中考数学函数综合题题型及解题方法讲解

中考数学函数综合题题型及解题方法讲解
中考数学函数综合题题型及解题方法讲解

二次函数综合题型精讲精练

主讲:康老师

题型一:二次函数中的最值问题

例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.

(1)求抛物线y=ax2+bx+c的解析式;

(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

解析:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得

解这个方程组,得a=﹣,b=1,c=0

所以解析式为y=﹣x2+x.

(2)由y=﹣x2+x=﹣(x﹣1)2+,可得

抛物线的对称轴为x=1,并且对称轴垂直平分线段OB

∴OM=BM

∴OM+AM=BM+AM

连接AB交直线x=1于M点,则此时OM+AM最小

过点A作AN⊥x轴于点N,

在Rt △ABN 中,AB===4

因此OM+AM 最小值为

方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。应用的定理是:两点之间线段最短。

A A

B B M

或者 M

A ’

B ’

例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程

230ax bx a +-=的两根为1x ,2x ,且124x x -=。

(1)求抛物线1C 的顶点坐标. (2)已知实数0x >,请证明:1x x +

≥2,并说明x 为何值时才会有1

2x x

+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,

2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式

表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。

解析:(1)∵抛物线过(0,-3)点,∴-3a =-3 ∴a =1 ∴y=x 2+bx -3

∵x 2+bx -3=0的两根为x 1,x 2且21x -x =4

∴21221214)(x x x x x x -+=-=4且b <0

∴b =-2 ∴y=x 2-2x -3=(x -1)2-4

∴抛物线C1的顶点坐标为(1,-4) (2)∵x >0,∴0)1(212≥-=-+

x

x x x ∴,21≥+

x x 显然当x =1时,才有,21

=+x

x (3)方法一:由平移知识易得C2的解析式为:y =x 2

∴A(m ,m 2),B (n ,n 2) ∵ΔAOB 为Rt Δ ∴OA 2+OB 2=AB 2

∴m 2+m 4+n 2+n 4=(m -n )2+(m 2-n 2)2 化简得:m n =-1

∵SΔAOB =OB OA ?21=42422

1n n m m +?+

∵m n =-1 ∴SΔAOB =

22221

221221m

m n m ++=++ =

122

1

121)1(212=?≥??? ??+=+m m m m ∴SΔAOB 的最小值为1,此时m =1,A(1,1) ∴直线OA 的一次函数解析式为y=x

方法提炼:①已知一元二次方程两个根x 1,x 2,求|x 1-x 2|。因为|x 1-x 2|=212214x x )x (x -+

可得到:根公式根据一元二次方程的求;24;242221a

ac

b b x a a

c b b x -+-=-+-=

.;2121a

c

x x a b x x =-=+

②,取得最小值。

时,当21

1);(,21=+=>≥+

m

m m o m m m 例3:如图,已知抛物线经过点A (﹣1,0)、B (3,0)、C (0,3)三点. (1)求抛物线的解析式.

(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用m 的代数式表示MN 的长.

(3)在(2)的条件下,连接NB 、NC ,是否存在m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.

解析:(1)设抛物线的解析式为:y=a (x+1)(x ﹣3),则: a (0+1)(0﹣3)=3,a=﹣1;

∴抛物线的解析式:y=﹣(x+1)(x ﹣3)=﹣x 2+2x+3. (2)设直线BC 的解析式为:y=kx+b ,则有:

解得;

故直线BC 的解析式:y=﹣x+3.

已知点M 的横坐标为m ,则M (m ,﹣m+3)、N (m ,﹣m 2+2m+3); ∴故MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m (0<m <3). (3)如图;

∵S △BNC =S △MNC +S △MNB =MN (OD+DB )=MN ×OB ,

∴S△BNC=(﹣m2+3m)×3=﹣(m﹣)2+(0<m<3);

∴当m=时,△BNC的面积最大,最大值为.

