太阳能电池发展综述

太阳能电池发展综述
太阳能电池发展综述

太阳能电池综述

摘要:概述了太阳能发电技术,并以光伏发电为重点,介绍了太阳能电池的材料和种类。根据太阳能电池发展的过程,对晶硅太阳能电池、薄膜太阳能电池等几种太阳能电池的当前技术水平、工艺方法、转化效率、发展瓶颈、研究方向等内容进行了阐述,在此基础上进行分析,得出在未来的光伏民用产业中最有发展潜力的薄膜太阳电池应是硅系薄膜太阳电池和CIGS电池。

关键词:光伏发电;晶硅太阳能电池;薄膜太阳能电池;CIGS太阳能电池;转化效率

Summarize of Solar Cells

Abstract: Provides an overview of solar power technology, and with emphasis on photovoltaic , the types and Materials of the solar cells are introduced. According to the development of solar cells,the article describes the current solar cell technology, processes, conversion efficiency, the development bottleneck, research direction, etc. of several kind of solar cells such as crystalline silicon solar cells, thin film solar cells.based on this analysis, a conclusion was drawed that thin-film silicon solar cells and CIGS thin film solar cells has the most potential for development of photovoltaic industry in the future.

Key words: photovoltaic; cristalline solar cell; film solar cells; CIGS solar cells; conversion efficiency 0 前言

全球性的能源短缺、环境污染、气候变暖正日益严重地困扰着人类社会。“寻求绿色替代能源,实现可持续发展”已成为世界各国面临的共同课题。据2004年底统计,按目前的需求计算,全球石油、天然气、煤、铀储量的利用年限分别为40、50、200、60年。常规能源排放大量CO2和SO2、核废料,对环境形成巨大压力。许多国家都鼓励发展水电、太阳能、风能、生物质能、地热和海洋能等可再生能源。预测,在2040~2050年全球可再生能源将取代常规能源, 占主导地位。太阳能以其储量的“无限性”、存在的普遍性、开发利用的清洁性等优势, 是理想的替代能源。美、欧、日等都将太阳能光伏发电作为今后国家能源安全的重点。

在现有的科学技术条件下,太阳能的利用包括两个方面,即光热利用和光电利用。光电利用又分为直接利用和间接利用,直接利用主要是指利用太阳能电池进行光电的直接转换,也就是通常说的光伏发电技术。而间接利用一般是先利用聚集器聚集太阳对工质加热,然后驱动热力机械循环做功发电,又称为太阳能热发电。苏亚欣等经过研究指出在未来的空间站建设中,太阳能热动力系统闭式Brayton循环可以作为空间站太阳能电源系统的首选技术方案。[1]、[2]但是由于在现有的技术条件下,太阳能热发电的成本很高,因而在民用场合很难得到广泛的应用。相反,随着近年来太阳能光伏产业的发展,太阳能电池转换效率不断提高,成本不断降低。使得太阳能光伏发电的前景更为宽阔。我国信息产业部电子科技委太阳能光伏产业发展战略研究课题组发表的《太阳能光伏产业发展战略研究报告(摘要)》[3]中指出太阳能电池的在以后的能源结构中将占据无法取代的地位,对国家的能源安全,有着至关重要的作用。

1 太阳能光伏发电技术发展现状及预测

1839年,法国科学家贝克雷尔发现,光照能使半导体材料的不同部位之间产生电位差,这种现象被称为“光伏效应”。爱因斯坦在1904 年对其做出了理论解释, 并很快得到实验证实。太阳能电池巨大的潜在用途刺激了各国研究机构和公司争相开展光伏效应及其应用技术的研究开发工作,1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳能电池,诞生了将太阳光能转换为电能的实用光伏发电技术。太阳能光伏发电是清洁能源领域的热点 ,继晶体硅太阳电池技术与产业在 20世纪末、21世纪初得到飞速发展之后 ,以硅薄膜太阳电池技术的快步升级及大规模产业化为特征的新一轮光伏能源技术发展高潮正在到来。

21世纪以来,在德国和日本政府政策的推动下,2000~2006 年全球光伏系统安装量年均增长49.1%, 光伏发电成为产业和市场发展速度最快的可再生能源技术之一。根据国际能源署预测,2050年太阳能光伏在全球能源的比重将达到25%, 在能源结构中起主导作用,2100 年将达到 64%, 可见光伏产业将是一个长期的朝阳产业。随着太阳能电池技术水平的提高, 光电转换效率的提升, 多晶硅原料消耗降低, 生产规模扩大, 光伏发电成本将不断下降; 特别是太阳能电池薄膜技术的突破, 光伏系统的制造能耗和发电成本将大幅度下降。预测2020 年前后, 民用光伏系统的电价就可与常规能源的电价相持平。见表1:[3]

