶段,此时玻璃液的均化和扩散最为迅速,火焰呈还原性气氛,则玻璃液中氧的分压较小,有利于可逆化学反应2S02+02 → 2S03向生成2S03的方向移动。SO3几乎不能溶人玻璃体被迅速排出,这就降低了热点区玻中硫的溶解度,有利于热点以后微气泡中的S02和02生成SO3进人玻璃体反之,化学反应向生成S03的方向移动,在热点区玻璃中溶解较多的SO3,热点以后区域吸收微气泡中S03 (S02、02)的能力减弱。

3.4、保持热点以后区域火焰呈弱氧化性气氛:在一般情况下经过高温区的反应,玻璃中剩余的气泡主要是S02、02和少量CO2、CO等,氧化性气氛有利于微气泡中的硫和碳元素向生成S0 和CO,的方向移动。在保持热点区火焰弱还原性气氛条件下,S03和CO2在玻璃中溶解的量很少,远未饱和。热点以后区域微气泡中的S03和CO2很容易进入玻璃体,剩余微量02也能被玻璃吸收,使气泡消除。反之,若这一区域火焰呈还原性气氛,则微气泡中的硫和碳元素向生成S02和CO的方向移动,S02和CO很难进人玻璃体,微气泡难于消除。

3.5、还原气氛对玻璃液表面张力的影响:在熔化池的玻璃液如果在还原气氛下熔制,则比其在氧化气氛中熔制时的表面张力约大1/5,表面张力底,而玻璃液密度较大的玻璃液容易在熔体表面上扩散开,并逐渐下沉,与下层的玻璃液混合,从而使玻璃液均化良好。相反如果玻璃液表面具有较大的表面张力和较低的密度,则玻璃液不会扩散开来,反而牵制周围的玻璃液形成不匀质的玻璃体条纹。澄清部如呈还原气氛,会造成玻璃液的粘度加大,从而使玻璃液中的气泡不易解析,造成澄清困难,因此,出流溢洞的玻璃液含麻泡较多。

一般玻璃液熔制大部分在氧化气氛中进行,如保温瓶玻璃配合料要求在弱氧化气氛中熔制,并且火焰热点要求控制在熔化部,澄清部窑压要求比熔化部小。器皿玻璃配合料熔化时,要求保持弱还原气氛下或中性气氛中进行,目的是减少脱色剂硒粉、钴粉、还原剂芒硝的氧化挥发,要求出喷火口火焰下半部是呈还原气氛,紧贴玻璃配合料,在熔化部配合料堆和熔化部的泡沫区域要看到浑浊的黄亮色火焰,在澄清部位火焰要求呈氧化气氛,看不到火焰飘逸现象,熔制气氛的波动,打乱了熔窑内原有的氧化还原平衡,容易在玻璃液中产生微气泡。这就要求我们生产中,在原来遵循“四大稳”、“四小稳”的基础上,还要注意氧化还原气氛的稳定。

总之,窑炉气氛对玻璃配合料的熔制是具有很大的影响的,在窑炉的工艺操作过程中,应加强对喷火口火焰亮度、刚度、燃烧速度、火焰热点位置的观察,同时还应加强对烟气成分的检测分析和控制,及时对助燃空气、混合煤气产量和质量进行调整,保持烟道气氧含量控制在3%~6%之间,一氧

化碳含量控制在2%~4%之间。以确保熔化部、澄清部窑炉气氛的有效控制和及时调整,进而保证玻璃液的质量。因此在实际生产中我们认为,泡界线以前采用弱氧化气氛,泡界线以后至澄清池采用弱还原气氛,澄清池采用氧化气氛,有利于微气泡的消除。

马蹄焰池窑设计

窑炉及设计(玻璃)课程设计说明书 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 学生姓名: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2012 年 6 月 17 日

陕西科技大学 窑炉及设计(玻璃)课程设计任务书 材料科学与工程学院无机非金属材料工程专业班级学生: 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 课程设计从2012 年 6 月 4 日起到2012 年 6 月17 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): (1) 原始数据: a.产品规格:青白酒瓶容量500mL, 重量400g/只 b.行列机年工作时间及机时利用率:313 天,95% c.机速:QD6行列机青白酒瓶38只/分钟 d.产品合格率:90% e.玻璃熔化温度1430℃ f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g.重油组成(质量分数%),见表1。 表1 重油组成 (2) 设计计算说明书组成(电子纸质版) 参考目录如下 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向

1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔窑基本结构尺寸的确定 2.4燃料燃烧计算 2.5燃料消耗量的计算 2.6小炉结构的确定与计算 2.7蓄热室的设计 2.8窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 参考文献 设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。图幅大小见表3。各断端面绘图比例必须一致。 表3 图纸要求 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕: 设计计算说明书一套,窑炉图纸两张。