方法提炼:因为△BNC的面积不好直接求,将△BNC的面积分解为△MNC和△MNB的面积和。然后将△BNC的面积表示出来,得到一个关于m的二次函数。此题利用的就是二次函数求最值的思想,当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值。

题型二:二次函数与三角形的综合问题

例4:如图,已知:直线3+

y交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过

=x

-

A、B、C(1,0)三点.

(1)求抛物线的解析式;

(2)若点D的坐标为(-1,0),在直线3+

y上有一点P,使ΔABO与ΔADP相似,

-

=x

求出点P的坐标;

(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.

解:(1):由题意得,A (3,0),B (0,3)

∵抛物线经过A 、B 、C 三点,∴把A (3,0),B (0,3),C (1,0)三点分别代入2y ax bx c

=++得方程组

??

?

??=++==++03

039c b a c c b a 解得:??

?

??=-==341c b a

∴抛物线的解析式为243y x x =-+

(2)由题意可得:△ABO 为等腰三角形,如图所示,

若△ABO∽△AP 1D ,则

1

DP OB

AD AO =

∴DP 1=AD=4 , ∴P 1(1,4)-

若△ABO∽△ADP 2 ,过点P 2作P 2 M⊥x 轴于M ,AD=4,

∵△ABO 为等腰三角形, ∴△ADP 2是等腰三角形,由三线合一可得:DM=AM=2= P 2M , 即点M 与点C 重合 ∴P 2(1,2) (3)如图设点E (,)x y ,则

||2||2

1

y y AD S ADE =??=

? ①当P 1(-1,4)时, S 四边形AP1CE =S △ACP1+S △ACE

||22

1

4221y ??+??=

= 4y +

∴24y y =+ ∴4y = ∵点E 在x 轴下方 ∴4y =-

代入得: 2434x x -+=-,即 0742=+-x x ∵△=(-4)2-4×7=-12<0 ∴此方程无解

②当P 2(1,2)时,S 四边形AP2CE =S 三角形ACP2+S 三角形ACE = 2y +

∴22y y =+ ∴2y =

∵点E 在x 轴下方 ∴2y =- 代入得:2432x x -+=- 即 0542=+-x x ,∵△=(-4)2-4×5=-4<0 ∴此方程无解

综上所述,在x 轴下方的抛物线上不存在这样的点E 。

方法提炼:①求一点使两个三角形相似的问题,我们可以先找出可能相似的三角形,一般是有几种情况,需要分类讨论,然后根据两个三角形相似的边长相似比来求点的坐标。②要求一个动点使两个图形面积相等,我们一般是设出这个动点的坐标,然后根据两个图形面积相等来求这个动点的坐标。如果图形面积直接求不好求的时候,我们要考虑将图形面积分割成几个容易求解的图形。

例5:如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;

(2)求经过点A .O 、B 的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.

解析:(1)如图,过B 点作BC⊥x 轴,垂足为C ,则∠BCO=90°, ∵∠AOB=120°,

∴∠BOC=60°,

又∵OA=OB=4,

∴OC=OB=×4=2,BC=OB?sin60°=4×=2,

∴点B的坐标为(﹣2,﹣2);

(2)∵抛物线过原点O和点A.B,

∴可设抛物线解析式为y=ax2+bx,

将A(4,0),B(﹣2.﹣2)代入,得

解得,

∴此抛物线的解析式为y=﹣x2+x

(3)存在,

如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,

则22+|y|2=42,

解得y=±2,

当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,

∴∠POD=60°,

∴∠POB=∠POD+∠AOB=60°+120°=180°,

即P、O、B三点在同一直线上,

∴y=2不符合题意,舍去,

∴点P的坐标为(2,﹣2)

②若OB=PB,则42+|y+2|2=42,

解得y=﹣2,

故点P的坐标为(2,﹣2),

③若OP=BP,则22+|y|2=42+|y+2|2,

解得y=﹣2,

故点P的坐标为(2,﹣2),

综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),

方法提炼:求一动点使三角形成为等腰三角形成立的条件,这种题型要用分类讨论的思想。因为要使一个三角形成为等腰三角形,只要三角形的任意两个边相等就可以,所以应该分三种情况来讨论。

题型三:二次函数与四边形的综合问题

例6:综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求直线AC的解析式及B,D两点的坐标;

(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.

