热分析图谱

热分析图谱
热分析图谱

热分析图谱

在无机材料的研究过程中, 经常会遇到一些与热量的吸收和释放、质量的增减以及几何尺寸的伸缩等有关的化学或物理变化,如分解反应、相转变、熔融、结晶和热膨胀等。为了探索合理的制备工艺和深入了解材料的化学物理性质, 有必要对这些过程进行较为精细的研究, 这些研究离不开热分析技术。热分析技术为材料的研究提供了一种动态的分析手段, 它简明实用, 目的性强, 因此广为研究人员使用。热分析技术已经成为材料研究中不可缺少的一种分析手段。

材料研究过程中, 经常需要判断某些特定过程的转化温度, 如化学反应温度、相转变温度、熔融温度、玻璃化转变温度、吸脱附温度, 以及由非晶态向晶态转变的结晶温度等。这些变化过程往往伴随着热量的释放或吸收, 有些过程还可能伴随着质量的变化, 因此为得到较为全面的分析会将几种热分析技术结合起来。下面是热分析技术在无机方面应用的一些例子。

差热分析技术在玻璃工业中的应用

差热分析对于非晶态玻璃的研究,主要用于测定玻璃的转变温度Tg 、析晶温度Tx 和熔化温Tm ,因为在这些特征温度点有明显的热效应发生。 1)

用溶胶-凝胶法分别制备了含有P 2O 5和不含P 2O 5的两种CaO-P 2O 5-SiO 2系统生物活性玻璃,对凝胶采用TG-DTA 技术研究了从凝胶到玻璃转变的热行为。如图,80S1和 80S2玻璃的组成如下表所示:

上图所示凝胶的热反应机理为:凝胶在热处理过程中,首先是残余的水分和乙醇的挥发;接着TEOS(正硅酸四乙酯)中的酯类基团开始氧化分解,对80S2,300-420℃之间还持续着TEP(磷酸三乙酯)中乙氧基基团的氧化挥发;到470℃硝酸盐和磷酸盐分解,随着残余物的挥发排除,内部粒子逐步烧结熔成一体,内部宏

观孔隙相继消失而致密化,最终形成连续的玻璃体结构,以H

2

O和ROH物质形式存在的残留OH,OR基团的排除过程伴随着一个附加的聚合反应。图中(a)与(b)相比主要的不同点在于:300-420℃之间,b除了与a有一样的TEOS氧化分解外,还有TEP中乙基基团的氧化分解;在570℃b中出现吸热效应是由于磷离子脱去残余羟基并聚合形成了磷氧四面体,残余羟基以HOH形式逸出。

P 2O

5

对溶胶-凝胶玻璃热行为以及生物活性的影响,王传辉,李贺军,无机材料学报,

2005,20(4):837-841

2)

(a) 10ZnO-TeO 2,(b)20ZnO-80TeO 2 (c)30ZnO-70TeO 2粉末样品DTA 曲线 三组样品第一个共同的吸热反应是来自玻璃化转变发生在590-673K 的温度范围。加热速度为10℃min -1,标样物质为α-Al 2O 3。

Akihiko Nukui,Taketoshi Taniguchi,Masaaki Miyata,[J] Non-Crystalline Solids,2001,255-260 3)

样品Cu3[As2(S0.5Se0.5)3]97的TG, DTG 和DTA曲线使用1000型号,Paulik–Paulik–Erdey 示差仪,样品在敞口的陶瓷坩埚中与空气下加热至1273K。加热速度为10℃min-1,标样物质是Al2O3。取粉末样品100mg。

S.R. Lukic *, Z.N. Cvejic, D.M. Petrovic, F. Skuban,Journal of Non-Crystalline Solids,2003:83–87

4)

(a)NaF (b)MgF

玻璃的DTA曲线

2

Kangguo Cheng,Junlin Wan,Kaiming Liang,[J] Materials Letters ,2001,47: 1–6

5)

如图是组成为(1-x) TeO2 +(x)LiCl的玻璃,x的变化范围是x=30, 40, 50, 60, 70 mol.%.DTA仪器使用PTC-10A温控单元,取样20mg,在空气环境下以10°C/min的加热速度从室温加热到600°C,使用铂金坩埚,控温精度为±1°C。

G. Ozen a.*, B. Demirata b, M.L. Ovecoglu c, A. Genc c, Spectrochimica Acta Part

A ,2001,57: 273–280

6)

图中是已分相和未分相的相同成分玻璃(Na2O-K2O-MgO-Al2O3-SiO2)的差热曲线对照图,图中可见已分相的玻璃的第一放热峰面积大于未分相玻璃的第一放热峰,已分相的第二放热峰温度(1157℃)低于未分相玻璃的第二放热峰(1175℃),表明经热处理的玻璃内部产生分相,分相促进了玻璃的核化。