加热窑炉温度控制系统设计

加热窑炉温度控制系统 设计方案: 一、加热炉出口温度单回路反馈控制系统结构框图 图2 加热炉出口温度单回路反馈控制系统结构框图 二、串级控制系统 加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求。 串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图4所示。

图3 加热炉出口温度串级控制系统结构方框图 三、控制系统 方案:采用51单片机为主控芯片 此方案采用单片机为主控芯片。利用热电阻PT100作为温度传感器件,然后通过运算放大器OP-07构建差分放大器将温度信号转换成ADC0809模拟通道的输入的0-5V标准信号,再由ADC0809将模拟信号转换成八位数字信号,传送给单片机P0口,单片机将实时温度和设置参数通过数码管显示出来,同时通过键盘输入设定温度,单片机将设定温度同ADC0809传送过来的数据进行比较运算,利用PID运算,作出相应的判断,从单片机P1.0输出一个PWM波形来控制固态继电器的导通与关闭,从而控制窑炉的加热丝在一个固定周期中通电加热时间的长短来达到恒温控制的目的。系统原理框图如下图2所示: 图2 方案原理框图 六、窑炉温度控制系统硬件电路设计 本系统硬件电路主要由以下部分组成:供电电源电路、单片机最小系统电路、温度检测电路、数模转换电路、键盘输入电路、声光报警电路、继电器输出电路、LED显示电路 1.系统供电电源电路设计 主控电路所需的+5V电源;外围电路(如继电器、运算放大器)所需的+12V 和-12V电源。如图3系统供电电源电路原理图所示:此电路采用“降压→整流→滤波→稳压→滤波”的线形电源模式。这里选用了78M12、79M12、78M05三端稳压器。(原理图见图纸2)

玻璃马蹄焰窑炉结构设计

第二章结构设计 2.1熔化部设计 2.1.1熔化率K值确定 瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。理由如下:目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因: (1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/(m2·d)。 2.1.2熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/2.5=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为1.6。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响到玻璃

窑炉基本知识

窑炉有哪些 按煅烧物料品种可分为陶瓷用窑炉、水泥窑、玻璃窑、搪瓷窑等。前者按操作方法可分为梭式窑炉半连续窑和间歇窑。 按热原可分为火焰窑和电热窑。 按热源面向坯体状况可分为明焰窑、隔焰窑和半隔焰窑。 按坯体运载工具可分为有窑车窑、推板窑、辊底窑(辊道窑)、输送带窑,步进梁式窑和气垫窑等。 按通道数目可分为单通道窑、双通道窑和多通道窑。 一般大型窑炉燃料多为重油,轻柴油或煤气、天然气。 窑炉通常由窑室、燃烧设备、通风设备,输送设备等四部分组成。 电窑多半以电炉丝、硅碳棒或二硅化钼作为发热元件。其结构较为简单,操作方便。 此外,还有多种气氛窑等。 窑炉结构是否合理,选型是否正确,直接关系到产品的质量,产量和能量消耗的高低等,是陶瓷生产中的关键设备。 窑炉结构 ●间歇式窑炉 能耗大,产量较低,排烟温度在600℃~860℃。 影响梭式窑内温度场均匀性的关键因素: ①采用新型烧嘴,如:等温烧嘴,脉冲烧嘴,高速烧嘴。 ②调整烧嘴的布设, ③改善码坯的放置, ④合理布设烟道, ⑤对于梭式窑,余热利用, ⑥选择适当的温度检测点和控制方法。 ●连续式窑炉 ①隧道窑 温差大,特别是预热带;窑墙、窑车蓄热量大,能耗高 2400-12000×4.18kJ/kg产品;采用一些新技术能耗可降至1100-5200×4.18kJ/kg。采用新技术:无匣裸烧,轻质保温,轻质窑车。存在关键问题:还原烧成气氛的检测与控制②辊道窑 ●能耗较低:最低可达200-300×4.18kJ/kg产品; ●产量大:窑长220m以上,墙地砖产量10000m2/d以上; ●合理控制雾化风压和助燃风量 ●合理调节排烟风机,抽热风机的抽出量 ●合理设置挡火墙,挡火板 ●延长烧嘴或延长火焰的长度″引火归心″ ●在结构上,将全窑平顶或全窑筑拱的结构改造为烧成带筑拱的结构,可有效的减少断面温差。 窑炉的检修及保养 窑炉整体的检修和保养不可忽略,这关系到窑炉生产能力的大小,能否使窑炉达到设计产量,以及生产出的产品是否符合要求等。一是窑内通道内是否畅通,有没有影响车底冷却系统的障碍,车底冷却风机运转是否良好;二是窑内轨道的运行实际情况,是否有变形的部