(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.

解析:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3.

∵点A在点B的左侧,

∴A.B的坐标分别为(﹣1,0),(3,0).

当x=0时,y=3.

∴C点的坐标为(0,3)

设直线AC的解析式为y=k1x+b1(k1≠0),

则,

解得,

∴直线AC的解析式为y=3x+3.

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴顶点D的坐标为(1,4).

(2)抛物线上有三个这样的点Q,

①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);

②当点Q在点Q2位置时,点Q2的纵坐标为﹣3,

代入抛物线可得点Q 2坐标为(1+,﹣3);

③当点Q在Q3位置时,点Q3的纵坐标为﹣3,

代入抛物线解析式可得,点Q 3的坐标为(1﹣,﹣3);

综上可得满足题意的点Q有三个,分别为:

Q 1(2,3),Q2(1+,﹣3),Q3(1﹣,﹣3).

(3)点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC与点M,则点M为所求,

过点B′作B′E⊥x轴于点E.

∵∠1和∠2都是∠3的余角,

∴∠1=∠2.

∴Rt△AOC~Rt△AFB,

∴,

由A(﹣1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3,

∴AC=,AB=4.

∴,

∴BF=,

∴BB′=2BF=,

由∠1=∠2可得Rt△AOC∽Rt△B′EB,

∴,

∴,即.

∴B′E=,BE=,

∴OE=BE﹣OB=﹣3=.

∴B′点的坐标为(﹣,).

设直线B′D的解析式为y=k2x+b2(k2≠0).

∴,

解得,

∴直线B'D的解析式为:y=x+,

联立B'D与AC的直线解析式可得:,

解得,

∴M点的坐标为(,).

方法提炼:求一动点使四边形成为平行四边形成立的条件,这种题型要用分类讨论的思想,一般需要分三种情况来讨论。

题型四:二次函数与圆的综合问题

例7:如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线2

33

y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;

(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;

(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.

解析:(1)如答图1,连接OB .

∵BC=2,OC=1 ∴OB=413-= ∴B(0,3)

将A (3,0),B (0,3)代入二次函数的表达式

得393033b c c ?-?++=???=? ,解得:23

33b c ?=???=?

, ∴2323

333

y x x =-

++. (2)存在.

如答图2,作线段OB 的垂直平分线l ,与抛物线的交点即为点P .

∵B(0,3),O (0,0), ∴直线l 的表达式为3

2

y =

.代入抛物线的表达式, 得232333332

y x x =-

++=; 解得10

12

x =±

, ∴P(103122

±

,). (3)如答图3,作MH⊥x 轴于点H .

设M (m m x y , ),

则S △MAB =S 梯形MBOH +S △MHA ﹣S △OAB =12(MH+OB )?OH+12HA?MH﹣1

2

OA?OB

=111

(3)(3)33222

m m m m y x x y ++--?? =

3333222

m m x y +- ∵2323

333

m m m y x x =-++, ∴2ΔMAB 3332333

(3)22332

m m m S x x x =+-++- =223333393()22228

m m m x x x -

+=--+ ∴当32m x =

时,ΔMAB S 取得最大值,最大值为93

8

. 题型五:二次函数中的证明问题 例8:如图11,已知二次函数))(2(48

1

b ax x y ++=的图像过点A(-4,3),B(4,4). (1)求二次函数的解析式: (2)求证:△ACB 是直角三角形;

(3)若点P 在第二象限,且是抛物线上的一动点,过点P 作PH 垂直x 轴于点H ,是否存在以P 、H 、D 、为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请 说明理由。

