地铁无人驾驶系统关键技术探讨

地铁无人驾驶系统关键技术探讨
地铁无人驾驶系统关键技术探讨

地铁无人驾驶系统及关注的主要问题

2008年7月16日

目录

1简介3

2基于CBTC的无人驾驶系统一般主要有以下运营模式:3

3相比传统的CBTC有人驾驶系统,无人驾驶系统有其特定的功能4

3.1列车的自动唤醒和休眠4

3.1.1唤醒4

3.1.2休眠4

3.2驾驶室的自动切换功能4

3.3车门/屏蔽门控制功能4

3.3.1屏蔽门故障应对5

3.3.2列车门故障应对5

3.3.3人工开、关门5

3.4站台停车位置调整5

3.5蠕动模式6

3.6强制有人驾驶模式(ATPM)6

4关注的主要问题6

4.1相比于传统的停车场功能,无人驾驶系统需要对停车场实现全自动停车场的管理功能6 4.2相比于传统的有人驾驶系统,无人驾驶系统一般需要考虑以下几个方面活动7

4.2.1在列车上需配备以下系统应用于无人驾驶:7

4.2.2在车站将需配备以下系统应用于无人驾驶:8

4.3救援模式10

4.3.1列车可移动10

4.3.2列车不可移动10

4.4工作人员的防护10

4.5运营方案以及其它辅助支持系统的研究10

1 简介

无人驾驶系统是将列车驾驶员执行的工作完全自动化的、高度集中控制的列车控制系统。无人驾驶系统具备列车自动唤醒启动和休眠、自动出入停车场、自动清洗、自动运行、自动停车、自动控制车门上下客等功能;并具有正常运营、降级运营等运营模式。

无人驾驶系统在世界上多个城市的轨道交通中得到了应用,并成功应用于大运量轨道交通中。

哥本哈根、巴黎、温哥华、新加坡等城市的无人驾驶系统已投入运营,目前国外也有越来越多的城市在建设无人驾驶系统。无人驾驶系统是一项成熟的技术,在设计、施工、车辆与机电设备及系统集成等方面均已取得丰富经验。

无人驾驶系统代表了目前轨道交通现代化的最先进技术,它不仅提高了列车运行的安全性能,而且与传统地铁相比,其系统的旅行速度大约提高了10%,在交通服务的供给方面具有很强的适应性和灵活性,有效保证了运营的准点性和舒适性,极大地改善了交通系统的服务质量。作为先进的客运交通系统,将引导现代城市轨道交通发展趋势。

2 基于CBTC的无人驾驶系统一般主要有以下运营模式:

?AM模式:无人驾驶模式;

?AMC模式:有人自动驾驶模式(传统的CBTC系统自动驾驶模式,同一阶段AM 和AMC只有一个有效);

?人工驾驶模式:ATPM、RM和BY旁路模式;

?蠕动模式;

AM模式

在正常运营条件下,所有列车将运行在无人自动驾驶模式下。

AMC控制模式

该模式是完全自动模式但是车上有司机。ATP和ATO完成与AM模式中相同的功能。唯一的区别在于:当ATO收到发车命令准备触发时,ATO在DDU上显示一个告警信息,通知司机按压驾驶台上的启动按钮。

人工驾驶模式

由司机人工驾驶列车运行,在人工模式下,当DDU上出现准备好的指示后,由驾驶员执行相应的操作。

蠕动模式的控制

只有当正线区间运行的列车,在AM模式下,列车的牵引/制动信号控制均出现故障时进行蠕动模式CPM,列车停车后才能启动CPM。

OCC操作员应确认并人工启动CPM模式。在该模式下,列车的运行速度小于20 kph 且牵引/制动通过列车线路控制。由ATP对CPM模式下的列车运行速度进行监控并在超速时应用紧急制动。

3 相比传统的CBTC有人驾驶系统,无人驾驶系统有其特定的功能

3.1列车的自动唤醒和休眠

3.1.1唤醒

每天运营开始前或插入列车时,根据时刻表,信号系统给每列列车自动分配识别号,当两端的驾驶室都选择AM模式(在其它模式下,需人工触发唤醒程序),在即将接近列车发车时,ATS将自动给列车发送唤醒指令,列车接收到唤醒指令后,将执行车载各子系统的启动、自检和静态测试。所有唤醒程序结束,TMS将向信号系统报告列车状态(成功或是故障代码序列)列车的唤醒过程及唤醒工况,如果唤醒不成功,将给OCC调度员提示相应的故障信息,如果列车唤醒成功,则列车可以插入运营,等待信号系统发送新的指令。

在任何时候,OCC调度员可远程人工唤醒列车。

3.1.2休眠

根据时刻表,列车服务行程结束后,列车驶入停车场库线或正线存车线并停稳后,为了节省能源和保养设备,系统将自动启动休眠程序,在休眠前,信号系统将给车辆维护系统发送提示信息,使其确认是否需下载车辆维护信息,在给定时间后,车辆关闭相应的车载子系统,进入休眠状态,仅保持唤醒部分设备持续工作。

3.2驾驶室的自动切换功能

在列车折返时,应根据移动授权的方向,自动确定运行方向,并自动激活/关闭相应的驾驶端,实现驾驶室的转换。驾驶室的转换不能引起任何数据的丢失,如列车门的状态/控制数据,列车的状态等。

列车在站台进行驾驶端转换时,车门和屏蔽门保持开启状态,列车在折返线等非站台区进行驾驶端转换时,车门保持关闭状态。

3.3车门/屏蔽门控制功能

除了传统的系统车门/屏蔽门控制(如联动,开&关门外),还有以下应用于无人驾驶系统的故障应对功能和人工介入操作。

3.3.1屏蔽门故障应对

对于个别的屏蔽门故障,应人工将故障屏蔽门关闭并锁定,屏蔽门系统应向信号系统报告被锁定的屏蔽门的位置(包括站台号或门编号),在列车到达该站台前,信号系统将故障屏蔽门的位置发送给列车,列车将电气隔离对应的车门,使其在该站停站时不参与开、关门动作,同时车载广播通知系统通知乘客。

3.3.2列车门故障应对

对于个别车门开门故障,车辆应自动将故障车门关闭并锁定;对于车门关门故障,应人工将故障车门关闭并锁定。车辆应向信号系统报告被锁定的车门的位置(门编号)。在门故障的列车到达每个车站前,信号系统向该站的屏蔽门系统发送相关信息,由屏蔽门系统电气隔离相对应的屏蔽门,使其在该列车停站时不参与开、关门动作。同时通过车载广播系统通知乘客。

3.3.3人工开、关门

在列车停站期间,可通过ATS工作站、屏蔽门站台控制盒内的开关,来人工开/关车门、屏蔽门(主要应对人工清除车门或屏蔽门所夹物体,或是不明原因的车门、屏蔽门动作不正常情况。)。信号联锁系统接收人工开/关车门、屏蔽门命令(屏蔽门不直接接收该命令,与屏蔽门没有接口),并检查开、关门条件成立后,才可向车辆(通过车载ATC)、屏蔽门发送该命令。