窑炉使用说明书

窑炉使用说明书封面

目录 第一章、窑炉本体、隧道窑工作系统及配套运转设备系统 一、窑体构造 二、隧道窑工作系统 三、配套运转设备系统 第二章、隧道窑工作原理 一、隧道窑内部气体流动 二、隧道窑内的传热 第三章、烘窑与点窑 一、准备工作 二、程序和步骤 三、点火烧窑 四、注意事项 第四章、窑炉温度调节及操作控制 一、温度曲线(焙烧曲线) 二、隧道窑的特征 三、干燥窑和隧道窑各段温度调节 四、干燥的影响 五、正常操作及思路 1、发热量 2、进车速度 3、码坯方式

4、风机调整 六、几种特殊情况下的操作 1、停电 2、焙烧段温度偏低、偏高的纠正 3、焙烧段前移、后移的纠正 4、焙烧段过长、过短的纠正 5、车底温度高的纠正 6、非正常情况处理 第五章、停窑步骤 第六章、整体操作注意事项 第七章、应建立的几种概念 一、整体性、宏观性 二、预见性、滞后性 三、统一性 第八章、设备维护保养 第九章、焙烧后成品常见问题和防治 一、裂纹 二、石灰爆裂 三、黑心砖 四、泛霜 五、砖面烧焦起泡 六、欠火砖

七、哑音砖 第十章、窑炉操作规程 一、准备工作 二、进车 三、点火前检查 四、操作注意事项

第一章、窑炉本体、隧道窑工作系统及配套运转设备系统 一、窑体构造 1、生产设备:我公司使用窑炉为连续式窑车隧道窑和干燥窑。干燥窑顾名思义,起到干燥砖坯作用,干燥窑内热量主要靠隧道窑抽取冷却段的余热和部分预热段的烟气提供。隧道窑靠砖坯自身释放的热量来烧制。 2、窑体长度:干燥窑长80米,隧道窑长80.6米,其中0.6米为5道窑门所占长度。 3、窑体容量:窑车长度2米,可容纳40辆窑车。 4、干燥窑结构:普通红砖支撑墙结构。温度不可超过200℃。 5、隧道窑构造 顶部:采用耐高温平吊顶结构。 墙体:高温带:由内到外依次为粘土耐火砖,硅藻土保温砖,硅酸铝纤维干法毡和红墙外墙。低温带:由内到外依次为粘土耐火砖,加气堇青石砖和红砖外墙。 基础:采用毛石砌筑垫层,上层贯通钢筋混凝土条形基础结构。 二、焙烧窑工作系统 隧道窑按结构划分为三段:预热段、焙烧段(也可称烧成段)、冷却段。 1、预热段

玻璃马蹄焰池窑课程设计说明书

玻璃马蹄焰池窑课程设 计说明书 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

玻璃窑炉及设计课程设计说明书题目:年产42200吨高白料酒瓶燃油 蓄热式马蹄焰池窑设计 学生姓名:\ 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013年6月20日 目录

1绪论 课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。同时为毕业设计(论文)奠定良好的基础。 1.1设计依据: (1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计 (2) 原始数据: 产品规格:高白酒瓶容量550mL, 重量450g/只 行列机年工作时间及机时利用率:325 天,95% 机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 产品合格率:90% 玻璃熔化温度1430℃ 玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 重油组成(质量分数%),见表1 。 1.2简述玻璃窑炉的发展历史及今后的发展动向 玻璃生产专用热工设备统称为玻璃窑炉。 玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,

窑炉电气控制系统的电气原理设计

西南林业大学 本科毕业(设计)论文 (2016届) 题目:窑炉电气控制系统的电气原理设计 教学院(系、部)机械与交通学院专业机械设计制造及其自动化 学生姓名罗天华 指导教师李玮(教授) 评阅人(教授) 2016年月日

窑炉电气控制系统电气原理设计 罗天华 (西南林业大学机械与交通学院云南昆明650000) 摘要:窑炉是用耐火材料砌成的用以烧成制品的设备,是陶艺成型中的必备设施。人类上万年的陶瓷烧造历史,积累了丰富的造窑样式和经验。从原始社会的地上露天堆烧、挖坑筑烧到馒头状升焰圆窑、半倒焰马蹄形窑、半坡龙窑、鸭蛋形窑,再到现今的室内气窑、电窑,窑炉科技在不断改良发展中。 本文是针对窑炉电气控制原理及控制要求等,在查阅相关文献的基础上,通过现场调研分析窑炉的工作原理,根据窑炉加工工艺及控制要求的分析,完成了该设备的电气原理设计。通过该设计,将自己所学的理论知识和实践结合起来,真正了解了工业控制在工厂中的应用。对自己所学专业也有了深刻的认知和了解。 关键词:窑炉;电气原理;加工工艺;电气控制