[3]

数据来源:欧洲JRC

一套基本的太阳能发电系统是由太阳能电池板、充电控制器、逆变器和蓄电池构成。而太阳能发电系统的核心部件是太阳电池。

3 太阳能电池的发展阶段与分类

到面前为止,太阳能已经有很多的分类方法,可以根据材料分,也可以根据其发展阶段分等等,但是,不管哪一种分类方法,一般希望太阳能电池具有以下特性:

(1) 转换效率高;

(2) 制造能耗少;

(3)制造成本低;

(4)原材料丰富;

(5)电池使用寿命长;

(6)无公害。

3.1 按照太阳能的电池材料分类

因为许多半导体材料都可以用来做太阳能电池,所以按太阳能电池的材料来分,太阳能电池的种类很多,主要情况见表2[5]

[5]

3.2按照太阳电池的厚度分类

按照太阳能电池的厚度太阳能电池可以分为晶体硅片电池和薄膜太阳能电池。

3.2.1晶体硅片太阳能电池

1954年,晶体硅片电池由美国贝尔实验室 Chapin等发明[5],其发展最为成熟 ,较早获得规模应用。晶硅太阳能电池其制作工艺从成熟的微电子工艺转化而来, 具有硅材料和工艺技术成熟、转换效率高、性能稳定等优点。规模生产的单晶硅电池的转换效率可达16%~17%, 实验室最高可达 24.4%。规模生产的多晶硅电池的转换效率可达 14%~15%以上, 实验室最高可达16.6%。但同常规能源相比,由于需要使用大量价值不菲的硅材料,其制造成本难以很快降低到与传统燃煤发电相当的水平。在目前的工业上,硅的成本大约占硅太阳能电池生产成本的一半,因此第一代晶体硅片电池存在成本高、制造能耗较高等问题。比如单晶硅太阳能电池是在厚度350-450μm的高质量硅片上制成,硅质量高,耗量多。为减少硅的消耗量,光伏(PV)产业期待着一些处于研究开发中的选择方案,其中最显然的一种就是转向更薄的硅衬底。现在,用于太阳能电池生产的硅衬底厚度略大于200μm,而衬底厚度略小于100μm 的技术正在开发中,为使硅源层薄至5~20μm,可以在成本较低的硅衬底上淀积硅有源层,这样制得的电池称作薄膜晶体硅太阳能电池。即第二代太阳能电池。

3.2.2薄膜太阳能电池

薄膜型太阳电池是以非晶硅薄膜太阳能电池和多晶硅薄膜太阳能电池为典型代表的太阳能电池。20世纪60年代辉光放电法(glow discharge)薄膜制备技术的一系列重大进展 ,使人们意识到可以将同样具有光伏效应的非结晶状态的硅以薄膜形式镀制在廉价的玻璃基板上。而薄膜太阳能电池就是在玻璃、不锈钢、塑料基板上沉积几微米厚的薄膜而构成。在美国RCA实验室 Carlson和 Wronski的共同努力下,第一块硅薄膜太阳电池于1976年问世,从此拉开了薄膜光伏技术研究与发展的序幕。薄膜光伏技术的拓展呈现出多样化的特点,现已形成包括硅薄膜电池、碲化镉(CdTe)、铜铟镓锡(CuInGaSe)以及染料敏化(DSC)电池、有机薄膜电池等在内的多种类型。目前薄膜太阳能电池的转换效率还低于晶硅太阳能电池。薄膜非晶硅太阳能电池存在光致衰退的问题, 仍有待解决。但是它们具有成本较低、能耗低、单片电池面积大等优点, 便于工业化大规模生产。因此,有必要在此重点介绍几种有代表性的薄膜太阳能电池。

(1)非晶硅薄膜太阳能电池

非晶硅薄膜太阳能电池是用非晶硅半导体材料在玻璃、特种塑料、陶瓷、不锈钢等为衬底制备的一种薄膜电池。非晶硅薄膜太阳能电池的制备方法有反应溅射法、低压化学气相沉积法(LPCVD)、等离子体增强化学气相沉积法(PECVD)。为生产高质量的非晶硅,对非晶硅材料