况学成,付江盛,陶瓷学报,2000,21(2):100-103

7)

Na2O - CaO - SiO

掺加CaF2 的DTA 曲线

2

The DTA curve of Na

2O - CaO - SiO

2

with CaF

2

1 —0 mol %CaF

2 2 —4 mol %CaF

2

3 —6 mol %CaF

24 —8 mol %CaF

2

分相是玻璃形成过程中的普遍现象,分相造成玻璃中具有两个高体积分数的相,反映在DTA 曲线上为两个不同的Tg 温度值,图3 分别表示Na2O - CaO - SiO2 系统玻璃加入适量CaF2 的DTA 曲线,由于玻璃分为富氟相和贫氟相,在DTA 曲线上存在两个Tg 。

8)

PbF2 - LaF3 - ZrF4 系统玻璃的DTA 曲线

曲线上存在两个Tg ,相应于较低Tg 的一相为富PbF2 相,较高Tg 的一相为贫PbF2 相,因此,生产中可以用DTA 来检测其分相现象。

9)

Bi (Pb) - Sr - Ca - Cu - O 系玻璃的

用DTA 方法研究分析Bi (Pb) - Sr - Ca - Cu - O 系玻璃的晶化过程 10)

(Sr015Pb015) T iO (C2O 4) 2·4H2O 的DTA

和TG2DTG 实验结果

(a) DTA 曲线; (b) TG-DTG 曲线11)

利用溶胶凝胶法合成纯BAS (BaO-AI

2O

3

-2SiO

2

)化学定比玻璃粉,其质量分数为:BaO

40.8%, AI

2O

3

27.2%,SiO

2

32%。从DTA结果看,可见,纯BAS的Tg=866℃,Tg区间为866-

930℃.并且最初析晶温度Tp分别在1038℃和1358℃处出现放热峰.在BAS中加3%LiO

2后,BAS的Tg降为764℃第一个放热峰温度从1038℃下降到974℃;第二个放热峰变成2个,分别为1257℃和1406℃.BAS较易析晶,这是由于溶胶凝胶合成BAS过程中,醇盐的水解缩聚及溶剂蒸发具有大比表面积和大量的残余经基(-OH)基团.它可以成为结

晶形核的基础,使得成核激活能相对较低,一方面造成BAS较易析晶;另一方面使获得的BAS晶粒尺寸较小,且尺寸分布较为均匀,有利于BAS基体力学性能的提高. 顾建成,吴建生等,上海交通大学学报,2001,35(3):397-401

热分析在水泥工业中的应用

1)

如图是不同数量的高铝水泥掺到硅酸盐水泥中水化3d后的一组DTA曲线。曲线1是以硅酸盐水泥为主的试样的DTA曲线,有三个明显的析热峰,随着高铝水泥的掺量增加,开始出现C3AH6的脱水析热峰(270℃),而氢氧化钙的脱水峰消失,碳酸钙的分解峰减小。试样3中高铝水泥掺量更多一些,因此曲线上275℃的析热峰就非常明显。

谢英,侯文萍,监测控制,1997,44-47

2)

碱激发偏高岭土胶凝材料Geopolymer(养护28d)的差热分析曲线(DTA),碱-偏高岭土基胶凝材料的高温剩余抗压强度随煅烧温度升高而提高,并从800℃到1000℃呈现大幅度提高的趋势,对Geopolymer和水泥的水化产物进行热分析表明:Geopolymer反应物的胶结强度不是以范德瓦尔斯键和氢键为主,这与水泥的水化产

物有本质的区别.

郑娟荣,张涛,覃维祖,郑州大学学报,2004,25(4):16-19

3)

(a)

(b)

以下两组样品分别是C-43-St 和C-43-I,两者的水灰比均为w/c = 0.4,后者密度较

小,人工压实化学组分为CaO 61.0%, SiO

220.9%,Al

2

O

3

5.3%, Fe

2

O

3

3.1%, MgO 3.6%,

K 2O 0.89%, SO

3

1.5%, Na

2

O 0.45%, LOI 2.7%.均在室温下水化1个月,在空气下干燥。

这些沙浆在与空气接触的情况下已被保存了5年。对样品所做的热分析分别是在空气

和氩气环境下进行。采用仪器为Seiko TG/DTA 6300,加热速度1Kmin?1,到1000℃。

E.T. Stepkowskaa, J.M. Blanes b, Thermochimica Acta,2004,420:79-87

4)