3.4站台停车位置调整

信号系统将控制正线服务的列车执行预设的停站程序。除非信号系统发出跳停的命令,否则列车会在每个站都停车。

当列车未停在规定的停车点(±500mm)内时,ATO将自动进行站停位置调整。若列车没完全驶入站台停车,ATO系统将再次启动列车缓慢跳跃式调整(jog)前进,直至对位。若列车越过了站台但不超过5米的范围内,列车同样缓慢跳跃式调整后退来对位站台。

若列车越过站台超过5米限制或在给定次数之内还是未停准,则列车将直接自动启动驶到下一个车站(如果前方进路允许)而跳停本站。并生成一个警告发送至OCC,同时启动广播向列车上的旅客播送通知。

3.5蠕动模式

当列车运行在正线区间时,通过ATO发送的牵引/制动均故障,将采用蠕动(CPM)模式。控制中心的行车调度员将确认并人工启动蠕动模式。在该模式下,列车以低于20km速度行使,牵引/制动通过列车数据线控制。在CPM模式下ATP将保持监督列车速度,超速时将启动紧急制动。蠕动模式只能在列车停车后才会启动。

当列车在行进过程中误启动蠕动模式,如果信号-车辆控制线有效,车辆应不考虑蠕动模式控制,并向行车调度员发送告警。

当列车进入站台停车后,司机上车,人工驾驶列车对位停车,引导乘客上下车。

3.6强制有人驾驶模式(ATPM)

OCC调度员可以通过工作站设置对特定区段或特定列车强制执行ATPM模式,取消其无人驾驶模式(AM)。特定的区段必须自站台边缘开始,列车停在该区段前的车站站台时被强制进入ATPM模式。对于特定的列车,强制ATPM模式应使列车保持停止状态。对于强制的ATPM区段,OCC调度员可以要求复位,对于强制ATPM的列车,需由司机人工复位。

4 待讨论的课题

4.1相比于传统的停车场功能,无人驾驶系统需要对停车场实现全自动停车场的管理功能

为了实现全线无人驾驶的需要,需配置全自动停车场,列车运行有ATP防护,全自动运行区域列车能以AM方式运行。

整个停车场纳入信号系统监控。正线服务的列车自“唤醒”至“休眠”须全部纳入时刻表管理与控制。

停车场ATC系统功能与正线一致。停车场区域列车限速为20km/h,停车线停车时,保证列车间或列车至车挡的距离不大于3m。

全自动运行停车区域被分成若干防护分区,各防护分区入口须设SPKS开关,停车场信号系统须为各分区建立逻辑防护,当SPKS被激活时,该区域被封锁,禁止该分区的列车移动,该分区也不能接、发车或调车。

在正常情况下,在停车场全自动运行区域内,列车自动运行。OCC调度员或本地调度员也可人工介入指挥列车运行。

停车场进路命令应由信号系统自动生成,调度人员通过停车场工作站,为每一运营服务周期确定列车,建立列车与时刻表的对应关系。根据确定的规则,时刻表应触发列车“唤醒”,同样时刻表也应适时触发该车的出场进路。停车场信号系统根据进路命令,为列车建立进路,并将移动授权传送到车载ATC。车载ATC根据移动授权,由时刻表出场时间触发列车启动。

调度员应预先为停止正线服务的每一列车人工或是由ATS系统根据下一个列车计划,自动确定列车的存放点,并存入列车号与存放点对应表中。当处于“停止正线服务”工况的列车运行到预定的转换轨时,ATS根据列车号自动触发进路,列车须能直接运行到指定的存车点。

4.2相比于传统的有人驾驶系统,无人驾驶系统一般需要考虑以下几个方面活动

配备综合监控系统ISCS,将车站内所有影响到行车作业或安全相关的子系统信息集成到OCC综合处理系统显示,方便OCC操作员对于全线及各车站的调度指挥。

4.2.1在列车上必须配备以下主要系统应用于无人驾驶:

?列车上配备有火/烟雾检测器;

?车载乘客广播信息设备:

?在AM模式下时,播放计划的乘客通知。

?在人工模式下,驾驶员可以现场进行广播。OCC操作员也可从AV控制台进行人工广播。

?乘客对讲系统。对讲设备由乘客按下位于车门位置的乘客呼叫按钮激活或由紧急手柄激活。乘客对讲系统允许乘客请求与OCC操作员的通信。

?车载CCTV摄像机:

?每节车厢内设2~4 台固定式摄像机,监视车厢内的情况,

?车头/尾各设1 台固定式摄像机,监视车厢外的情况。提供轨道和隧道内的图像,为紧急疏散或列车故障时提供隧道信息。

?视频图象信息通过专用的无线通道送给OCC或备用OCC。

?列车紧急逃生门:

?每个驾驶室配备有紧急逃生门,以供在紧急事件时乘客逃生。当列车因故障停在隧道里时,不能通过另一列列车及时救援时,可通过列车紧急逃生门执

行乘客疏散。

4.2.2在车站将需配备以下系统应用于无人驾驶:

4.2.2.1 车站广播

OCC操作员可以通过选择乘客呼叫点或电梯的广播使用“选择呼叫”命令。

OCC广播:运营信息或紧急信息。该信息由OCC的操作员生成或从预录的信息清单中选择。OCC操作员选择通过“选择目的地”命令,可以向一个或多个车站广播该信息。

4.2.2.2 乘客导乘(PIS)

车站站台乘客指示信息可以显示后续四辆列车的发车时间及后续列车的目的地,引导乘客。

4.2.2.3 屏蔽门

根据需要站台每侧安装适量的和列车精确对位停车点相对列车各车门的屏蔽门,屏蔽门和列车车门的开关同步。

当其中一扇或几扇屏蔽门(极少会同时发生)故障而无法打开时,故障信息通过信号系统送给车载系统,列车在进站停车时可以将相对应的列车门保持关闭。同样的,当列车门故障而无法开启时,屏蔽门锁闭相对应的门。以避免给乘客带来误导和伤害。

屏蔽门系统在站台的两头分别安装了手动控制设备,在紧急情况时可以人工控制屏蔽门的开关、或隔离屏蔽门系统。

屏蔽门系统安装了紧急逃生门,从轨道侧可以人工推开,从站台侧站台值班员使用专用钥匙可以人工开启。

4.2.2.4 视频监控(CCTV)系统

车站监控采用基于IP的数字视频监控系统,监视站厅、站台信息,并将信息传送给OCC 或备用OCC系统操作员。

4.3救援模式

当列车因故障停在隧道里时,需采取相应的救援措施:

4.3.1列车可移动

如果车上有多职能工作人员,由其人工驾驶列车到最近站台,疏散乘客;

如果车上没有多职能工作人员,需派遣司机到车上,人工驾驶列车到最近站台,疏散乘客;

4.3.2列车不可移动

该故障列车可以通过与一列救援车辆或另一列列车联挂,将故障列车拖到就近站台,疏散乘客后,将列车移动至下一个存车线或停车场。

当不能通过另一列列车及时救援时,可通过列车紧急逃生门执行乘客疏散:

?每个驾驶室配备有紧急逃生门,以供在紧急事件时乘客逃生。

?紧急逃生门能通过在列车内激活列车的紧急手柄才能打开,工作人员也能通过钥匙从外面打开。

4.4工作人员的防护

在无人驾驶系统中,对进入轨道的工作人员的安全防护也是至关重要的,为了防止无人驾驶列车进入工作区,正线通向隧道入口的门禁以及停车场防护分区门禁边设信号系统的区域封锁开关(SPKS)。进入隧道、停车场防护分区前,工作人员必须激活门边的SPKS,封锁其工作区域。取消该区域内无人驾驶列车的移动授权,禁止AM模式下的列车进入该区域。