制备方法也进行了研究,等离子体化学气相沉积法特别是RF辉光放电法已经广泛应用[6],并提出H2稀释PECVD法。非晶硅薄膜成本低,是一种很好的太阳能电池材料,但由于其光学带隙(1. 7 eV)与太阳光光谱不匹配,所以限制了非晶硅太阳能电池的转化效率并且其光电效率会随光照时间增加而衰减,即光致衰退效应[7]。利用反应原料气H2稀释SHi4在不同衬底上制成的非晶硅薄膜经过不同电池工艺分别得到单结电池和叠层电池,可以解决上述问题。

非晶硅太阳电池光衰退的主要因素是i层的S-W效应(非晶硅及其合金的光暗电导率随光照时间加长而减小,经170~200℃温度2h,又可恢复原状。这种现象称为S-W效应)。因此要提高非晶硅太阳电池的稳定效率,首先要获得高稳定性的i层的a-Si∶H材料。为此,除了采用分室沉积技术和高真空反应室消除杂质污染外,在制备方法和制备工艺方面研究人员进行了大量研究工作。比如在制备方法方面分别采用了电子回旋共振化学气相沉积(ECR-CVD)、氢根化学气相沉积(HR-CVD)、热丝(HW)法沉积和三极管系统等。在制备工艺方面采用了H 等离子体化学退火法、H2稀释法、He稀释法以及掺氟法等。采用这些制备技术和制备工艺的主要目的都是为了减少非晶硅膜中的H含量和缺陷态密度,使其形成稳定的Si-Si键和Si-H键网络结构。比如,用常规PECVD技术制备的a-Si∶H膜中含有约10%的H,而用化学退火法制备的a-Si∶H膜的含H量小于9%,用热丝法制备的a-Si∶H膜的含H量只有1%~2%[8]。除了通过克服非晶硅基料的S-W效应以改善电池的稳定性外,人们还从电池结构上采取措施,也取得了明显的效果。其中最主要的措施是采用了多带隙叠层电池结构。因为采用叠层结构减薄每个子电池i层的厚度,结果使每个子电池的内电场增强,增加了各子电池的收集效率。再加上多带隙结构可扩展光谱响应范围,综合这两方面的优势,使电池的稳定效率得到提高,如表2所示为联合太阳公司制备的不同结构电池的最高稳定效率[9]

[9]

(2)多晶硅薄膜太阳能电池

多晶硅薄膜太阳能电池是将多晶硅薄膜生长在低成本衬底材料上,用相对薄的晶体硅层作为太阳能电池的激活层,不仅保持了晶体硅太阳能电池的高性能和稳定性,而且材料的用量大幅下降,成本明显降低。多晶硅薄膜太阳能电池的制备方法有化学气相沉积法、液相外延法、金属诱导晶体法、非晶硅薄膜固相晶化法、激光晶化法和等离子喷涂法。目前多晶硅薄膜太阳能电池的转化效率接近单晶硅太阳能电池的转化效率。如日本三菱公司在SiO2衬底上制备的多晶硅薄膜太阳能电池光电效率达16. 5%[10]。德国费来堡太阳能研究采用区熔再结晶技术制得多晶硅电池转化效率达19%[10]。我国无锡尚德太阳能电力有限公司的大规模多晶硅电池转换效率已达到16 %,其生产能力为50MW[11]。

(3)CdTe薄膜太阳能电池

CdTe是II-Ⅵ族化合物,直接带隙材料,禁带宽度为1.45eV。CdTe存在自补偿效应,制备高

电导率同质结很困难,实用的电池多为异质结结构。由于CdTe是直接带隙材料,其光吸收系数极大,厚度1μm的薄膜就可以吸收能量大于其禁带宽度光的99%[9],所以这就降低了对材料扩散长度的要求,且其光谱响应与太阳能光谱十分吻合,是十分理想的太阳电池吸光材料,已成为公认的高效、稳定、廉价的薄膜光伏器件材料。CdTe多晶薄膜太阳电池转换效率理论值为29%[9],面积为706cm2的组件,其效率已超过10 %[12]。CdS的结构与CdTe相同,晶格常数差异小,是CdTe基电池最佳的窗口材料。CdTe/CdS薄膜太阳能电池制备技术主要有真空蒸镀法、溅射法、电化学沉积法等。从多晶CdTe薄膜已达到的转换效率、可靠性和价格因素等方面看,它在地面光伏转换应用方面有广阔的发展前景。