P. I 型硅酸盐水泥水化的特征DTA 曲线

如图为硅酸盐水泥(P. I 型)水化3天的特征DTA曲线上主要有4 个吸热峰(见图

1) 。第1 个吸热峰处在120℃左右,为水化水泥脱去游离水的过程;170℃左右的吸热峰为水化硅酸钙凝胶(C - S - H) 的脱水反应;第3 个吸热峰500 ℃左右为水化硫铝

酸钙(C3A·3CS·H32 ,AFt)脱水和Ca (OH) 2分解反应的特征峰;750℃左右的吸热峰则是β- C2S发生晶形转变所致,DTA所显示的过程同硅酸盐水泥的水化过程是一致的。

5)

硅酸盐水泥硬化浆体(养护28d)的差热分析曲线(DTA)

121℃时,出现一个放热谷,这是高硫型硫铝酸钙的分解吸热谷;在147℃时,出现单硫型硫铝酸钙的分解吸热谷;在100℃-300℃也有水分子逸出,因为从室温加热到300℃左右有一个大的吸热谷;在478℃出现Ca(OH)2的分解吸热谷;在770℃出现C-S-H 的脱水吸热谷;在916℃出现一个小的放热峰,这可能是脱水后所形成的无定形硅酸钙结晶产生的放热峰.

6)

(a)

(b)

样品(a)(b)的化学组成分别为(a)75%粉煤灰,20%CaO,5%石膏;以及(b)85%矿渣,10%CaO,5%石膏。在(a)中可见87℃、153℃、458℃和736℃有峰出现。它们分别是C-S-H, Ca(OH)2和CaCO3的反应峰,而在图(b)中,除了上面提及的反应峰出现外,在114,216,384℃处也有峰出现。这些峰在粉煤灰水泥中是没有的,它们的出现与矿渣中含有的氧化铝有关。

Li Dongxu*, Xu Zhongzi, Luo Zhimin, Cement and Concrete Research,2002,32:1145-1152

7)

从图中可以看到DTA曲线上的103℃,123℃,140℃,464℃,710℃和725℃处都出现了析热峰, 在103℃处出现析热峰的同时伴随着1.31%的失重,这是水化试样脱水去游离水的过程,继续加热,在123℃,140℃,464℃,710℃出现析热峰分别是C-S-H凝胶脱水,水化铝酸钙(AF)脱水,氢氧化钙脱水和碳酸钙分解的析热峰,这些过程均伴随不同程度的失重,725℃析热峰应该是β-C2S发生晶型转变的析热峰,晶型转变时无重量变化,从以上过程和普通硅酸盐水泥水化过程。

8)

这条曲线在200℃和280℃具有2个大的特征放热峰,在430℃和930℃有两个小的放热

峰,出现在100-300℃温度范围内的峰是自由水和配位Mg 2+的中性分子挥发的结果,较小的放热峰是Mg(OH)2分解造成的,这个弱析热峰也表明养护期间形成的Mg(OH)2相对较少,在930℃的峰是由于磷酸钙镁复合物中的氨气挥发造成的。 9)

纯铝酸钙水泥(Al 3O 2 75 %) 不同龄期水化的特征DTA 曲线

10)

不同品位石灰石的DTA 曲线

11)

加天然石膏水泥的DTA–TGA曲线

含硼石膏水泥的DTA–TGA曲线

热分析在其他工艺中的应用

1)

Mn,Co,Ni的草酸盐混合粉末热分析

采用液相共沉积法制备了Co-Mn-Ni-O陶瓷热敏电阻纳米粉体,使用PERKIN-ELMER 公司的DTA-1700热系统分析仪对Mn,Co,Ni的草酸混合粉末进行热分析,升温速度是5℃/min,测试温区为30℃-750℃,N

保护,得到DTA-Tg曲线。由该曲线可见,

2

Mn,Co,Ni草酸盐混合粉末的热分解和失重过程在外部加热温度为400℃附近基本完成。

叶峰,妥万禄, 巴维真等,功能材料与器件学报,2003,9(4):377-380

热分析考试考试)20121210)