解:(1)将A(-4,3),B(4,4)代人))(2(48

1

b ax x y ++=

中,整理得: ???=+=32472-4b a b a 解得???==20-13

b a

∴二次函数的解析式为:)20-13)(2(48

1

x x y +=

, 整理得:

(2)由 整理040-6132=+x x 13

20

,221=-=∴x x

∴C (-2,0) D ),(013

20 从而有:AC 2=4+9 BC 2=36+16 AC 2+ BC 2=13+52=65 AB 2=64+1=65

∴ AC 2+ BC 2=AB 2 故△ACB 是直角三角形

(3)设)6

5

-814813(2x x x p +, (X<0)

PH=6

5

-8148132x x + HD=x -1320 AC=13 BC=132

①当△PHD ∽△ACB 时有:BC HD

AC PH = 即:13

2-13201365-8148132x

x x =+ 整理 039125-4524132=+x x ∴13

50

-

1=x 13202=x (舍去)此时,13351=y

∴ ),13

35

1350(-1p

6

5-8148132x x y +=065-8148132=+x

x

②当△DHP ∽△ACB 时有:BC

PH

AC DH =

即:13

265-81481313-13202x x x +=

整理 078305-81748132=+x x ∴ 13

122-1=x 13202=x (舍去)此时,13284

1=

y

∴ )

,13

284

13122(-

2p 综上所述,满足条件的点有两个即),13351350(-

1p )

,13

284

13122(-2p 例9: 在平面直角坐标系xOy 中,点P 是抛物线:y=x 2上的动点(点在第一象限内).连接 OP ,过点0作OP 的垂线交抛物线于另一点Q .连接PQ ,交y 轴于点M .作PA 丄x 轴于点A ,QB 丄x 轴于点B .设点P 的横坐标为m . (1)如图1,当m=

时,

①求线段OP 的长和tan∠POM 的值;

②在y 轴上找一点C ,使△OCQ 是以OQ 为腰的等腰三角形,求点C 的坐标; (2)如图2,连接AM 、BM ,分别与OP 、OQ 相交于点D 、E . ①用含m 的代数式表示点Q 的坐标; ②求证:四边形ODME 是矩形.

解析:(1)①把x=代入 y=x 2,得 y=2,∴P(,2),∴OP=

∵PA 丄x 轴,∴PA∥MO.∴tan∠P0M=tan∠0PA=

=

②设Q(n,n2),∵tan∠QOB=tan∠POM,

∴.∴n=

∴Q(,),∴OQ=.

当OQ=OC 时,则C1(0,),C2(0,);

当OQ=CQ 时,则C3(0,1).

(2)①∵P(m,m2),设Q(n,n2),∵△APO∽△BOQ,∴

∴,得n=,∴Q(,).

②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(,)代入,得:

解得b=1,∴M(0,1)

∵,∠QBO=∠MOA=90°,

∴△QBO∽△MOA

∴∠MAO=∠QOB,

∴QO∥MA

同理可证:EM∥OD

又∵∠EOD=90°,

∴四边形ODME是矩形.

题型六:自变量取值范围问题

例10:如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.

(1)求过A.C.D三点的抛物线的解析式;

(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;

(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.

解析:(1)∵四边形ABCD是菱形,

∴AB=AD=CD=BC=5,sinB=sinD=;

Rt△OCD中,OC=CD?sinD=4,OD=3;

OA=AD﹣OD=2,即:

A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);

设抛物线的解析式为:y=a(x+2)(x﹣3),得:

2×(﹣3)a=4,a=﹣;

∴抛物线:y=﹣x2+x+4.