Furnace temperature control system based on PID (integral structure part) LuoTianhua School of mechanical and traffic engineering, Southwest Forestry University, Kunming, Yunnan 650000, China Abstract: the furnace is built with refractory materials used to burn the equipment, is the necessary facilities in the ceramic molding. Millions of years of human porcelain history, has accumulated rich experience and made kiln style. From the primitive society to open pile burn, digging for building burned to the steamed bread shape up draught round kiln, half pour flame horseshoe shaped kilns, Banpo kiln, duck egg shaped kiln, and then to today's indoor gas furnace, electric furnace, furnace technology in continuous improvement in the development. This paper is based on the principle of PID control furnace temperature and control requirements, etc., based on access to relevant literature, through the field investigation and analysis of the working principle of the furnace, completed the overall structural design of the equipment. Through the design, the knowledge and theory of the combination of the PLC and the host computer has a more profound understanding of the design. Key words: kiln; upper computer; PLC;

马蹄焰窑炉安全检查标准

1 目的 规范对公司窑炉进行日常巡检,以便及时发现问题,及时维修保养,发挥分公司的检查、监督、整改力度,确保窑炉安全运行、延长窑炉使用寿命。 2 适用范围 本标准适用于各生产公司窑炉检查。

3 窑炉炉体巡检 3.1 检查方法 3.1.1 目视和仪器检查 对于肉眼能看到的部位,可以用肉眼或者借助看火镜来观察此部位(砖和钢板)的情况,并定性地进行判断是否正常;当认为有异常时,可以借助测温计等测量设备进行定量检测,为进一步采取措施提供依据。 3.1.2 在线检测 对于安装有在线检测的监控点,可以根据测量的数据变化来判断相关部位是否有异常?每月要检查测温仪器的可靠性(包括稳固性)。 3.1.3 触摸与观察 对于冷却风系统,可以用手(戴棉纱手套)在风口感觉,或用木条/小钢筋捆绑约20×160mm布条做小旗,观察风口“风力”大小。在总管安装在线“U”型差压(水柱)计,就更加直观。 3.1.4 新炉时,就要画好编号标记;日常检查时,采取对应标记点的测量与扫描 标记点周围测量相结合的办法。 3.1.5 检查的记录 检查要有记录,要做好电子档案记录处理,每周比对发现差异、进行分析汇报。 3.2 巡检制度 为确保窑炉安全运行,各相关人员对自己管辖窑炉,要按表1的要求对窑炉进行四级检查。 表1:窑炉检查制度表(指形成记录的最低要求,要打印张贴在窑炉现场与窑炉控制室) 注①:残炉-----是指存在重大安全隐患的窑炉。对于残炉,管理人员应根据隐患的部位制定特别的检查规定(包括检查频率),并张贴在窑炉现场。 注②:重点部位-----指与玻璃液接触的部位和影响窑炉安全运行的部位,如池壁砖、加料口拐角砖、流液洞、碹顶、鼓泡砖、电极砖、池底热电偶砖、炉膛内火 焰、窑炉冷却系统(风、水或气)。 注③:全面检查-----指检查窑炉的各个部位,包括蓄热室的格孔、烟道、各走廊平台与栏杆影响窑炉安全运行的附属设备。

玻璃马蹄焰窑炉介绍

玻璃窑炉马蹄焰池窑简介 1.熔化池结构 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 2.工作池 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 3.投料池 为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 4.流液洞 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 5.胸墙高度 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。 6.小炉 小炉是球窑的关键部位,小炉喷出口角度和喷出的速度对燃料燃烧和火焰形状有重要的影响。不合理的设计会使火焰冲击胸墙和大碹,并造成不完全燃烧。燃料在球窑内的燃烧属于扩散式燃烧,助燃空气从小炉口喷出的速度、厚度及与

隧道窑控制系统及操作应用

隧道窑控制系统使用与窑炉基本故障排除方法 自动焙烧控制系统,实现自动焙烧首先必须要建立一个标准,利马窑炉控制设备提供了三种建立标准的办法,第一个是在机柜内有一个空气开关,这个开关上下扳动一次就可以自动建立这个扳动时刻为参考点的标准,这个扳动时刻一定是窑炉工作状况良好,烧出的砖质量好的情况下完成。第二个是可以根据所烧出砖的历史数据,选择比较理想的那车转,在顶车前五分钟的数据为参考点设定一个标准。第三个通过操作面板上界面人工修正的一个标准,通常可以参考设备的人工修正标准来控制焙烧。 正常焙烧温度、产量和质量的控制 一、合理配风,控制焙烧窑的温度、产量和质量主要是合理配风。所谓合理配风,就是窑里面焙烧点的氧气不多也不少,我们是用空气来烧砖,空气中的氧含量是21℅,可以用简单的办法检测窑里面是不是缺氧(风的大小)或不缺氧,在焙烧窑温度顶点(最高温度点)往前(进砖方向)走一个车位,打开火眼管盖子,将一块木柴从火眼管放进去,盖上管盖。揭开管盖,木柴已经燃烧有明火了,证明窑里面不缺氧;如果当揭开管盖,木柴过一两秒钟突然冒出明火就证明窑里面缺氧。计算机配风就是根据每次加风或是减风,焙烧段的温度是升高还是减少来决定的。 二、及时顶车,顶车就是烧砖,烧砖就等于往窑里面投煤(砖里面有内燃煤),控制风及顶车实质上就是控制氧气和煤耗,控制这两个就可以把窑烧好,烧出质量好产量高的产品。