4.5运营方案的研究

?基于无人驾驶系统的运营方案和运营管理是一个崭新的课题,除了需对信号/车辆/综合监控ISCS系统等主要系统的研究外,还应从运营筹划的软课题的研究上满足无人驾驶系统的需求。目前在国内还未开通运营,还需借鉴国外的运营经验,培养专业技术队伍和多职能维护人员,加强控制中心(OCC)调度员的控制和指挥能力,提升中央集

中实时控制的管理水平,为正确使用无人驾驶系统提供管理上的保证。应此,在地铁无人驾驶系统建设的初期,就应研究制定出适用于国内轨道交通基本运营条件的运营目标、运营计划、运营功能、运营组织、运营维护和事故与灾害处理紧急预案等,并在应用中逐渐完善和成熟。

无人驾驶关键技术分析

无人驾驶关键技术分析-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

无人驾驶关键技术分析 无人驾驶技术是传感器、计算机、人工智能、通信、导航定位、模式识别、机器视觉、智能控制等多门前沿学科的综合体。按照无人驾驶汽车的职能模块,无人驾驶汽车的关键技术包括环境感知、导航定位、路径规划、决策控制等。 (1)环境感知技术 环境感知模块相当于无人驾驶汽车的眼和耳,无人驾驶汽车通过环境感知模块来辨别自身周围的环境信息。为其行为决策提供信息支持。环境感知包括无人驾驶汽车自身位姿感知和周围环境感知两部分。单一传感器只能对被测对象的某个方面或者某个特征进行测量,无法满足测量的需要。因而,必需采用多个传感器同时对某一个被测对象的一个或者几个特征量进行测量,将所测得的数据经过数据融合处理后。提取出可信度较高的有用信号。按照环境感知系统测量对象的不同,我们采用两种方法进行检测:无人驾驶汽车自身位姿信息主要包括车辆自身的速度、加速度、倾角、位置等信息。这类信息测量方便,主要用驱动电机、电子罗盘、倾角传感器、陀螺仪等传感器进行测量。 无人驾驶汽车周围环境感知以雷达等主动型测距传感器为主,被动型测距传感器为辅,采用信息融合的方法实现。因为激光、雷达、超声波等主动型测距传感器相结合更能满足复杂、恶劣条件下,执行任务的需要,最重要的是处理数据量小,实时性好。同时进行路径规划时可以直接利用激光返回的数据进行计算,无需知道障碍物的具体信息。 而视觉作为环境感知的一个重要手段,虽然目前在恶劣环境感知中存在一定问题。但是在目标识别、道路跟踪、地图创建等方面具有其他传感器所无法取代的重要性,而在野外环境中的植物分类、水域和泥泞检测等方面,视觉也是必不可少的手段。 (2)导航定位技术 无人驾驶汽车的导航模块用于确定无人驾驶汽车其自身的地理位置,是无人驾驶汽车的路径规划和任务规划的之支撑。导航可分为自主导航和网络导航两种。 自主导航技术是指除了定位辅助之外,不需要外界其他的协助,即可独立完成导航任务。自主导航技术在本地存储地理空间数据,所有的计算在终端完成,在任何情况下均可实现定位,但是自主导航设备的计算资源有限,导致计算能力差,有时不能提供准确、实时的导航服务。现有自主导航技术可分为三类: 相对定位:主要依靠里程计、陀螺仪等内部感受传感器,通过测量无人车相对于初始位置的位移来确定无人车的当前位置。 绝对定位:主要采用导航信标.主动或被动标讽地图匹配或全球定位系统进行定位。 组合定位:综合采用相对定位和绝对定位的方法,扬长避短,弥补单一定位方法的不足。组合定位方案一般有GPs+地图匹配、GPs+航迹推算、GPs+航迹推算+地图匹配、GPs+GLONAss+惯性导航+地图匹配等。

无人驾驶汽车的关键技术和功能

无人驾驶汽车6项关键技术和功能 谈到无人驾驶汽车,既有人对此感到兴奋又有人为此感到担忧,还有人保持中立。尽管无人驾驶汽车能够有效减少人为错误,降低每年因交通事故而造成的伤亡,但人们对此并不熟悉。自从几年前谷歌开始研发无人驾驶汽车以来,我们对其所用的技术已经有了一定的了解。无人驾驶汽车集成了复杂的GPS系统,可以使汽车感知路况变化,然后再通过其他的系统对数据进行分析,从而使你安全到达目的地。 除此之外,汽车上还集成了一系列的摄像头和传感器,它们将持续监控汽车周围的交通状况,并结合电子地图所提供的其他车辆的行驶信息,有效防止撞车事故发生。车上的雷达和激光系统还可以使汽车感知到更远距离范围内的行车状况。通过对所有这些信息的处理,汽车便可准确确定何时加速,何时刹车,以及合适的行车路线。 除了这些基本的功能以外,无人驾驶汽车所能做的远不止把你从出发地送到目的地。以下六项新的功能,会向你展示未来的无人驾驶汽车会是什么样子,以及它将给你的生活带来什么样的变化。 一、高速公路行车和交通拥堵处理 现在,无人驾驶汽车已经开始上路行驶了,比如奥迪已经在测试原型车。仅几年前,无人驾驶汽车还需要用好几台电脑来进行操控;而现在,仅需一个单一的线路板,便可完成所有操作。 线路板上内置了摄像机,传感器以及一个可以操控一切的处理器。有了这些配置,可有效防止交通阻塞。汽车可以自由行驶于高速公路上,既不会串道,也不会超速,还可以保持安全的行车距离。2017年至2019年,无人驾驶汽车将会成为现实。不过也别期望它会完全自动化,它会以不同的方式体现,例如:具有堵车辅助功能,高速公路试航功能,以及自动停车功能。