热分析习题 一、填空(10分,共10题,每题1分)。 1、差热分析是在程序控温条件下,测量样品坩埚与坩埚间的温度差与温 度的关系的方法。(参比) 2、同步热分析技术可以通过一次测试分别同时提供-TG或 -TG两组信号。(DTA-TG ,DSD-TG) 3、差示扫描量热分析是在程序控温条件下,测量输入到物质与参比物的功率差与温度的关 系的方法,其纵坐标单位为。(mw或mw/mg) 4、硅酸盐类样品在进行热分析时,不能选用材质的样品坩埚。(刚玉) 5、差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC 与 型DSC。(功率补偿) 6、与差热分析(DTA)的不同,差示扫描量热分析(DSC)既可以用于定性分析,又可以 用于分析。(定量) 7、差热分析(DTA)需要校正,但不需要灵敏度校正。(温度) 8、TG热失重曲线的标注常常需要参照DTG曲线,DTG曲线上一个谷代表一个失重阶段, 而拐点温度显示的是最快的温度。(失重) 9、物质的膨胀系数可以分为线膨胀系数与膨胀系数。(体) 10、热膨胀系数是材料的主要物理性质之一,它是衡量材料的好坏的一个重要指 标。(热稳定性) 二、名词解释 1.热重分析答案:在程序控温条件下,测量物质的质量与温度的关系的方法。 2.差热分析答案:在程序控温条件下,测量物质与参比物的温度差与温度的关系的方法。 3.差示扫描量热分析答案:在程序控温条件下,测量输入到物质与参比物的功率差与温度的关系的方法。 4.热膨胀分析答案:在程序控温条件下,测定试样尺寸变化与温度或时间的关系的方法。 三、简答题 1.DSC与DTA测定原理的不同 答案:DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。DTA是测量T-T 的关系,而DSC是保持T = 0,测定H-T 的关系。两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。DTA在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如

有机波谱综合谱图解析

综合谱图解析 1.某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。并解释质谱中m/z 57和31的来源。

2?待鉴定的化合物(I )和(II )它们的分子式均为C 8H 12O 4。它们的质谱、红外 光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I )入max 223nm , S 4100; (II )入max 219nm 2300,试确定这两个化合物。 未之物(I )的谱图 127 100-1 - 10 10 曲 凹 M 亠亲) ? 册 -J P 科 J S W

未之物(II)的谱图

3、某未知物的分子式为C 9H 10O 2,紫外光谱数据表明:该物入max 在26 4、262 I? 257、252nm (&maxIOI 、158、147、194、153);红外、核磁数据如图所示,试 0 LOtMio. sopoiggg 翌g 嚴效 却31卿]卿丄电00 uyo iw mo 推断其结构,并说明理 由。 ! \ \ 「 1 CCh 1 I J —' 1 1 _■ ____ __ _ ,B . _ ,- T J.亠」亠亠」亠 | * --------------- U 5>0 4. 0 d/ppm

4.某未知物C ii H i6的UV 、IR 、中NMR 、MS 谱图及13C NMR 数据如下,推导 未知物结构。 序号 S c ( ppm ) 碳原子个数 序号 S c ( ppm ) 碳原子个数 1 143.0 1 6 32.0 1 2 128.5 2 7 31.5 1 3 128.0 2 8 22.5 1 4 125.5 1 9 10.0 1 5 36.0 1 MS(E[] 100 so 30D A/tnn 350 血 >0624*68<)2 4 內 OS n 2 2 98765^43211 0SU 'H bMRfCDCI^

四大图谱综合解析

2013/12/2四大图谱综合解析[解] 从分子式CHO,求得不饱和度为零,故未知物应为512饱和脂肪族化合物。 1 某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,512未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。44-1的红外光谱在3640cm处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。质谱中从分子离子峰失去质量31(-CHOH)部分而形成基2峰m/e57的事实为上述看法提供了证据,因此,未知物的结构CH是3CCl稀溶液的红外光谱, CCl浓溶液44 CHOH C HC在3360cm-1处有1宽峰23 CH3 2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的根据这一结构式,未知物质谱中的主要碎片离子得到了如下紫外吸收光谱在210nm以上没有吸收,确定此未知物。解释。CH CH3+3.+ +C CH HCOH CHOH C HC3223 m/e31CH CH33 m/e88m/e57-2H -CH-H-CH33m/e29 CH m/e73CHC23+ m/e41 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应从分子量减去这一部分,剩下的质量数是44,仅足以组为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未成1个最简单的叔胺基。知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、CH3N酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存CH3在。红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 的甲基。因此,未知物的结构为:-1cm处的吸收带则进一步指出未知物可能是伯醇乙酸酯。O核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来CH3N看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子CHCHCHOC223CH(CHC=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重33峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子相连的亚甲-CH-CH,其中去屏蔽较大的亚甲基与酯基上的氧原子22的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个相连。碎片为至此,可知未知物具有下述的部分结构:CHO3NCH2CHCHCHOCCH32231 2013/12/23.某未知物CH的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推[解] 1. 从分子式CH,计算不饱和度Ω=4;11161116导未知物结构。 2. 结构式推导未知物碳谱数据UV:240~275 nm 吸收带具有精细结构,表明化合物为芳烃;序号δc序号δc碳原子碳原子IR ::695、740 cm-1 表明分子中含有单取代苯环;(ppm)个数(ppm)个数MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子;1143.01632.01 313C NMR:在(40~10)ppm 的高场区有5个sp杂化碳原子;2128.52731.51 1H NMR:积分高度比表明分子中有1个CH和4个-CH-,其中(1.4~1.2)3128.02822.5132 ppm为2个CH的重叠峰;4125.51910.012因此,此化合物应含有一个苯环和一个CH的烷基。511536.01 1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:23