(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;

由(1)得:y2=﹣x2+x+4,则:

三角函数经典解题方法及考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2 π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π 的奇函数 D. 最小正周期为 2 π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2 cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304 ≤ ≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

中考数学专题训练函数综合题人教版

中考数学专题训练(函数综合) 1.如图,一次函数b kx y +=与反比例函数 x y 4 = 的图像交于A 、B 两点,其中点A 的横坐标为1, 又一次函数b kx y +=的图像与x 轴交于点()0,3-C . (1)求一次函数的解析式; (2)求点B 的坐标. 2.已知一次函数y=(1-2x )m+x+3图像不经过第四象限,且函数值y 随自变量x 的减小而减小。 (1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 ,求这个一次函数的解析式。 3. 如图,在平面直角坐标系中,点O 为原点,已知点A 的坐标为(2,2), 点B 、C 在x 轴上,BC =8,AB=AC ,直线AC 与y 轴相交于点D . (1)求点C 、D 的坐标; (2)求图象经过B 、D 、A 三点的二次函数解析式及它的顶点坐标. 4.如图四,已知二次函数 2 23y ax ax =-+的图像与x 轴交于点A 与y 轴交于点C ,其顶点为D ,直线DC 的函数关系式为y kx b =+ 又tan 1OBC ∠=. (1)求二次函数的解析式和直线DC 的函数关系式; (2)求ABC △的面积. ( 图四)

5.已知在直角坐标系中,点A 的坐标是(-3,1),将线段OA 绕着点O 顺时针旋转90° 得到OB . (1)求点B 的坐标; (2)求过A 、B 、O 三点的抛物线的解析式; (3)设点B 关于抛物线的对称轴λ的对称点为C ,求△ABC 的面积。 6.如图,双曲线x y 5 = 在第一象限的一支上有一点C (1,5),过点C 的直线)0(>+-=k b kx y 与x 轴交于点A (a ,0)、与y 轴交于点B . (1)求点A 的横坐标a 与k 之间的函数关系式; (2)当该直线与双曲线在第一象限的另一交点D 的横坐标是9时,求△COD 的面积. 7.在直角坐标系中,把点A (-1,a )(a 为常数)向右平移4个单位得到点A ',经过点A 、A '的抛物线2y ax bx c =++与y 轴的交点的纵坐标为2. (1)求这条抛物线的解析式; (2)设该抛物线的顶点为点P ,点B 为)1m ,(,且3

(完整版)中考数学函数综合题型及解题方法讲解

二次函数综合题型精讲精练 主讲:姜老师 题型一:二次函数中的最值问题 例1:如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点. (1)求抛物线y=ax 2+bx+c 的解析式; (2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值. 解析:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y=ax 2+bx+c 中,得 解这个方程组,得a=﹣,b=1,c=0 所以解析式为y=﹣x 2+x . (2)由y=﹣x 2+x=﹣(x ﹣1)2+,可得 抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM ∴OM+AM=BM+AM 连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN ⊥x 轴于点N , 在Rt △ABN 中,AB== =4 , 因此OM+AM 最小值为 . 方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。应用的定理是:两点之间线段最短。 A A B B M 或者 M A ’ B ’ 例2:已知抛物线1C 的函数解析式为2 3(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程 230ax bx a +-=的两根为1x ,2x ,且124x x -=。 (1)求抛物线1C 的顶点坐标. (2)已知实数0x >,请证明:1x x + ≥2,并说明x 为何值时才会有1 2x x +=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2 C 上的两个不同点,且满足:0 90AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

历年中考数学动点问题题型方法归纳

x A O Q P B y 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。

图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) y M C D 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