全自动无人驾驶模式在地铁中的建设模式讨论

全自动无人驾驶模式在地铁中的建设模式讨论 发表时间:2018-06-19T16:54:49.697Z 来源:《基层建设》2018年第12期作者:高仲麟 [导读] 摘要:全自动无人驾驶系统已经被验证是一种具有高度可靠性、安全性的系统,可以实现列车的小编组、高密度运行、既该省运营服务水平,也降低生命周期成本。 哈尔滨地铁集团运营分公司黑龙江哈尔滨 150000 摘要:全自动无人驾驶系统已经被验证是一种具有高度可靠性、安全性的系统,可以实现列车的小编组、高密度运行、既该省运营服务水平,也降低生命周期成本。全自动无人驾驶系统是一种采用全新理念的先进的城市客运交通模式。代表着城市轨道交通新的发展方向。 关键词:无人驾驶;安全性 前言 随着科学技术的发展以及自动化程度的提高 ,世界上城市轨道交通系统的运行行模式也在发 生变化。 全自动无人驾驶系统的现状 全自动人驾驶系统是一种将列车驾驶员执的工作 , 完全由自动化的、度集中的控制系统所替代的列车运模式。全自动人驾驶系统已越来越被人们所接受 ,以致于像巴黎、马赛、里昂、柏林、汉堡、法兰克福、纽伦堡以及纽约等城市, 都拟将既有传统地铁改造成为全动无人驾驶系统。 在国际上, 全自动无人驾驶已是一项成熟的技术 , 无论在设计、施工, 以及车辆、机电设备、系统集成、系统调等方面均已积累经验。全自动无人驾驶系统的优越性安全性和可靠性高 人工操作易受主观和外界因素的干扰, 因此在安全性方面存在不确定性和不稳定性, 这也是导致轨道交通故障或事故的原因之一。据不完全统计,传统的城市轨道交通线中有50 %~ 60 %的意外事件肇因是由于人的疏忽。全自动无人驾驶系统运用现代设计理念, 采用硬件和软件的冗余措施, 利用高可靠性和安全性的信号系统(ATC), 高可靠性、大容量的具有实时传输功能的通信系统, 以及具有高度的牵引/制动控制精度、快速准确的故障诊断分析与排除功能和应急疏散声光电报警指示的车辆等, 结合智能化和数字化的综合监控系统、运营控制中心依靠人工监视与干预机制来确保高安全性和可靠性。 实现列车高密度运行, 适应大客流运营需要 全自动无人驾驶系统的信号系统采用了基于无线通信技术的移动闭塞系统, 通过与车辆的高精度控制系统的技术接口来实现列车精确定位、高速运行、实时跟踪和自动折返, 有效地缩短了列车运行间隔, 提高了行车密度和旅行速度, 可适应大客流的需要。 降低建设投资和生命周期成本 列车高密度运行, 可减小列车编组、缩短车站长度;旅行速度的提高有利于减少车辆配置数量, 使建设投资得到有效控制。无人驾驶系统具有按客流自动调整运营策略和列车开行密度的功能, 能灵活地适应高峰大客流和低峰客流的运营需要, 提高列车满载率。列车不设驾驶员,使操作人员大幅度减少;车辆配属数的减少也使维修人员数减少, 使整个维修成本下降。因此从总体比较, 全自动无人驾驶系统的生命周期成本(LCC)要比常规系统减少。 可提高服务水平和管理水平 无人驾驶系统是高科技含量的轨道交通系统, 需要有高的管理水平与之相适应。因此, 要求管理人员有较高的素质, 不仅要有较高的科技文化水平, 能沉着、机灵应对突发事件, 更要有极高的服务意识和责任感, 使运营服务水准有明显的提高。 全自动无人驾驶系统的特点 无人驾驶系统涉及车辆、信号、通信、综合自动化等多个专业, 所有专业均应按照无人驾驶系统要求设计, 提高系统的安全性和可靠性,加速各专业技术水平发展, 达到降低投资运营成本, 提高轨道交通运营管理水平, 优化对乘客的服务质量。与有人监督自动驾驶系统相比, 无人驾驶系统具有以下特点: (l) 线路应完全封闭、车站设置屏蔽门, 车辆段无人自动驾驶区域应设置围栏、隔离设施和门禁等防护措施。 (2) 车辆、信号以及车辆与控制中心( 以下简称中心) 的通信系统等均应采用多重冗余技术,主、备系统之间能够实现“ 无缝” 切换, 提高系统的可靠性和可用性。 (3) 车辆应具备更高的牵引和制动控制精度,具有待班列车的自动预检、更强的故障诊断和报警、对车厢内环境的调节, 并具有多重控制方式。同时应设置车辆排障设备和脱轨检测设备, 并与信号系统接口, 在发生紧急情况时应能紧急制动。 (4) 车一地间应实现实时、安全、高速、大容量的双向通信, 包括列车控制信息传输、故障诊断与报警信息传输、车厢内闭路电视监视信息传输、中心和车站与旅客直接通话传输等。 (5) 无人驾驶系统应优先采用基于通信的移动闭塞系统, 在保证列车运行安全的前提下, 能够缩短追踪间隔, 实现列车的精确定位和实时跟踪。同时信号系统应提供特有的“ 超低速运行模式” 用于实现系统故障时的运行。信号车载和轨旁设备故障时应具有可靠的应急运行方式,列车上应设置人工驾驶盘以作为必要时授权人工驾驶, 以及提供乘客紧急停车按钮或手柄。 (6) 车辆段应采用与正线相同的信号系统, 包括进出段联络线, 以实现全线的无人自动驾驶。段内应根据作业性质分为无人自动驾驶区域和有人驾驶区域。列车出入段进路必须预先计划并自动控制。段内自动作业包括激活列车启动自检、启动列车、将列车送至正线、送至洗车库接受预定清洗、送至预先分配的停车线和将列车休眠等。 (7) 具备快速、准确、安全的故障检测和排除功能, 以及强大的故障救援能力。无人驾驶系统应以故障一安全的ATC系统和高效智能的综合自动化系统为基础, 结合人工监视和干预机制, 建立健全运营应急预案, 当列车由于某种原因在区间停车、发生火灾、车门无法关闭等情况下, 应能够迅速将报警信息传输给中心和相关车站, 启动应急预案, 及时响应并采取措施, 提高对灾害、事故等情况下的应急处理能力。运营模式的差异化 与人工操作相比,全自动无人驾驶系统运营管理模式发生较大变化, 中心调度员将由对人的调度关系转变为直接面向列车和旅客,原来对司机的调度电话将转变为中心与列车间的通信, 同时要直接服务旅客、指导旅客处理紧急事务及逃生。 无人驾驶系统在适当的列车编组情况下,通过缩短行车间隔, 能增加运能, 并节省车辆配置; 更高的牵引和制动控制精度可以使列车运行

无人驾驶关键技术分析

无人驾驶关键技术分析 无人驾驶技术是传感器、计算机、人工智能、通信、导航定位、模式识别、机器视觉、智能控制等多门前沿学科的综合体。按照无人驾驶汽车的职能模块,无人驾驶汽车的关键技术包括环境感知、导航定位、路径规划、决策控制等。 (1)环境感知技术 环境感知模块相当于无人驾驶汽车的眼和耳,无人驾驶汽车通过环境感知模块来辨别自身周围的环境信息。为其行为决策提供信息支持。环境感知包括无人驾驶汽车自身位姿感知和周围环境感知两部分。单一传感器只能对被测对象的某个方面或者某个特征进行测量,无法满足测量的需要。因而,必需采用多个传感器同时对某一个被测对象的一个或者几个特征量进行测量,将所测得的数据经过数据融合处理后。提取出可信度较高的有用信号。按照环境感知系统测量对象的不同,我们采用两种方法进行检测:无人驾驶汽车自身位姿信息主要包括车辆自身的速度、加速度、倾角、位置等信息。这类信息测量方便,主要用驱动电机、电子罗盘、倾角传感器、陀螺仪等传感器进行测量。 无人驾驶汽车周围环境感知以雷达等主动型测距传感器为主,被动型测距传感器为辅,采用信息融合的方法实现。因为激光、雷达、超声波等主动型测距传感器相结合更能满足复杂、恶劣条件下,执行任务的需要,最重要的是处理数据量小,实时性好。同时进行路径规划时可以直接利用激光返回的数据进行计算,无需知道障碍物的具体信息。 而视觉作为环境感知的一个重要手段,虽然目前在恶劣环境感知中存在一定问题。但是在目标识别、道路跟踪、地图创建等方面具有其他传感器所无法取代的重要性,而在野外环境中的植物分类、水域和泥泞检测等方面,视觉也是必不可少的手段。 (2)导航定位技术 无人驾驶汽车的导航模块用于确定无人驾驶汽车其自身的地理位置,是无人驾驶汽车的路径规划和任务规划的之支撑。导航可分为自主导航和网络导航两种。 自主导航技术是指除了定位辅助之外,不需要外界其他的协助,即可独立完成导航任务。自主导航技术在本地存储地理空间数据,所有的计算在终端完成,在任何情况下均可实现定位,但是自主导航设备的计算资源有限,导致计算能力差,有时不能提供准确、实时的导航服务。现有自主导航技术可分为三类:相对定位:主要依靠里程计、陀螺仪等内部感受传感器,通过测量无人车相对于初始位置的位移来确定无人车的当前位置。 绝对定位:主要采用导航信标.主动或被动标讽地图匹配或全球定位系统进行定位。 组合定位:综合采用相对定位和绝对定位的方法,扬长避短,弥补单一定位方法的不足。组合定位方案一般有GPs+地图匹配、GPs+航迹推算、GPs+航迹推算+地图匹配、GPs+GLONAss+惯性导航+地图匹配等。