综合谱图解析

1、某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。 1 : 2 : 9 [解] 从分子式C5H12O,求得不饱和度为零,故未知物应为饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液的红外光谱在3640cm-1处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在

3360cm -1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。 质谱中从分子离子峰失去质量31(-CH 2OH )部分而形成基峰m/e57的事实为上述看法提供了证据,因此,未知物的结构是 C CH 3 H 3C CH 3 CH 2OH 根据这一结构式,未知物质谱中的主要碎片离子得到了如下解释。 C CH 3 H 3C CH 3 CH 2OH +. C + CH 3 CH 3 H 3C CH 2 OH + m/e31m/e88 m/e57 -2H -CH 3 -CH 3-H CH 3 C CH 2 + m/e29 m/e73 m/e41 2、某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm 以上没有吸收,确定此未知物。

226 3 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未知物分子含奇数个氮原子。根据未知物的光谱数据亚无伯或仲胺、腈、酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸

实验一综合热分析实验

实验一综合热分析实验 一、目的要求 1.了解综合热分析仪的基本构造、原理及方法。 2.了解实验条件的选择。 3.掌握热分析样品的制样方法。 4.掌握对样品的热分析图谱进行相关分析和计算。 二、综合热分析仪的结构、原理及性能 综合热分析仪是在程序控制温度下同步测定物质的重量变化、温度变化和热效应的装置。一般地,综合热分析仪主要由程序控制系统、测量系统、显示系统、气氛控制系统、操作控制和数据处理系统等部分组成。 1.TG的结构、原理及性能 热重法(TG)是在程序控制温度下,测量物质的质量与温度关系的一种热分析技术。热重法记录的是热重曲线(TG曲线),它以质量作为纵坐标,以温度或时间为横坐标,即m—T曲线。 热重法通常有下列两种类型:等温热重法:在恒温下测定物质质量变化与时间的关系;非等温热重法:在程序升温下测定物质质量变化与温度的关系。 热重法所用仪器称为热重分析仪或热天平,其基本构造是由精密天平和程序控温的加热炉组成,热天平是根据天平梁的倾斜与重量变化的关系进行测定的,通常测定重量变化的方法有变位法和零位法两种。①变位法是利用物质的质量变化与天平梁的倾斜成正比的关系,用差动变压器直接控制检测。②零位法是靠电磁作用力使因质量变化而倾斜的的天平梁恢复到原来的平衡位置,施加的电磁力与质量变化成正比,而电磁力的大小与方向是通过调节转换结构中线圈中的电流实现的,因此检测此电流即可知质量变化。天平梁倾斜由光电元件检出,经电子放大后反馈到安装在天平衡量上的感应线圈,使天平梁又回到原点。 SDTQ600综合热分析仪采用水平双杆双天平的结构设计。一臂作为水平天平零位平衡测量,另一臂作为高灵敏度DTA的热电偶。同时,一臂用来装填试样,

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

热分析实验指导

实验六 热分析实验 一、目的与要求 1.了解热重分析的仪器装置及实验技术。 2.了解差热分析的仪器装置及实验技术。 3熟悉综合热分析的特点,掌握综合热曲线的分析方法。 4.测绘矿物的热重曲线和差热分析曲线,解释曲线变化的原因。 二、原理 1 热重分析的仪器结构与分析方法 热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。 热重分析通常有静态法和动态法两种类型。 静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。 动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。该法简便,易于与其他热分析法组合在一起,实际中采用较多。 热重分析仪的基本结构由精密天平、加热炉及温控单元组成。如图1所示:加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由天平记录。 由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG 曲线)。曲线的纵坐标为质量,横坐标为温度。例如固体热分解反应A (固)→B (固)+C (气)的典型热重曲线如图2所示。 图2 固体热分解反应的热重曲线 图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。T f 为终止温度,即累计质量变化达到最大值时的温度。 图1 热重分析仪原理