常见函数常见函数题型的解题方法

. . . . . . . 常见函数选择题的解题方法 梁艳芬 函数是高中数学的重要组成部分,是高考的重点内容,历年高考题中分数所占比例都较大,2006年的高考题中,函数的内容占了60分,达到40%的比例。本文就函数选择题中常见题型的解题思想及方法作一些归纳,供同学们在学习过程中作参考。 函数的内容主要包括函数的三要素(定义域、值域、解析式),函数的基本性质(单调性、奇偶性、对称性、周期性),函数的图像及函数的应用四大部分。因此,解有关函数的选择题首先必须掌握函数的相关概念、图像及性质,及函数上述诸要素的判断及求解的基本思想,在解题时才能正确判断运用何种方法求解。 [例题1](2006年高考广东B 卷1) 函数)13lg(13)(2++-= x x x x f 的定义域是( ) A .),31(+∞- B .)1,31(- C .)31 ,31(- D .)31,(--∞ 分析:本题是考查函数定义域,求解函数定义域的理论基础是:(1)分母不能为零;(1)对数的真数大于零;(3)偶次方根的被开方数大于等于零;由此很快可以得到答案B ; [例题2](2006年高考广东B 卷3)在下列函数中,在其定义域中既是奇函数又是减函数的是( ) A .R x x y ∈-=,3 B .R x x y ∈=,sin C .R x x y ∈=, D .R x y x ∈=,)21 ( 分析:本题主要考查函数的奇偶性及单调性,故在解题时先对单调性进行判断,而判断函数的单调主要运用函数奇偶性的定义,在定义域内若)()(x f x f =-,则函数)(x f 为偶函数;在定义域内,若)()(x f x f -=-,则函数)(x f 为奇函数;否则为非奇非偶的函数,运用上述定义很快可以排除答案D ,其次由基本函数的图像可以判断答案B 不是单调函数,答案C 为增函数,故答案为A 。 [例题3] (2006年高考广东B 卷7)卷函数)(x f y =的反函 数)(1x f y -=的图像与y 轴交于点)2,0(P ,(如图2所示),

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

函数问题的题型与解题方法

函数问题的题型与解题方法 一、函数的概念 函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是: 1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系. 2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用. 3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础. 本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合. Ⅰ 深化对函数概念的认识 例1.下列函数中,不存在反函数的是 ( ) 分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐. 从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。 此题作为选择题还可采用估算的方法.对于D ,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D 中函数不存在反函数.于是决定本题选D . 说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键. 由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题. 例1.函数)23(log 2 1-=x y 的定义域是( D ) A 、[1,)+∞ B 、2 3(,)+∞ C 、23[,1] D 、23(,1] 例2.函数123-=x y (01<≤-x )的反函数是( D ) A 、)31 (log 13≥+=x x y B 、)3 1 (log 13≥+-=x x y C 、)131(log 13≤<+=x x y D 、)131(log 13≤<+-=x x y 也有个别小题的难度较大,如

中考数学压轴题解析二十

中考数学压轴题解析二十 103.(2017黑龙江省龙东地区,第25题,8分)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示. (1)甲、乙两地相距千米. (2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式. (3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等? 【答案】(1)480;(2)y2=40x﹣120;(3)1.2或4.8或7.5小时. 【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离; (2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式; (3)分三种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等;货车与客车相遇后,邮政车与客车和货车的距离相等. . 106.(2017山东省莱芜市,第22题,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲 种口罩的数量大于乙种口罩的4 5,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的 进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元? 【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可; (2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

中考数学压轴题典型题型解析

中考数学压轴题精选精析 37.(09年黑龙江牡丹江)28.(本小题满分8分) 如图, 在平面直角坐标系中,若、的长是关于的一元二 次方程的两个根,且 (1)求的值. (2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似? (3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理 由. (09年黑龙江牡丹江28题解析)解:(1)解得 ·············································································· 1分 在中,由勾股定理有 ········································································ 1分 (2)∵点在轴上, ········································································ 1分 ABCD 6AD =,OA OB x 2 7120x x -+=OA OB >.sin ABC ∠E x 16 3 AOE S = △,D E AOE △DAO △M AB F ,A C F M F 2 7120x x -+=1243x x ==,OA OB >43OA OB ∴==,Rt AOB △225AB OA OB =+=4 sin 5 OA ABC AB ∴∠= =E x 163 AOE S = △11623AO OE ∴?=8 3 OE ∴= 880033E E ????∴- ? ????? ,或,x y A D B O C 28题图

中考数学动点问题题型方法归纳

x A O Q P B y 图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S=t 2 当3<t <8时,S=3/8(8-t)t 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