无人驾驶地铁的发展

近年来自动化地铁在全球轨道交通领域口渐升温、)目前,巴黎、新加坡等城市全自动化地铁己正式投入运营,还有马赛、柏林等城市正在将原有的传统地铁改造为全自动化地铁连接美国曼哈顿和布鲁克林的纽约地铁L号线经过改造,正式启用自动控制系统迪拜地铁是阿联酋投巨资兴建的世界上最长的无人驾驶城市快速轨道交通系统、迪拜地铁有红、绿、橙、蓝四条线路,旨在解决迪拜严重的交通拥堵问题、目前城市人口迅速膨胀,据世界铁路研究所预测,到2016年,全球将有500多个城市的居民超过百万,地铁线路口益拥挤带来的运营安全挑战成为轨道交通发展的难题、而实现信号和地铁自动化将有效解决轨道交通网络饱和的问题,同时有效地提高城市运输能力、一种全自动的地铁列车己投入使用。 1全自动无人驾驶地铁 目前无人自动驾驶轨道交通大致可以分为四类:APM(Automated people mover,自动旅客捷运系统)、AutomatedMonorails(自动单轨铁路)、Automated Metros(自动城市地铁)以及ART(Advanced Rapid Transit,高级快速公交)、自动城市地铁系统就是常说的全自动无人驾驶地铁。 全自动无人驾驶列车系统是将列车驾驶员执行的工作完全自动化、高度集中控制的列车运行系统该系统包括车辆段列车自动唤醒、车站准备、进入正线服务、正线列车运行、折返站折返、退出正线服务、进段、洗车和休眠等作业、列车的启动、牵引、巡航、惰行和制动,以及车门和屏蔽门的开关;车站和车载广播等控制都是在无人的状态下自动运行。 它的自动列车运行系统可以精确地调整列车运行速度,控制加速和制动,进行列车调度管理。而自动列车防护系统可以控制列车速度和安全制动,还可以在车站打开车门等等。当然自动化地铁系统的成功实施需要非常小心注意安全问题,严格的系统的工程是必不可少的,包括车辆,航管,轨道,供配电,通讯和安全系统,月台幕门,自动售检票等许多子系统。 全自动化地铁较理想的应用场所是有较大的客流量,并且客流量均衡的短途客运。例如:大型机场中,从总候机大楼到登机的卫星候机楼;大楼展览馆中各场馆的联系;游乐场中各景点的来往;大学校区之间的短途交通等。 2我国发展全自动无人驾驶地铁的必要性 2.1全自动无人驾驶地铁优势决定 地铁自动化系统拥有众多优势,在综合运用多项先进技术的基础上,可实现列车自动唤醒启动和休眠、自动出入停车场、自动清洗、自动行驶、自动停车、自动开关车门、故障自动恢复等功能,并具有常规运行、降级运行、运行中断等多种运行模式,这些高度自动化功能,能有效增加运能,大大提高了系统效率,节省了人力,而且自动化可以使列车调度更加灵便,不会与其他旧有路线混杂。例如可以根据高峰和非高峰时段自动调整发车频率和运行车辆数,在班次延误或客流高峰时可以多插入一组列车运行;在执行特殊任务时,列车则可以自动不停靠相关车站,并能保持速度不变。无人驾驶地铁乘坐起来更为稳当,不会有明显加速和减速的感觉,在起动和制动时乘客不会感到不适。另外,由于特殊的线路走向和站距,列车最高时速可达80公里,从技术方面保障了和提高了运营水平。 当然由于全自动无人驾驶地铁自动化程度较高,相应减少工作人员。人员的减少,管理费用,培养费用也相对于传统非自动模式的少,真正意义上起到了节省人力和财力。自动化地铁的初期成木会高一些,而随着后期维护成木的减少,总体运营成木会逐渐降低。尤其随着劳动力成木的攀升,自动化地铁的优势会口渐显现。正是诸如此类的优势,全自动无人驾驶地铁逐步取代传统的非自动化驾驶模式,也是势在必行的结果。目前根据位于布鲁塞尔的国际公共交通联合会的预测,全球大约40%的地铁系统可能将在未来13年内选择自动化,因此在我国发展全自动无人驾驶地铁更具有必要和紧迫性. 2.2技术发展的必然结果

浅析无人驾驶汽车的关键技术及其未来商业化应用

浅析无人驾驶汽车的关键技术及其未来商业化应用 无人驾驶汽车是基于环境感知技术对车辆周围环境进行感知,并根据感知所获得的信息,通过车载中心电脑自主地控制车辆的转向和速度,使车辆能够安全、可靠地行驶,并到达预定目的地的汽车。无人驾驶是汽车智能化追求的终极目标,是信息通信等先进技术在汽车上的深度应用,体现了更便捷、更简单的人车交互方式,是对人的更大程度的”解放”。它将在减少交通事故、提高运输效率、完成特殊作业、国防军事应用等领域发挥至关重要的作用。 标签:无人驾驶;环境感知技术;车辆控制技术;商业化 前言 无人驾驶技术的可行性早已被充分证实,它的关键技术不在于汽车而在于其中的信息通讯等先进技术。正是由于这些先进技术的应用,无人驾驶技术在操作时效性、安全性和精确性等方面具有远远超过人类的优越性。我们相信未来无人驾驶技术在乘用车、商用车上的商业化应用必能给世界带来革命性的影响。 1 无人驾驶的关键技术 无人驾驶的关键技术是环境感知技术和车辆控制技术,其中环境感知技术是无人驾驶汽车行驶的基础,车辆控制技术是无人驾驶汽车行驶的核心,这两项技术相辅相成共同构成无人驾驶汽车的关键技术。无人驾驶的整个流程归结起来有两个部分,首先,是通过雷达等对外界的环境进行感知;其次,是在必要的情况下对整车进行刹车制动以及转向系统的配合,以保证汽车的安全性、操纵性和稳定性。如果能够默契地进行,那么整个无人驾驶流程就算完成了。 1.1 环境感知技术 环境感知技术是汽车能够获得道路、车辆位置和障碍物的信息,并将这些信息传输给车载中心电脑,从而使汽车根据行驶目标及途中情况,规划、修改行车路线。 简单的说,环境感知技术就是要搞清楚汽车行驶中所处位置,周围的物体有哪些?是什么?距离有多远?以及汽车在道路的整个宏观环境信息。 我们目前常用的感知技术有视觉传感、激光传感、微波传感等,这些感知技术通过各种车载传感器、雷达、通讯设备等获得车辆周边环境两维或三维图像信息和距离信息,并通过图像分析识别技术和距离分析识别对行驶环境进行感知。除此之外,为实现车辆间的信息共享,以及获取车辆行驶道路的宏观数据信息,无人驾驶技术还应用了基于无线网络等近、远程通讯技术获取车辆行驶周边环境信息的通讯传感技术。