风闸的使用 风闸的使用正确与否显得十分重要,风闸的使用大致分为三种,一是梯形闸,二是桥型闸,三是倒梯形闸。 梯形闸,就是从进砖的方向的风闸开得最大,从风闸的2号或者3号是最高的一个拉闸,最大的拉闸,就是风管半径的一个拉闸。例如直径400MM的风闸,最大的拉闸就是200MM,往后走可以拉6对、8、9对闸,并逐步减小。 拉梯形闸,要求砖坯要干,砖坯进窑就加温,出高产量。 桥型闸,2、3车位是最低的,8、9车位也是最低的,中间是最大的,也就是风闸呈中间大两头小分布格局。 桥型闸用处是进窑的砖坯不干,通过拉桥型闸使不干的砖坯在焙烧窑里面的2、3车位继续烘干,但对产量有一定的影响。 倒梯形闸,进砖方向风闸开得小,逐步大,与梯形闸相反,倒梯形闸就是放热的作用,往往是在焙烧窑的温度比较高,干燥窑的温度比较低的情况下使用,倒梯形闸也是解决进窑砖坯不干的一种拉闸方法,对产量有较严重的影响。 有了温度控制系统,就可以看温度拉闸,操作原理,例如6车位温度比较高,就把2 、3、4、5车位的闸放低5公分,7、8、9车位的闸拉高5公分,在顶了5车过后6车位的温度就会降低。反之,6车位温度比较低,就把2 、3、4、5车位的闸拉高5公分,7、8、9车位的闸放低5公分,在顶了6车过后6车位的温度就会升起来。 火眼的使用

玻璃窑炉马蹄焰池窑简介

玻璃窑炉马蹄焰池窑简介 1.结构尺寸 (1)熔化面积。 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。 (2)熔池长宽比。 长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。而采用低热值燃料的球窑应选择较小的长宽比。一般长宽比选用范围为1.4—2.0。

(3)池深。 池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 (3)工作池。 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 (4)投料池。 为了获得稳定的玻璃质量,一般在池壁两侧设置一

对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 (5)流液洞。 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 (6)胸墙高度。 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

隧道窑控制系统

隧道窑控制系统 2006-5-18 11:23:00 黄石市科威自控有限公司供稿收藏一.引言 隧道窑是一种连续式窑炉,主要用于陶瓷建材、日用陶瓷等烧制,就其结构而言主要由预热区、高温区、急冷区和缓冷区组成,隧道窑的控制涉及风机的控制、温度的检测、压力的检测,温度的控制、压力的控制以及其它控制。将 CAN总线技术应用在隧道窑控制系统,可以很好地满足温度和压力实时控制的要求,系统通信速率高、稳定性强,而工业级人机界面的参与,使得控制系统更加直观化,易于用户使用和操作。下面以河北唐山某陶瓷厂的一条隧道窑为案例,介绍其控制系统的实现过程。 二. 控制对象 此窑是一条80m长的燃气隧道窑,共有温度检测点20个(K分度12个,S分度8个),其中10个温度点受控,压力检测点2个,10个燃气执行器,10只烧嘴火焰检测,风机有:排烟风机2台(一用一备)、助燃风机2台(一用一备)、急冷风机2台(一用一备)、缓冷风机2台(一用一备)、抽热风机2台(一用一备)、窑头窑尾气幕风机各1台。10点温度控制是通过控制执行器阀位大小,改变燃料注入多少,从而使温度稳定。2点压力控制通过调节排烟风机和急冷风机转速来控制,实际上调节排烟和急冷变频器频率来控制压力。此外还有风机连锁,烧嘴熄火报警及各类故障报警。 三.窑炉控制系统的组成 本控制系统由3台嵌入式PLC(EASY-M2416R)、2台CAN-AD1216、1台CA N-AD1208、1台CAN-DA1208等部分组成。其中,嵌入式PLC用于逻辑开关量的控制,PID运算,以及通过CAN总线与下级的模块进行通讯;温度采集模块CAN-AD1216用来完成20点温度模拟量的采集;压力采集模块CAN-AD1208用来采集2点压力信号;模拟量输出模块CAN-DA1208用来控制风机变频器。 下面为系统框架图:

马蹄焰池窑设计

马蹄焰池窑设计

窑炉及设计(玻璃)课程设计说明书 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 学生姓名: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2012 年 6 月 17 日

陕西科技大学 窑炉及设计(玻璃)课程设计任务书 材料科学与工程学院无机非金属材料工程专业班级学生: 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 课程设计从2012 年6 月4 日起到2012 年6 月17 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): (1) 原始数据: a.产品规格:青白酒瓶容量500mL, 重量400g/只 b.行列机年工作时间及机时利用率:313 天,95% c.机速:QD6行列机青白酒瓶38只/分钟 d.产品合格率:90% e.玻璃熔化温度1430℃ f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g.重油组成(质量分数%),见表1。 表1 重油组成 (2) 设计计算说明书组成(电子纸质版) 参考目录如下 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向

1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔窑基本结构尺寸的确定 2.4燃料燃烧计算 2.5燃料消耗量的计算 2.6小炉结构的确定与计算 2.7蓄热室的设计 2.8窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 参考文献 设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。图幅大小见表3。各断端面绘图比例必须一致。 表3 图纸要求 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕:

玻璃马蹄焰池窑课程设计说明书

玻璃窑炉及设计课程设计说明书 题目:年产42200吨高白料酒瓶燃油 蓄热式马蹄焰池窑设计 学生姓名:\ 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013年6月20日

目录 1绪论 (2) 设计依据: (2) 简述玻璃窑炉的发展历史及今后的发展动向 (2) 对所选窑炉类型的论证 (3) 有关工艺问题的论证 (4) 2.设计计算内容 (5) 日出料量的计算 (5) 熔化率的选取 (5) 熔化部面积计算 (5) 冷却部面积的计算 (6) 窑池长度、宽度的确定 (6) 池窑深度的确定 (7) 熔窑基本结构尺寸的确定 (7) 窑体结构设计 (7) 火焰空间 (8) 流液洞 (8) 投料口 (9) 燃料燃烧计算 (9) 理论空气需要量及燃烧产物量的计算 (9) 理论烟气量的计算 (9) 燃料消耗量的计算 (10) 全窑热平衡热支出主要有三项 (10) 窑炉热量收入 (10) 校核各项经济指标 (11) 熔化热效率η熔 (11) 小炉结构的确定与计算 (11) 初定小炉尺寸 (12) 小炉喷嘴 (12) 小炉口材质 (12) 蓄热室的设计 (12) 窑体主要部位所用材料的选择和厚度的确定 (13) 3.主要技术经济指标 (13) 4.对本人设计的评述 (14) 参考文献 (15)

1绪论 课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。同时为毕业设计(论文)奠定良好的基础。 设计依据: (1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计 (2) 原始数据: 产品规格:高白酒瓶容量550mL, 重量450g/只 行列机年工作时间及机时利用率:325 天,95% 机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 产品合格率:90% 玻璃熔化温度1430℃ 玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 重油组成(质量分数%),见表1 。 简述玻璃窑炉的发展历史及今后的发展动向 玻璃生产专用热工设备统称为玻璃窑炉。 玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,国际先进水平为相当于150~200公斤标煤/吨成品);熔化率低(一般在1。5~2吨玻璃液/平方米熔化面积·天,国际先进水平为3~3。6吨工字钢玻璃液/平方米熔化面积·天),周期熔化率低(国际可超过10000吨玻璃液/窑炉运行周期,国内在2400~6200吨玻璃液/窑炉运行周期)这也与我们企业的产品结构、窑炉熔化面积的大小、生产线的合理配置有关;在能源结构方面,我们目前主要选用煤和油,热利用率低且污染严重,而目前国际上则普遍采用天然气和电等清洁能源,热利用率高污染少。即使用油为燃料的企业,大部分都采用电助熔和纯氧燃烧技术,以提高热效率和熔化率减少污染。在窑炉寿命方面,我们的窑炉一般在4~6年,而国际先进水平都在10年左右,有少数的窑炉寿命超过12年。当然在采用耐火材料和一次性投资造价较高,但算总账可能比4~5年搞一次窑炉停产大修的投入还要低