(4)CIS(CIGS)薄膜太阳能电池

CuInSe2是一种三元化合物,是直接带隙的半导体材料,常温下带隙宽度为1.0eV,光吸收系数很大,0.5μm厚的CuInSe2可以吸收90%的太阳能光子,所以薄膜不需很厚,可以降低成本。由于太阳光的最佳禁带宽度为1.45eV所以在CuInSe2上掺杂其它元素可以使其接近最佳禁带宽度。目前主要用Ga代替部分In,用S代替部分Se来实现。同时可以调整In/Ga的比值使材料带隙宽度覆盖1.05-1.7 eV,从而大大提高CuInSe2转化效率.当前得到的Cu(In,Ga)Se2太阳能电池的转化效率分别最高达到20%,几乎和单晶硅太阳能能电池转化效率相当。

CIGS电池的典型结构为:玻璃衬底、(Mo)背电极层、(CIGS)吸收层、(CdS)缓冲层、双层结构的ZnO窗口层:本征ZnO(i-ZnO)层和掺Al低阻透明ZnO(Al:ZnO)层、铝电极. 其中CIGS薄膜为光吸收层, 是CIGS太阳电池的核心材料. 制备高效CIGS电池的关键之一是要获得高质量的CIGS多晶薄膜. 高质量的CIGS 薄膜应该偏离材料化学计量比较小, 具有单一黄铜矿结构, 具有较好的致密性及较大的晶粒. 这样材料的光学和电学特性就相应较好, 从而有利于电池转换效率的提高. CIS(CIGS)薄膜太阳能电池的制备方法有:真空蒸镀法、溅射法、电化学沉积法等。其中电沉积硒化法有其适合工业生产的特点CIS(CIGS)薄膜太阳能电池被认为是一种很有发展前途的太阳能电池,并且CIGS太阳电池对于宇宙射线具有很强的抗辐射能力,在空间运用上也有很好的前景。但目前的研究还是处于实验阶段,如何进一步提高转化率,降低成本,探索新的工艺条件,提高制作过程的可重复性,寻找CIS(CIGS)可替代新的廉价、无毒元素来参杂等问题有待解决。可参考文献[13]~[16],在此不在累述。

(5)染料敏化薄膜太阳能电池

染料敏化太阳能电池是一种完全不同于传统的 p- n结太阳能电池的装置, 其光吸收和电荷分离传输分别是由不同的物质完成的, 光吸收是靠吸附在纳米半导体表面的染料来完成, 半导体仅起电荷分离和传输载体的作用, 它的载流子不是由半导体而是由染料产生的。目前,在标准条件下(AM1. 5, 1000W/m2,298K) , 染料敏化太阳能电池的能量转化效率已达到 11. 2%[17]是传统的 p-n 结光电装置可靠的替代物.据报导,华东师范大学科研人员利用纳米材料在实验室中成功研制出一种与叶绿体结构相似的新型电池——染料敏化太阳能电池,经过3年多实验与探索,这块仿生太阳能电池的光电转化效率已超过10%,接近11%的世界最高水平。[18]

薄膜太阳电池在未来光伏电池技术发展中占有重要的位置 ,因为它为低成本电池制造提供了希望。近年来 ,其效率的连续提高 ,增加了薄膜电池与晶体电池竞争的能力。晶硅太阳能电池与薄膜太阳能电池比较见表4[19]。

[19]

数据来源:NEDO, Daiwa

此外,在第二代薄膜太阳能电池之后,又出现了第三代超高效率太阳能电池 ,包括全硅量子点叠层结构电池以及热光伏电池等 ,目前尚处在基本模型的建立和基础材料的探索研究阶段。这方面国内文献较少,可参考文献[20]、[21]。

4 结论

由以上的介绍,我们不难看出晶体硅电池虽然效率高,最高的实验室效率已经达到24.4%,已经非常接近晶体硅电池的理论转换效率25%,要想在效率上有很大的突破,已经不大可能。而且第一代晶体硅片电池存在成本高、制造能耗较高等问题,所以在成本方面很难跟传统的煤、石油等化石燃料相比。而薄膜电池的诞生则在技术上为解决这一问题提供了一个很有前途的发展方向。它为低成本电池制造提供了希望,所以我们可以预测薄膜太阳电池在未来光伏电池技术发展中占有重要的位置。近年来 ,其效率的连续提高 ,增加了薄膜电池与晶体电池竞争的能力。不过笔者认为 ,最有发展潜力的薄膜太阳电池应是硅系薄膜太阳电池和CIGS电池 ,且 CIGS可能具有更大发展空间 ,这是因为:(1)非晶硅太阳电池虽然制造成本低 ,但稳定性差 ,转换效率在光照下会衰减;(2)多晶硅膜太阳电池 ,其膜厚并不能做到像CdTe , CIGS那样十几微米级 ,所以在降低材料成本方面潜力并不比 CIGS大(尽管新的