上海轨道交通实现无人驾驶的可行性分析与对策

上海轨道交通实现无人驾驶的可行性分析 与对策 上海轨道交通实现无人驾驶的可行性分析与对策 蔡于 (上海地铁运营有限公司) 摘要通过对上海轨道交通运营现状的分析,找出实现无人驾驶的影响因素,并提出相应的解决对策. 关键词轨道交通无人驾驶可行性分析对策 1概述 地铁,轻轨列车实现自动化无人驾驶是全球城 市轨道交通的重要发展方向之一.1984年,法国里 尔率先研制出世界上第一列无人驾驶地铁列车,并 投入使用.目前,加拿大,法国,丹麦,新加坡等国家 已有无人驾驶系统投入运行,而在我国大陆地区轨 道交通无人驾驶尚处于起步阶段.根据规划,上海 轨道交通将有望实现无人驾驶载客运营. 无人驾驶最显着的特点是控制系统的操纵完全 依照通信系统发送的行车指令信息.无人驾驶相比 有人驾驶具有明显的优势,主要表现在: 1)提高增加运能的可能性.由于采用移动闭塞 技术,增加了列车运行的密度,缩短了行车间隔,提 高了线路的通过能力,使列车运行比传统的固定,准 移动闭塞系统更为高效,灵活; 2)节省人力资源,减少办公用房,降低运营成 本; 3)避免司机的误操作; 4)避免司机人为因素(如漏乘,折返慢等)对运

营的干扰. 当然,无人驾驶也并非十全十美,它的不足之处 在于:当设备发生故障或其他突发情况时,电脑的判断不够人性化;处置能力也相对有限,仍可能需要工作人员进行干预. 2上海轨道交通实现无人驾驶的可行性 上海轨道交通已安全运营了十多年,积累了宝 贵的经验.目前,投入运营线路上的载客列车基本上受ATC(列车自动控制)系统控制,实现了ATO (列车自动驾驶)自动运行.正常情况下,实现了在 司机监控下的"无人驾驶". 2.1司机的作用 目前,由于列车基本上受ATC系统控制,司机 的作用仅为: (1)完成到站后的开,关门作业,看信号(有岔车 一 14一 站的道岔防护信号和发车表示器)揿下ATO发车按钮; (2)对突发情况的处置,包括设备故障状态下的 操作和对其他影响因素(如触网异物,乘客多等)的监控和处置. 由此可见,司机在列车运行中的作用已经大大 弱化. 2.2实现无人驾驶的影响因素 尽管上海轨道交通的列车在正常情况下已可以 自动运行,但要真正实现"无人驾驶",还有车辆,信号等方面的影响因素. 2.2.1车辆

城市轨道交通全自动无人驾驶的关键技术特点分析

城市轨道交通全自动无人驾驶的关键技术特点分析 随着我国城市化建设的步伐不断加快,各大城市不断优化城市轨道交通,大力发展轨道交通事业。合理优化城市轨道交通,一方面是为了缓解人口骤增引起的路面交通拥堵,另一方面能够提升城市的整体形象。而目前随着新科技新技术的诞生,为城市轨道交通全自动化无人驾驶的实现变成了可能。国内外各大城市轨道交通企业纷纷,针对城市轨道交通全自动无人驾驶技术进行研究,为进一步实现无人驾驶建立了科学依据。 标签:城市轨道交通;无人驾驶;关键技术 无人驾驶技术在城市轨道交通中的应用将很大程度上降低人工成本,而且能够降低企业的管理费用,提升企业管理水平。在实施城市轨道交通全自动无人驾驶技术时需要满足很多条件,而且对列车的智能化管理要求较高。列车在运行过程中进行全面系统的视频监管,而且列车在行进过程中的通信形式以及列车在各站点的自动停靠等安全问题,都需要全面考虑才能将无人驾驶技术真正地应用到城市轨道交通中。无人驾驶在城市轨道交通中的应用,将大大提升交通运输的便捷性和准确性。 一、无人驾驶的主要功能 (一)无人驾驶的发展过程 每个城市在发展的过程中都形成了具有自身特点的城市轨道交通网络,城市轨道交通已经成为广大市民出行的主要交通工具,而且给市民的出行带来了很大的方便。交通网络的不断完善,从根本上将解决城市交通拥堵及公交困难的情况。随着高新科技的发展,许多城市轨道交通正向自动化方向发展,其发展的过程大致经历了三个阶段。第一个阶段是人工驾驶阶段,列车在行驶过程中通过驾驶员的全程操作,保证列车运行安全,并根据列车自动保护装置进行超速监测确保列车安全。第二个阶段是人工驾驶自动化运行阶段,列车驾驶员只需要通过操作列车的开关车门及列车的起到控制按钮,其他的操作如列车的行驶速度、制动、停靠等统一由列车自行完成[1]。第三阶段是全自动无人驾驶阶段,列车运行中的所有操作均通过列车自主完成,不需要驾驶员操作。目前城市轨道交通已从人工驾驶自动化运行阶段向全自动无人驾驶阶段发展。 (二)无人驾驶的实施目的 无人驾驶最终的目的是通过现代化的设备替代人的工作,减少人员作业通过程序控制实现列车的自动行驶。由于在人工参与的工作中,许多都是可以依靠机器进行完成的,比如在列车行驶的过程中到站开门,可根据信息控制技术将到站信息传递给控制器,控制器发出指令控制列车发动机的制动系统,最后根据停车指令安全准确的停靠到站。到站的自动语音播报,上下列车的警示等等都可以通过信息技术和视频控制技术进行反馈实现实时控制,避免人工出错造成的列车事