热重曲线上质量基本不变的部分称为基线或平台,如图2中ab 、cd 部分。 若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。 许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图3,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。在100℃和200℃之间失重并开始出现第二个平台。这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按 O H O CaC O H ·O CaC 242℃ 200℃100242 ~ +????→? 进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按 CO CaCO O CaC 3℃500 ℃40042~ +????→? 进行。在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按 2℃800 ℃60042CO CaO O CaC ~ +????→? 进行。 可见借助热重曲线可推断反应机理及产物。 图3 CaC 2O 4·H 2O 的热重曲线 2、综合热分析 DTA 、DSC 、TG 等各种单功能的热分析仪若相互组装在一起,就可以变成多功能的综合热分析仪,如DTA -TG 、DSC -TG 、DTA -TMA (热机械分析)、DTA -TG -DTG (微商热重分析)组合在一起。综合热分析仪的优点是在完全相同的实验条件下,即在同一次实验中可以获得多种信息,比如进行DTA -TG -DTG 综合热分析可以一次同时获得差热曲线、热重曲线和微商热重曲线。根据在相同的实验条件下得到的关于试样热变化的多种信息,就可以比较顺利地得出符合实际的判断。 综合热分析的实验方法与DTA 、DSC 、TG 的实验方法基本类同,在样品测试前选择好测量方式和相应量程,调整好记录零点,就可在给定的升温速度下测定样品,得出综合热曲线。 综合热曲线实际上是各单功能热曲线测绘在同一张记录纸上,因此,各单功能标准热曲线可以作为综合热曲线中各个曲线的标准。利用综合热曲线进行矿物鉴定或解释峰谷产生的

四大谱图综合解析

3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。 未之物(I)的质谱 未之物(II)质谱

化合物(I)的红外光谱 化合物(II)的红外光谱 化合物(I)的核磁共振谱

化合物(II)的核磁共振谱 [解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C) 未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C) 与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基; (I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。因此(I)和(II)分子中均存在2个酯基。这一点,与它们分子式中都含有4个氧原子的事实一致。 几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。现在需要确定化合物([)和(II)分别相当于其中的哪一个。 COOEt COOEt COOEt EtOOC 顺丁烯二酸二乙酯反丁烯二酸二乙酯 利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。

差热-热重分析法测定硫酸铜的热分析图谱实验报告

差热-热重分析法测定硫酸铜的热分析图谱 一、实验目的 1.了解差热分析法、热重分析法的基本原理。 2.了解差热热重同步热分析仪的基本构造并掌握使用方法。 3.正确控制实验条件,并学会对热分析谱图进行定性分析和定量处理。 二、实验原理 1.差热分析法(Differential Thermal Analysis,DTA) 差热分析是在程序控制温度下,测量试样与参比物(一种在测量温度范围内不发生任何热效应的物质)之间的温度差与温度关系的一种技 术。许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、吸附、脱附等物理转变及分解、化合、氧化还原等化学反应。这些变化在微观 上必将伴随体系焓的改变,从而产生热效应,在宏观上表现为该物质与 外界环境之间有温度差。选择一种对热稳定的物质作为参比物,将其与 试样一起置于可按设定速率升温的热分析仪中,分别记录参比物的温度 以及试样与参比物间的温度差。以温差对温度作图就可以得到差热分析 曲线,简称DTA曲线。 2. 热重法(Thermogravimetry,TG) 热重法是在程序控制温度下,测量物质的质量变化与温度关系的一种技术,其基本原理是热天平。热天平分为零位法和变位法两种。变位 法,就是根据天平梁的倾斜度与质量变化呈比例的关系,用差动变压器 等检知倾斜度,并自动记录。零位法,是采用差动变压器法、光学法或 电触点法测定天平梁的倾斜度,并用螺线管线圈对安装在天平系统中的 永久磁铁施加力,使天平梁的倾斜复原。由于对永久磁铁所施加的力与 质量变化呈比例,这个力又与流过螺线管的电流呈比例,因此只要测量 并记录电流,便可得到质量变化的曲线,以质量对温度作图就可以得到 热重曲线,简称TG曲线。 三、实验用品

热分析实验报告

热分析实验报告

————————————————————————————————作者: ————————————————————————————————日期:

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。 二、实验内容 1、对照仪器了解各步具体的操作及其目的。

2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Diff erence ThermalAnalysis,DTA)、差示扫描量热分析(Difference Scann ing Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。 热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。

差热-热重分析法测定硫酸铜的热分析图谱实验报告[方案]