a-Si/poly-Si和 mc-Si/poly Si正在研究开发中) ; (3) CIGS既可用于地面 ,也可用于太空中 ,所以其用途比其他薄膜电池要广泛;(4)能进行带隙剪裁是 CIGS相对于 Si系和CdTe系太阳电池的最大优势 ,其禁带宽度可在 1.04~1.7 eV范围内调整 ,这就为太阳电池最佳带隙的优化提供了新的途径;(5) CIGS可在玻璃衬底上形成缺陷很少的、晶粒巨大的高品质结晶 ,而这种晶粒尺寸是一般的多晶薄膜根本无法达到的(晶粒尺寸大有利于光生载流子的迁移) ;(6)对Si系半导体来说 ,Na等碱金属是避之唯恐不及的半导体杀手 ,而在 CuInSe系 (即 CIS系)中 ,微量的 Na会提高转换效率和成品率[34] ,因此用钠钙玻璃作为 CIS系的衬底 ,不仅成本低 ,膨胀系数相近 ,另外还会因微量的 Na掺杂而提高电池的转换效率和成品率;(7) CIS系在已知的半导体材料中光吸收系数最大、最适合薄膜化 ,是没有光致衰退效应(S-W效应)的半导体材料。

参考文献:

[1]苏亚欣,何传俊,杨翔翔.空间站太阳能光伏和热动力电源系统的比较[J]. 能源工

程,2003,(6).

[2]苏亚欣,何传俊. 空间站太阳能热动力发电系统吸热器研究[J]. 能源工程,2003,(4).

[3]信息产业部电子科技委《太阳能光伏产业发展战略研究》课题组.太阳能光伏产业发展战

略研究报告[J].中国集成电路 ,2008,6 (109).

[4] 李万河.太阳能电池的种类[J].电子工业专用设备,Apr. 2008. 159.

[5]D. M. Chapin , C. S. Fuller , G.L. Pearson ,J. Appl. Phys25 , 676(1954) .

[6]钟迪生.硅薄膜太阳能电池研究进展[J].应用光学,2001, 22(3):34~40.

[7]StaeblerD L,WroskiC R., eta.l Reversible conduc2 tivity changes in discharge 2

produced amorphous Silicon [J].ApplPhys Lett, 1977, 31: 292.

[8] 雷永泉,万群,石永康.新能源材料.天津大学出版社,2002.2662267,286.

[9] 王育伟.薄膜太阳电池的最新进展[J].半导体光电,2008/4,29(2).

[10]苏孙庆.多晶硅薄膜太阳电池的研究进展[J].技术物理教学,2007,15(2):45247.

[11]过国忠,李清,尚德多晶硅太阳电池世界排名第八[J].中国乡镇.

[12]周鑫发.光伏发展的动态与趋向[J].太阳能学报,1997(4):627.

[13]肖健平,何青,等.CIGS薄膜材料研究进展[J].西南民族大学学报·自然科学版,3(1).

[14]徐知之,夏文建,黄文良.铜铟硒(CIS)薄膜太阳电池研究进展[J],真空,43(2).

[15韩东麟,张弓,等.载气对 CIGS薄膜结构和表面形貌的影响[J].真空科学与技术学报.28(3).

[16]韩东麟,张弓.氮气流量对CIGS薄膜结构和形貌的影响[J].功能材料,2008,3(39).

[17]GRATZEL M. Mesoscopic solar cells for electricity and hydrogen production from

sunlight [J].Chemistry Letters,2005,34: 8- 13.

[18]国产染料敏化太阳能电池光电转化率超过10%接近世界最高水平[J].今日电

子.2008(6).

[19]王永谦,硅薄膜太阳电池技术及其应用.上海电力太阳能光伏技术的新进[J],2008(2).

[20]郝春云,杨明辉,杨海涛,高玲.叠层太阳能电池的研究与发展[J]. 化工新型材料,

32(12).

[21] 刘广平,宣益民,韩玉阁.一维光子晶体在热光伏技术中的应用[J].光子学报, 37(1).