初三中考数学函数综合题汇总

初三中考数学函数综合 题汇总 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 初三中考函数综合题汇总 1、抛物线bx ax y +=2(0≠a )经过点)4 9 1(,A ,对称轴是直线2=x ,顶点是D ,与x 轴正半轴的 交点为点B . (1)求抛物线bx ax y +=2(0≠a )的解析式和顶点D 的坐标; (2)过点D 作y 轴的垂线交y 轴于点C ,点M 在射线BO 上,当以DC 为直径的⊙N 和以MB 为半径的⊙M 相切时,求点M 的坐标. 2、如图,已知二次函数mx x y 22+-=的图像经过点B (1,2),与x 轴的另一个交点为A ,点B 关于抛物线对称轴的对称点为C ,过点B 作直线BM ⊥x 轴垂足为点M . (1)求二次函数的解析式; (2)在直线BM 上有点P (1, 2 3 ),联结CP 和CA ,判断直线CP 与直线CA 的位置关系,并说明理由; (3)在(2)的条件下,在坐标轴上是否存在点E ,使得以A 、C 、P 、E 角梯形,若存在,求出所有满足条件的点E 3、如图,直线AB 交x 轴于点A ,交y 轴于点B ,O 是坐标原点,A (-3,0)且sin ∠ABO=5 3 ,抛物 线y =ax 2+bx +c 经过A 、B 、C 三点,C (-1,0). (1)求直线AB 和抛物线的解析式; (2)若点D (2,0),在直线AB 上有点P ,使得△ABO 和△ADP 相似,求出点P 的坐标; 第24题

3 (3)在(2)的条件下,以A 为圆心,AP 长为半径画⊙A ,再以D 判断⊙A 和⊙D 的位置关系,并说明理由. 4、已知平面直角坐标系xOy (如图7),抛物线c bx x y ++=221(1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值; (3)设Q 是(1)中所求出的抛物线的一个动点,点Q 的横坐标为t , 当点Q 在第四象限时,用含t 的代数式表示△QAC 的面积. 5、以点P 为圆心PO 长为半径作圆交x 轴交于点A 、O 两点,过点A 作直线AC 交y 轴于点C ,与圆 P 交于点B ,5 3 sin = ∠CAO (1) 求点C 的坐标;(2) 若点D 是弧AB 的中点,求经过A 、D 、O 三点的抛物线)0(2≠++=a c bx ax y 的解析式;(3) 若直线)0(≠+=k b kx y 经过点)0,2(M ,当直线 )0(≠+=k b kx y 与圆P 相交时,求 b 的取值范围. 图

中考数学数学中考数学压轴题试题附解析(1)

一、中考数学压轴题 1.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC (1)直接写出四边形ABCD 的形状:______; (2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F . ①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明); ②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由; (3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____. 2.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题. (1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE (2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD . 求证:DB=DE . (3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论. 3.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1 y (米/分钟)与时间x (分钟)前2分钟满足二次函数2 1y ax ,后3分钟满足反比例函数 关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟. (1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;

人教中考数学专题题库∶二次函数的综合题含答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.(6分)(2015?牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题: (1)求抛物线的解析式; (2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长. 注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣ . 【答案】(1)y=-2x-3;(2). 【解析】 试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长. 试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得: ,解得: ,∴抛物线的解析式是:y=-2x-3;(2)∵点 E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE= = .∵点F 是AE 中点,点H 是抛物线的对称轴与 x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×= .∴ 线段FH 的长 . 考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理. 2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线 y x m =+过顶点C 和点B .