差热-热重分析法测定硫酸铜的热分析图谱实验报告[ 方案]差热- 热重分析法测定硫酸铜的热分析图谱 一、实验目的 1. 了解差热分析法、热重分析法的基本原理。 2. 了解差热热重同步热分析仪的基本构造并掌握使用方法。 3. 正确控制实验条件,并学会对热分析谱图进行定性分析和定量处理。 二、实验原理 1( 差热分析法(Differential Thermal Analysis ,DTA) 差热分析是在程序控制温度下,测量试样与参比物( 一种在测量温度范围内不发生任何热效应的物质) 之间的温度差与温度关系的一种技术。许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、吸附、脱附等物理转变及分解、化合、氧化还原等化学反应。这些变化在微观上必将伴随体系焓的改变,从而产生热效应,在宏观上表现为该物质与外界环境之间有温度差。选择一种对热稳定的物质作为参比物,将其与试样一起置于可按设定速率升温的热分析仪中,分别记录参比物的温度以及试样与参比物间的温度差。以温差对温度作图就可以得到差热分析曲线,简称DTA曲线。 2. 热重法(Thermogravimetry ,TG) 热重法是在程序控制温度下,测量物质的质 量变化与温度关系的一种技术,其基本原理是热天平。热天平分为零位法和变位法两种。变位法,就是根据天平梁的倾斜度与质量变化呈比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法,是采用差动变压器法、光学法或电触点法测定天平梁的倾斜度,并用螺线管线圈对安装在天平系统中的 永久磁铁施加力,使天平梁的倾斜复原。由于对永久磁铁所施加的力与 质量变化呈比例,这个力又与流过螺线管的电流呈比例,因此只要测量并记录电

综合热分析

寒假—综合热分析 物质加热后发生化学的或物理的变化时,会表现出吸热、放热等能量的转变,或重量、体积等的变化,不同的物质有不同的组成和结构,加热后有特定的热效应,当物质发生相变化时,就会在特定热效应中反应出来。因此,可以用对物质加热的方法进行相分析。 热重法 材料在加热过程中脱水、氧化、蒸发、升华或燃烧等都会发生重量的变化。 调节和控制加热速度,记录材料重量变化与时间或温度的关系、重量变化的大小,称为热重分析。 热差分析 用二种物质在一定的温度范围内加热,其中一种物质加热后不发生相变化,如果另一种物质加热过程也无相变化,则二种物质之问无热量差;如果其中有一种物质在加热过程中产生相变化,由于吸热或放热,会产生与另一种物质的热量差,即差热。量测产生差热时的温度和差热大小,可以定性或定量分析该物质。加热时无相变化的物质称为参比样 一、脱水 以各种不同状态存在于材料中的水.在加热后失水时要吸收热量,因此不同状态的水的脱除为吸热反应。材料结构不同,水的存在形态不同,则脱水吸热的温度也不同。脱水后,材料失重二脱水温度取决于水在物质中的结合力。 二、分解 加热后,物质由一种化合物变成二种以上的化合物称为分解,破坏了原来的结构,吸收热量成为破坏动能。分解温度和吸收的热量取决于晶格结合的牢固程度。 三、结晶 物质由无定形转变为晶态,即无序→有序,内能减少,放出热量。如果结晶破坏转变为非晶态,则为吸热反应。

硫酸盐对混凝土的侵蚀: 分为化学侵蚀与物理侵蚀。化学侵蚀主要是硫酸盐与水泥水化产物发生化学反应导致混凝土膨胀破坏。物理侵蚀是指硫酸盐结晶对混凝土产生的破坏,这种破坏来自于盐结晶后体积膨胀,其本身未与水泥的水化产物发生化学反应。硅酸盐水泥主要水化产物有水化硅酸钙、水化硅酸钙凝胶、氢氧化钙和水化铝酸钙。 硫酸盐侵蚀是一个复杂的物理化学过程,它是典型的膨胀性腐蚀。以硫酸钠为例,当硫酸根离子的浓度较低时,主要膨胀性产物为钙矾石当硫酸根的浓度很高时,还会生成另一种膨胀产物石膏。其反应如下: 3CaO·Al 2O 3 ·CaSO 4 ·18H 2 O+2CaSO 4 +14H 2 O → 3CaO·Al 2 O 3 ·3CaSO 4 ·32H 2 O(钙矾石) Na 2S0 4 ·10H 2 O+Ca(OH) 2 → CaSO 4 ·2H 2 O+2NaOH+8H 2 O(石膏) Biczok等认为,对硫酸钠侵蚀而言,当硫酸盐浓度比较小时(< 1000mg/L SO 4 2-)侵蚀产物以钙矾石为主,而在高浓度下(> 8000mg/L SO42-)以石膏为主,在1000 —8000mg/L SO 4 2-范围内,石膏和钙矾石都被观察到。 钙矾石(3CaO·Al 2O 3 ·3CaSO 4 ·32H 2 O)在87℃时失去6个结晶水,135℃时失去21~ 22 个结晶水,225℃时失去全部结晶水。石膏(CaSO 4·2H 2 O)在165.6℃转变为CaS04。 (1/2)H 2O,在233 . 7 ℃时转变为无水CaSO 4 ,也有文献报道是123℃和130℃。 因试验原材料、试验条件和仪器型号及参数设置等的不同,不同文献得出的结论也有所差异。 综合目前文献可知 钙钒石主要脱水温度区间是80—130℃ 石膏的主要脱水温度区间是130—150℃ 420-500℃区间的峰对应Ca(OH) 2 的分解 700-850℃区间的峰对应CaCO 3 分解 综合热分析曲线:

热分析图谱

热分析图谱 在无机材料的研究过程中, 经常会遇到一些与热量的吸收和释放、质量的增减以及几何尺寸的伸缩等有关的化学或物理变化,如分解反应、相转变、熔融、结晶和热膨胀等。为了探索合理的制备工艺和深入了解材料的化学物理性质, 有必要对这些过程进行较为精细的研究, 这些研究离不开热分析技术。热分析技术为材料的研究提供了一种动态的分析手段, 它简明实用, 目的性强, 因此广为研究人员使用。热分析技术已经成为材料研究中不可缺少的一种分析手段。 材料研究过程中, 经常需要判断某些特定过程的转化温度, 如化学反应温度、相转变温度、熔融温度、玻璃化转变温度、吸脱附温度, 以及由非晶态向晶态转变的结晶温度等。这些变化过程往往伴随着热量的释放或吸收, 有些过程还可能伴随着质量的变化, 因此为得到较为全面的分析会将几种热分析技术结合起来。下面是热分析技术在无机方面应用的一些例子。

差热分析技术在玻璃工业中的应用 差热分析对于非晶态玻璃的研究,主要用于测定玻璃的转变温度Tg 、析晶温度Tx 和熔化温Tm ,因为在这些特征温度点有明显的热效应发生。 1) 用溶胶-凝胶法分别制备了含有P 2O 5和不含P 2O 5的两种CaO-P 2O 5-SiO 2系统生物活性玻璃,对凝胶采用TG-DTA 技术研究了从凝胶到玻璃转变的热行为。如图,80S1和 80S2玻璃的组成如下表所示: 上图所示凝胶的热反应机理为:凝胶在热处理过程中,首先是残余的水分和乙醇的挥发;接着TEOS(正硅酸四乙酯)中的酯类基团开始氧化分解,对80S2,300-420℃之间还持续着TEP(磷酸三乙酯)中乙氧基基团的氧化挥发;到470℃硝酸盐和磷酸盐分解,随着残余物的挥发排除,内部粒子逐步烧结熔成一体,内部宏

DSC曲线解析

DSC曲线解析 傅树人(中国科学院广州化学研究所) DSC作为一种多用途;高效、快速、灵敏的分析测试手段已广泛用于研究物质的物理变化(如玻璃化变、熔融、结晶、晶型转变、升华、汽化、吸附等)和化学变化(如分解、降解、聚合、交联、氧化还原等)。这些变化是物质在加热或冷却过程中发生的,它在DSC曲线上表现为吸热或放热的峰或基线的不连续偏移。对于物质的这些DSC表征,尽管多年来通过热分析专家的解析积累了不少资料,也出版了一些热谱(如SADTLER热谱等).但热谱学的发展尚不够成熟,不可能象红外光谱那样将图谱的解析工作大部分变为图谱的查对工作,尤其是高聚物对热历史十分敏感,同一原始材料,由于加工成型条件不同往往有不同的DSC 曲线,这就结DSC曲线的解析带来了较大的困难。 解析DSC曲线决不只是一个技术问题,有时还是一个困难的研究课题。因为解析DSC 曲线所涉及的技术面和知识面较广。为了确定材料转变峰的性质,不但要利用DSC以外的其他热分析手段,如DSC-TGA联用,还要借助其他类型的手段,如DSC-GC联用,DSC 与显微镜联用,红外光谱及升降温原位红外光谱技术等。这就要求解析工作者不但要通晓热分析技术,还要对其他技术有相应的了解,在此基础上结合研究工作不断实践积累经验,提高解析技巧和水平。 作为DSC曲线的解析工作者起码应该知道通过DSC与TGA联用,可以从DSC曲线的吸热蜂和放热峰及与之相对应的TGA曲线有无失重或增重,判断材料可能发生的反应过程,从而初步确定转变峰的性质.如表1所示。 DSC曲线,还必须对材科的特性有较为深刻的了解,例如高聚物的结构和性能与其热历史、机械史、结晶过程密切相关,其DSC曲线会留下这些热历史的印记,谓之Previous history memory。从DSC曲线研究和表征这些历史记忆对材料的结构和性能的影响,实质上就是对

相关文档
最新文档