窑炉传动系统与煅烧控制

窑炉传动系统与煅烧控制 改革开放二十多年来,我国陶瓷工业取得飞速发展,尤以建筑陶瓷发展最快。无论从产品结构的质地与规格,还是产品烧成的温度与所需的时间来讲,今天的建陶产品特别是墙地砖,均与上世纪八、九十年代有了根本的不同。特别是在能源日趋紧张、市场竞争愈来愈恶劣的当今,众多陶瓷生产厂家均把提高日产量和优级率作为降低成本的主要手段之一,亦越发突显了陶瓷生产设备尤其是辊道窑的重要作用。 窑炉作为陶瓷产品生产的主要设备之一,伴随着陶瓷产品的发展与变革,也历经了由隧道窑到隔焰辊道窑和明焰辊道窑的发展途径。今天的辊道窑无论从其燃料的选用还是其结构的组成,亦与上世纪八、九十年代的辊道窑有了本质的区别,在讲究“低温快烧”的今天,宽体窑逐渐取代了窄体窑,窑炉的长度也从以前的几十米发展到现在的超过三百米。因此,作为辊道窑炉的重要组成部分的传动系统,在陶瓷产品煅烧的过程中作用亦愈发的重要。 在日常生产中,如何精细地控制窑炉传动系统的状态以及对产品的煅烧,已成为众多厂家的必选课题。 一、窑炉传动系统的安装调试控制要素 传统意义上的窑炉(尤其辊道窑)传动方式有多种,目前辊道窑主要采用差速斜齿轮三级分段传动(电机主要采用摆线针轮电机,现在变频电机亦开始应用)。辊道窑传动系统安装前,必须检查各组成部件,严格控制各部件的加工精度,才能有效地保证安装调试效果。 首先,控制各部件的加工精度,主要包括:①各传动主轴的光洁度、直线度和同轴度;②各斜齿轮和差速齿轮自身的齿距,以及相互间的啮合度;③各辊棒套筒(俗称手榴弹)的套筒内径,套筒中心线与套轴轴芯中心线是否在同一直线上;④套筒与辊棒间隙;⑤从动边支承板的加工精度;⑥陶瓷辊棒的直线度、同轴度、端口卡槽与辊棒套筒上卡簧的咬合度等等。 其次,在安装调试过程中,主要控制传动系统的水平状态,即整体水平状态和局部水平状态。 窑炉的整体水平状态指辊棒安装后所形成的平面水平状态,是由整个辊道窑主传动边部件与从动边部件构成。因此,在安装传动部件时,首先要求主传动边

马蹄焰窑炉设计说明书.

课程设计任务书 学生姓名: 专业班级: 指导教师:工作单位: 题目: 33 t/d蓄热式马蹄焰池窑的设计 初始条件: 1、产品的品种:陶瓷熔块 2、产量: 33 吨/天 3、玻璃的成分 陶瓷熔块成分(wt/%)表1 成分SiO2Al2O3CaO MgO Na2O K2O BaO B2O3Sb2O3Fe2O3 Wt% 52.6516.70 10.46 5.01 3.51 1.55 5.63 4.00 0.43 0.06 4、原料 所用原料及基本要求表2 原料原料化学组成(%) 外加 水分名称SiO2 Al2O3 CaO MgO Na2O K2O Fe2O3 其它烧失量 (%) 石英砂99.8 0.05 0.15 12 钾长石60 18.5 0.3 10.7 0.15 0.54 氢氧化铝65.3 34.57 方解石55.5 / 0.03 43.61 白云石30.5 21.5 0.05 47.93 纯碱/ / / / 58.48 / Na2CO3:99.98 41.5 硝酸钠/ / / / 36.46 / NaNO3:99.98 63.52 碳酸钡/ / / / / 0.07 BaCO3:99.98 22.23 硼酸/ / / / 0.1 H3BO3:99.98 44.29 澄清剂/ / / / / 0.3 Sb2O3:93.50 5、配合料的水分:4.51%,通过石英砂引入,不另加。 6、纯配合料熔化,不外加碎玻璃。 7、玻璃的熔化温度:1509 ℃;熔化部火焰空间温度: 1559 ℃。 8、助燃空气预热温度:1198 ℃。 9、燃料:重油 重油的元素组成表3 元素组成(%) 低热值(kJ/kg) C H O N S A W 84 13.5 0.5 0.5 0.45 0.05 1.0 42361.45 10、重油雾化介质:压缩空气,温度80℃,用量0.5Bm3/kg油 11、空气过剩系数:α取1.1 12、窑型:蓄热式马蹄焰流液洞池窑