无人驾驶技术及发展现状

无人驾驶汽车的发展现状及展望 摘要:作为未来汽车的发展方向,无人驾驶汽车已经得到社会各方面的关注。本文介绍了国内外无人 驾驶汽车的发展历程,对当前无人驾驶汽车的先进技术进行了分析,最后针对物联网对无人驾驶汽车发展的影响做出了推断。 关键词:无人驾驶汽车、现状、趋势 0 引言 自汽车发明以来,汽车工业就不断促进着人类的创新与社会经济的发展。随着汽车产量与保有量的提高,人们的出行变得方便快捷,而由此带来的交通拥堵与交通事故也成为了人类社会文明的一大阻碍。随着计算机控制技术的发展,越来越多的自动控制技术被应用在汽车上,无人驾驶汽车也成为了汽车产业的一大变革。 无人驾驶汽车也被称为自动驾驶汽车或轮式移动机器人。它在没有人类输入的情况下,通过车载传感器感知周围环境,并根据所获取的信息,依靠车内以计算机系统为主的智能驾驶仪实现驾驶[1]。它一般是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。 1 国外无人驾驶发展现状 发达国家从20世纪70年代开始进行无人驾驶汽车研究,目前在可行性和实用性方面,美国和德国走在前列。美国是世界上研究无人驾驶车辆最早、水平最高的国家之一。早在20世纪80年代,美国就提出自主地面车辆(ALV)计划,这是一辆8轮车,能在校园的环境中自主驾驶,但车速不高。美国其它一些着名大学,如卡耐基梅隆大学、麻省理工学院等都先后于20世纪80年代开始研究无人驾驶车辆。然而,由于技术上的局限和预期目标过于复杂,到20世纪80年代末90年代初,各国都将研究重点逐步转移到问题相对简单的高速公路上的民用车辆的辅助驾驶项目上。1995年,一辆由美国卡耐基梅隆大学研制的无人驾驶汽车Navlab2 V完成了横穿美国东西部的无人驾驶试验。在全长5000 km的美国州际高速公路上,整个实验96%以上的路程是车辆自主驾驶的,车速达50~60 km /h。尽管这次实验中的Navlab2V 仅仅完成方向控制,而不进行速度控制(油门及档位由车上的参试人员控制),但这次实验已经让世人看到了科技的神奇力量。丰田汽车公司在2000年开发出无人驾驶公共汽车。这套公共汽车自动驾驶系统主要由道路诱导、车队行驶、追尾防止和运行管理等方面组成。安装在车辆底盘前部的磁气传感器将根据埋设在道路中间的永久性磁石进行导向,控制车辆行驶方向[2]。2005年,美国国防部“大挑战”比赛上,最终由美国斯坦福大学工程师们改装的一辆大众途锐多功能车经过7个半小时的长途跋涉完成了全程障碍赛,第一个到达了终点。在赛道上,无人驾驶汽车需要穿越沙漠、通过黑暗的隧道、越过泥泞的河床并需要在崎岖险峻的山道上行使,整个行程无人驾驶汽车需要绕过无数个障碍。2011年,美国内华达州通过允许无人驾驶汽车上路的法律后,谷歌成为世界上第一个获得无人驾驶汽车授权的公司。2013 年,英国政府拨款150 万英镑,用来在伦敦以北的小城米尔顿凯恩斯的道路上,进行无人驾驶汽车实地试验这些别称为豆荚的自动驾驶汽车行驶速度为19 km/h,它们将在专用道路上搭载乘客前往市区各地。英国政府希望在2015年前先投入20 辆有驾驶员管理的豆荚运营,并在2017年投入百辆无人驾驶的豆荚2013年底,美国密歇根大学批准了一项600万美元的安全驾驶项目,建造用于测试自动驾

地铁无人驾驶系统关键技术探讨

地铁无人驾驶系统及关注的主要问题 2008年7月16日

目录 1 .............................................................................. 简介3 2......................................... 基于CBTC的无人驾驶系统一般主要有以下运营模式:3 3.................................. 相比传统的CBTC有人驾驶系统,无人驾驶系统有其特定的功能4 3.1.............................................................. 列车的自动唤醒和休眠 4 3.1.1 ......................................................................... 唤醒 4 3.1.2 ......................................................................... 休眠 4 3.2.............................................................. 驾驶室的自动切换功能 4 3.3............................................................... 车门/屏蔽门控制功能 4 3.3.1 ................................................................ 屏蔽门故障应对 5 3.3.2 ................................................................ 列车门故障应对 5 3.3.3 .................................................................. 人工开、关门 5 3.4.................................................................. 站台停车位置调整 5 3.5......................................................................... 蠕动模式 6 3.6........................................................... 强制有人驾驶模式(ATPM) 6 4........................................................................ 待讨论的课题6 4.1.............. 相比于传统的停车场功能,无人驾驶系统需要对停车场实现全自动停车场的管理功能 6 4.2..................... 相比于传统的有人驾驶系统,无人驾驶系统一般需要考虑以下几个方面活动 7 4.2.1 ..................................... 在列车上必须配备以下主要系统应用于无人驾驶: 7 4.2.2 .......................................... 在车站将需配备以下系统应用于无人驾驶: 8 4.3......................................................................... 救援模式 10 4.3.1 ................................................................... 列车可移动 10 4.3.2 .................................................................. 列车不可移动 10 4.4.................................................................... 工作人员的防护 10

无人驾驶关键技术分析三篇

无人驾驶关键技术分析三篇 篇一:无人驾驶关键技术分析 无人驾驶技术是传感器、计算机、人工智能、通信、导航定位、模式识别、机器视觉、智能控制等多门前沿学科的综合体。按照无人驾驶汽车的职能模块,无人驾驶汽车的关键技术包括环境感知、导航定位、路径规划、决策控制等。(1)环境感知技术 环境感知模块相当于无人驾驶汽车的眼和耳,无人驾驶汽车通过环境感知模块来辨别自身周围的环境信息。为其行为决策提供信息支持。环境感知包括无人驾驶汽车自身位姿感知和周围环境感知两部分。单一传感器只能对被测对象的某个方面或者某个特征进行测量,无法满足测量的需要。因而,必需采用多个传感器同时对某一个被测对象的一个或者几个特征量进行测量,将所测得的数据经过数据融合处理后。提取出可信度较高的有用信号。按照环境感知系统测量对象的不同,我们采用两种方法进行检测:无人驾驶汽车自身位姿信息主要包括车辆自身的速度、加速度、倾角、位置等信息。这类信息测量方便,主要用驱动电机、电子罗盘、倾角传感器、陀螺仪等传感器进行测量。 无人驾驶汽车周围环境感知以雷达等主动型测距传感器为主,被动型测距传感器为辅,采用信息融合的方法实现。因为激光、雷达、超声波等主动型测距传感器相结合更能满足复杂、恶劣条件下,执行任务的需要,最重要的是处理数据量小,实时性好。同时进行路径规划时可以直接利用激光返回的数据进行计算,无需知道障碍物的具体信息。

而视觉作为环境感知的一个重要手段,虽然目前在恶劣环境感知中存在一定问题。但是在目标识别、道路跟踪、地图创建等方面具有其他传感器所无法取代的重要性,而在野外环境中的植物分类、水域和泥泞检测等方面,视觉也是必不可少的手段。 (2)导航定位技术 无人驾驶汽车的导航模块用于确定无人驾驶汽车其自身的地理位置,是无人驾驶汽车的路径规划和任务规划的之支撑。导航可分为自主导航和网络导航两种。 自主导航技术是指除了定位辅助之外,不需要外界其他的协助,即可独立完成导航任务。自主导航技术在本地存储地理空间数据,所有的计算在终端完成,在任何情况下均可实现定位,但是自主导航设备的计算资源有限,导致计算能力差,有时不能提供准确、实时的导航服务。现有自主导航技术可分为三类:相对定位:主要依靠里程计、陀螺仪等内部感受传感器,通过测量无人车相对于初始位置的位移来确定无人车的当前位置。 绝对定位:主要采用导航信标.主动或被动标讽地图匹配或全球定位系统进行定位。 组合定位:综合采用相对定位和绝对定位的方法,扬长避短,弥补单一定位方法的不足。组合定位方案一般有GPs+地图匹配、GPs+航迹推算、GPs+航迹推算+地图匹配、GPs+GLONAss+惯性导航+地图匹配等。 网络导航能随时随地通过无线通信网络、交通信息中心进行信息交互。移动设备通过移动通信网与直接连接于Internet的web GIs服务器相连,在服务器执行地图存储和复杂计算等功能,用户可以从服务器端下载地图数据。