高考必考三角函数题型及解题方法

三角函数三角函数的图像和性质: 函数sin y x =cos y x =tan y x =图 象 定义域R R |, 2 x x k k Z π π ?? ≠+∈ ?? ?? 值域[1,1] -[1,1] -R 奇偶性奇函数偶函数奇函数 有界性 sin1 x≤cos1 x≤无界函数 最小正 周期2π2ππ 2,2 22 () 3 2,2 22 () k k k Z k k k Z ππ ππ ππ ππ ?? -+ ?? ?? ∈ ?? ++ ?? ?? ∈ 增区间 减区间 [] [] 2,2 () 2,2 () k k k Z k k k Z πππ πππ - ∈ + ∈ 增区间 减区间,22 () k k k Z ππ ππ ?? -+ ? ?? ∈ 增区间 对称轴 () 2 x k k Z π π =+∈ () x k k Z π =∈无对称轴 对称 中心 ()() ,0 k k Z π∈ () ,0 2 k k Z π π ?? +∈ ? ?? () ,0 2 k k Z π ?? ∈ ? ?? () () max min 2 2 1; 2 2 1 x k k Z y x k k Z y π π π π =+∈ = =-∈ =- 时, 时, () ()() max min 2 1; 21 1 x k k Z y x k k Z y π π =∈ = =+∈ =- 时, 时, 三个三角函数值在每个象限的符号: sinα cosα tanα· 30°45°60°0°90°180°270°15°75° sinα 2 1 2 2 2 3 0 1 0 -1 62 4 -62 4 + o π 3 2 π 2π y o o2 ππ3 2 π y x 2 π 2 πx π 3 2 π x y 2π 无最值最值 单 调 区 间

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

(完整版)初三中考数学函数综合题汇总

初三中考函数综合题汇总 抛物线bx ax y +=2 (0≠a )经过点)4 91(,A ,对称轴是直线2=x ,顶点是D ,与x 轴正半轴的交点为点B . 【2013徐汇】 (1)求抛物线bx ax y +=2 (0≠a )的解析式和顶点D 的坐标; (6分) (2)过点D 作y 轴的垂线交y 轴于点C ,点M 在射线BO 上,当以DC 为直径的⊙N 和 以MB 为半径的⊙M 相切时,求点M 的坐标. (6分) 【2013奉贤】如图,已知二次函数mx x y 22 +-=的图像经过点B (1,2),与x 轴的另一个交点为A ,点B 关于抛物线对称轴的对称点为C ,过点B 作直线BM ⊥x 轴垂足为点M . (1)求二次函数的解析式; (2)在直线BM 上有点P (1, 2 3),联结CP 和CA ,判断直线CP 与直线CA 的位置关系,并说明理由; (3)在(2)的条件下,在坐标轴上是否存在点E ,使得以A 、C 、P 、E 为 顶点的四边形为直角梯形,若存在,求出所有满足条件的点E 的坐标; 若不存在,请说明理由。 第24题

【2013长宁】如图,直线AB 交x 轴于点A ,交y sin ∠ABO= 5 3 ,抛物线y =ax 2+bx +c 经过A 、B 、C (1)求直线AB 和抛物线的解析式; (2)若点D (2,0),在直线AB 上有点P △ADP 相似,求出点P 的坐标; (3)在(2)的条件下,以A 为圆心,AP 再以D 为圆心,DO 长为半径画⊙D ,判断⊙A 置关系,并说明理由. 【2013嘉定】已知平面直角坐标系xOy (如图7),抛物线c bx x y ++= 2 2 1经过点)0,3(-A 、)2 3,0(-C . (1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值; (3)设Q 是(1)中所求出的抛物线的一个动点, 点Q 的横坐标为t , 当点Q 在第四象限时,用含t 的代数式表示 △QAC 的面积. 【2013金山】以点P 为圆心PO 长为半径作圆交 x 轴交于点A 、O 两点,过点A 作直线AC 交 y 轴于点C ,与圆P 交于点B , 5 3 sin = ∠CAO (1) 求点C 的坐标; (2) 若点D 是弧AB 的中点,求经过A 、D 、 O 三点的抛物线)0(2≠++=a c bx ax y 的解析 式; (3) 若直线)0(≠+=k b kx y 经过点 )0,2(M ,当直线)0(≠+=k b kx y 与圆P 相交时,求b 的取值范围. 图7

相关文档
最新文档