马蹄焰玻璃窑炉内火焰长度的控制

马蹄焰玻璃窑炉内火焰长度的控制 朱柏杨 马蹄焰玻璃窑炉对熔化池内火焰的长度是有要求的,因为出喷火口火焰的长度对熔化池大璇内的火焰空间温度、玻璃液面温度和大璇内表面温度以及熔化池内玻璃液的液流方向都会产生不同程度的影响。因此,合理地组织煤气在喷火口及大璇内燃烧是稳定玻璃窑炉各项工艺参数,熔化好配合料,达到节能降耗的目的的一项重要举措。 出喷火口的火焰有长度、亮度、刚度和角度等四个特征,这四个特征相互联系,对火焰在整个大璇内的热交换过程有极大的影响。而火焰长度表现为燃料燃烧时间的长短和燃烧完全的程度,煤气完全燃烧后的烟气中的CO含量一般在2.5%~4%范围内。 一、对马蹄焰熔化池内最佳火焰长度的要求: 马蹄焰熔化池内对火焰长度最佳要求是第一要考虑向整个熔化池玻璃液面传递最大热量和有效利用燃料热量,第二是要满足沿着熔化池长度方向玻璃熔化过程中产量与质量的要求。大璇内表面的温度和火焰空间的温度以及熔化池玻璃液面上的温度分布密切相关,熔化池热点温度要求符合以下两个条件: 1、热点温度要满足大炉达到规定产量和玻璃配合料熔制工艺要求。 2、热点温度要满足大璇空间耐火材料在使用寿命周期内的运行要求。 由于马蹄焰窑炉的火焰在大璇空间内最容易出现局部过热部位,因此,马蹄焰熔化池火焰的长度是否合理是保证熔化池玻璃配合料按照工艺要求进行熔化、澄清、均化等过程进行的关键。 二、煤气与空气混合燃烧出预燃室至喷火口火焰的控制 3、出小炉喷火口火焰的控制对热点、泡界线位置的影响: 3.1、出小炉火焰的长短、高低、刚度、亮度变化:熔化部火焰末端1.2~1.8m范围内的温度是最高的,让火焰亮度末端尽量靠近配合料堆,尽量控制在加料与熔化部区域熔化大部分,而熔化部热点的位置不超过其长度的2/3,泡界线在熔化部的1/2~2/3范围内。 3.2、热点位置如控制得好,可以加大熔化池内玻璃液的两个内循环的强度,出加料池的配合料向喷火口方向的移动度加大,泡界线位置较明显,加热料层熔化加快,这样火焰的相对热量利用率提高、吨玻璃单耗减少。 3.3、保温瓶玻璃窑炉设置了鼓泡装置在热点位置,因此要求火焰热点的位置控制在鼓泡区域的1.2~1.8m范围内,火焰热点一般在出喷火口火焰亮度的前端1.2~2m范围内,火焰热点范围是难以看到明显的火焰飘逸现象的。 火焰热点、泡界线位置只要控制得好,热点区间拉长,难熔的石英砂、氧化铝等在长时间的足够高的温度下由于颗粒间摩擦运动并接受周围低熔物的助熔,生产的制品就不易产生结石、气泡、条纹等缺陷;如果控制得不好,热点区间短或不明显,玻璃产生各种缺陷(结石、气泡、条纹、不均匀造

窑炉设计说明书end-

景德镇陶瓷学院 《窑炉课程设计》说明书 题目:日产12000平米玻化砖发生炉煤气辊道窑设计 学号: 姓名: 院(系):材料科学与工程学院 专业: 指导教师: 二○一零年七月二日

目录 1 前言 .............................................................................3 2 设计任务书 .......................................................................4 3 窑体主要尺寸的确定................................................................5 3.1 窑内宽的确定................................................................5 3.2 窑体长度的确定..............................................................5 3.2.1 窑体长度的确定........................................................5 3.2.2 窑体各带长度的确定....................................................5 3.3 窑内高的确定................................................................6 4 烧成制度的确定....................................................................6 5 工作系统的确定....................................................................7 5.1 排烟系统....................................................................7 5.2 燃烧系统....................................................................7 5.2.1 烧嘴的设置............................................................7 5.2.2 发生炉煤气输送装置....................................................7 5.3 冷却系统....................................................................7 5.3.1急冷通风系统..........................................................7 5.3.2 缓冷通风系统..........................................................7 5.3.3 快冷通风系统..........................................................8 5.4传动系统....................................................................8 5.4.1 辊子材质的选择........................................................8 5.4.2 辊子直径与长度的确定..................................................8 5.4.3 辊距的确定............................................................8 5.4.4 传动系统的选择........................................................8 5.4.5 传动过程..............................................................9 5.4.6 传动过程联接方式......................................................9 5.5 窑体附属结构................................................................9 5.5.1 事故处理孔............................................................9 5.5.2 测温测压孔及观察孔....................................................9 5.5.3 膨胀缝.............................................................. 10 5.5.4 挡墙................................................................ 10 5.6 窑体加固钢架结构形式...................................................... 10 6 燃料燃烧计算 ................................................................... 10 6.1 空气量 ................................................................... 10 6.1.1 理论空气量的计算.................................................... 10 6.1.2 实际空气量的计算.................................................... 11 6.2 烟气量 ................................................................... 11 6.2.1 理论烟气量的计算.................................................... 11 6.2.2 实际烟气量的计算.................................................... 11 6.3 燃烧温度.................................................................. 11 7 窑体材料及厚度的确定............................................................ 11 8 热平衡计算 ..................................................................... 13 8.1 预热带及烧成带热平衡计算.................................................. 13

相关文档
最新文档