人工智能在自动驾驶应用中的5大关键技术分析

人工智能在自动驾驶应用中的5大关键技术分析 随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。 自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。 本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。 1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。 五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 人工智能在自动驾驶技术中的应用概述人工智能发展六十年,几起几落,如今迎来又一次

无人驾驶的关键技术与未来发展

无人驾驶作为未来汽车的发展方向,受到社会各界的广泛关注。无人驾驶关键技术的发展具 有重要作用,本文结合国内无人驾驶汽车的发展,详细介绍了无人驾驶的关键技术,针对无 人驾驶未来的发展做出来自己的判断。 1 国内外无人驾驶汽车的发展 美国谷歌公司作为最先发展无人驾驶技术的公司,其研制的全自动驾驶汽车已经测试48万km,这些车辆使用照相机、雷达感应器和激光测距机来“看”路面的交通状况,并且根据详细 的地图来为前方的道路导航。在国内,长安汽车实现无人驾驶2 000 km,完成了国内首次无 人驾驶汽车跨区域运行。长安汽车无人驾驶技术现阶段主要是依靠车身周围的毫米波雷达、 摄像头来感知周围环境,然后传至其自主开发的APP控制系统中进行处理,从而实现了车辆 无人驾驶。 2 无人驾驶关键技术探讨 无人驾驶汽车是通过车身上的传感器感知路况与周边的情况,然后将采集到的信息传递到 中央处理系统,并根据人工智能对情况做出判断,然后通知电传系统根据信号操控机械装置,操控车辆做出相应动作。其核心技术便是传感器采集处理与人工智能算法。 无人驾驶关键技术主要是车辆定位与车辆控制,车辆定位是汽车无人驾驶的基础,在目前 应用前景较好的是视觉导航技术。视觉导航技术能够凭借车载计算机,在汽车偏离正常行驶 道路前发出警报采取措施防止这种状况的出现,同时可以运用于当前各种环境下的不同行驶 工况。 车辆控制技术是无人驾驶的核心,其可以理解为无人车行为决策、动作规划与反馈控制3 个部分,更为广泛的理解为车辆控制技术依赖于传感器的路径规划与交通规划。 3 无人驾驶的未来发展 3.1车辆与环境信息识别 车辆与环境的信息交换不仅包括车辆与车辆之间的,也包括车辆与道路周围环境的信息交换。物联网技术的高度发展,可以将道路指示信息包括信号灯信号、路况信息及周围车辆的 运行信息,通过物联网传递到自己的汽车中,作为汽车无人驾驶的控制信号。这样可以保证 无人驾驶的汽车运行在合理的环境下,大大提高行车安全。 3.2不同路况下无人驾驶系统的改进优化 不同的路况其行驶状况也是不同的。在高速公路上,无人驾驶的汽车主要是保证按照道路 安全标志与车辆识别等信息行驶,这样可以在很大程度上解决了因疲劳驾驶等因素造成的危险。 城市路况主要是环境复杂,人员流动性大,机动车行驶时更加要时刻注意路面信息。虽然 没有高速公路上较高的车速,但是由于其本身的原因,对感知和人工智能控制算法有了更高 的要求。城市环境下的无人驾驶是对无人驾驶技术更大的挑战,如何提高驾驶机动性与安全性,将是未来无人驾驶要攻克的难点。 无人驾驶的一个很重要的用途是用于某些特殊环境下,由于在某些特殊的环境下人员生存 困难,无人驾驶便能解决这个问题。而道路条件复杂等各种极端环境的影响,也是无人驾驶 未来发展所要面临的困难。 4 结束语 无人驾驶作为时代的主流,其脚步已经越来越近了。无人驾驶汽车将感知、决策、控制与 反馈整合到一个系统中,实现了汽车脱离驾驶员仍能保证驾驶操纵性与安全性。无人驾驶的

无人驾驶汽车技术_无人驾驶汽车关键技术_无人驾驶汽车技术原理

无人驾驶汽车技术_无人驾驶汽车关键技术_无人驾驶汽车技术原理 一、无人驾驶汽车技术介绍无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标。 据汤森路透知识产权与科技最新报告显示,2010年到2015年间,与汽车无人驾驶技术相关的发明专利超过22,000件,并且在此过程中,部分企业已崭露头角,成为该领域的行业领导者。 无人驾驶汽车技术图解 二、无人驾驶汽车技术如同其他很多事物一样,无人驾驶实际上也有一个技术循序渐进发展的过程。无人驾驶也需分为不同阶段。 阶段一:辅助驾驶阶段。车道保持、自适应巡航等辅助驾驶功能,均属于这个阶段的技术,不过驾驶员仍旧是操作主体。 阶段二:半自动驾驶。在这个阶段中,电脑操纵下的自动驾驶已经可以完成前往目的地的过程,其可作为备用系统完成行驶,但受限于法律法规等因素,其仍旧不能作为整个驾驶行为的主体存在。 阶段三:全自动驾驶。技术、成本、法衡去规等因素都不再成为影响普及的因素,电脑控制的系统已经作为驾驶主体而存在,驾驶员也可以随时接管操作系统。 由于技术和法规等的限制,目前的无人驾骆气车大多处于第=阶段。当前主流的无人驾驶汽车技术有激光雷达式和摄像头+;%距雷达式两种。 1、激光雷达式 自上世纪80年代DARPA的ALV项目以来,我们看到的大多数现代自动驾驶原型车上都布满了传感器,并且头顶着一台激光雷达。车辆使用传感器的探测以及激光雷达的三维立体扫描来感知周围的世界,而车载控制计算机则像人类大脑一样决定需要进行的操作。Google的无人驾驶汽车就是激光雷达应用的典型代表。 Google算得上是最早跨界进行自动驾驶汽车研发的互联网公司,同时依托着自己独有的地

无人驾驶汽车的关键技术研究报告

无人驾驶汽车的关键 技术研究 摘要:对无人驾驶汽车及其关键技术进行了研究。概括性描述了无人驾驶汽车的定义、意义及国内外研究现状,论述了无人驾驶汽车中应用到的环境感知、障碍规避、路径规划、车辆控制等关键技术,详细论述了自动避障系统的数据采集、数据处理、数据执行模块从而阐明了其工作原理及工作过程,对无人驾驶汽车的未来做出了合理展望。关键词:无人驾驶汽车;自动测距;自动避障 Key Technology Research of Driver-less Car Abstract:Abstract: The driver-less car and its key technologies are studied. General description of the definition , significance and research status at home and abroad of unmanned vehicles, discusses the application of key technology in unmanned vehicles like environmental awareness, obstacle avoidance, path planning and vehicle control. The automatic collision avoidance system of data acquisition, data processing, data execution module are discussed in detail which clarify its working principle and working process,

相关文档
最新文档