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

精选钙钛矿太阳能电池研究综述资料

精品文档 钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr和CHNHPbI为光敏化剂。这成功地跨出了钙钛矿太阳能电池发3333展的第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CHNHPbI为光敏化剂,通过改善工艺及优化原料333组分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。 精品文档. 精品文档 2012年,Snaith 等[7]利用CHNHPbICl作为光吸收剂,并且将结构中的233TiO层用AlO层进行替代,最终电池的效率增加到10.9%。钛矿太阳能电池逐322渐引起了科研人员的广泛关注,进入了高速发展阶段。 2013 年,钙钛矿太阳能电池在结构以及性能上,都得到了进一步的优化。Gratzel 等[8]制备了光电转化效率为15% 的钙钛矿太阳能电池,所采用的方法是两步连续沉积法。同年,Snaith 等[9]采用双源蒸镀法成功制备了平面异质结钙钛矿太阳能电池,其光电转换效率为15. 4%。 2014 年,Han 等[10]采用全印刷的手段来制备无空穴传输层,同时用碳电极取代金属电极,成功制备了光电转化效率为11. 60%的钙钛矿太阳能电池。Kelly 等

染料敏化太阳能电池工艺以及研究现状

染料敏化太阳能电池工艺以及研究现状张安玉1309050319

染料敏化太阳能电池工艺以及研究现状 张安玉 摘要:染料敏化太阳能电池是一种新型的太阳能电池,由于其制作工艺简单,制造成本低廉,有着广泛的应用前景,是太阳能电池的重要发展方向。其中,染料敏化剂是太阳能电池的重要组成部分,已成为研究的热点。本文主要介绍染料敏化太阳电池的组成结构和工作原理,综述了染料敏化太阳能电池的研究现状,论述了光阳极上半导体薄膜的制备、改性方法;阐述了敏化染料和氧化还原电解质的要求、特点和分类。指出高性能半导体薄膜、光谱响应宽稳定性好的敏化染料以及高效全固态电解质的研发与应用是今后的主要研究方向。并对未来的发展趋势和前景进行展望。 关键词: 染料敏化太阳能电池;光阳极;敏化染料 太阳能是一种取之不尽、用之不竭的清洁能源,如何有效地将太阳能转化为电能或其他可利用的能源是物理和化学界的重大课题.其中太阳能电池是研究的热点项目,目前发展最成熟的是硅基太阳能电池,该类型电池实验室光电转换效率已接近25%,与理论值的29%非常接近。但是它对材料的纯度要求较高,制作工艺复杂,成本昂贵,这极大地限制了它的广泛应用。 目前发展成熟的太阳能电池是硅基太阳能电池,单晶硅太阳能电池的效率已达到25% 以上[1],但是它对材料的纯度要求高、制作工艺复杂、成本昂贵,这极大地限制了它的广泛应用。1991 年,瑞士洛桑高等工业学院的Gratzel 教授及其小组报道了染料敏化纳米晶太阳能电池(dye-sensitized solar cells,DSSC)的光电转化效率为7.1%[2],从此由于它简单的制作工艺、相对高的光电转化效率、低廉的成本等优点迅速成为广大科学家及科学工作者的研究热点与重点。1染料敏化太阳能电池(DSSC)的结构与原理 1.1结构 DSSC 的结构是典型的“三明治”结构,光敏染料太阳能电池的构造和原理如图1,一般是由光阳 极、敏化染料、氧化还原电解质以及对电极(通常为铂电极)组成。其中光阳极包括:透明导电基底(这里为导电玻璃)、纳米多孔半导体。 图 1 染料敏化太阳能电池的结构与工作原理示意图

太阳能电池的发展历史

龙源期刊网 https://www.360docs.net/doc/fd14978980.html, 太阳能电池的发展历史 作者:张金晶 来源:《商情》2016年第26期 【摘要】相对于风能、地热能、生物能和潮汐能等新能源,太阳能以污染小、可利用率高、资源分布广泛和使用安全可靠等优点,成为最具有发展前景的能源之一。目前,随着太阳能电池制备技术的不断完善,其技术的开发应用已经走向商业化、大众化,特别是一些小功率、小器件的太阳能电池在一些地区都已经大量生产而且广泛使用。所以谁先开发光电转换效率高、制备成本低的太阳能电池就能在将来的市场抢占先机。 【关键词】太阳能单晶硅薄膜电池 引言:随着社会的飞速发展,能源是影响当今社会进步的重要因素,但是现阶段人类社会发展大部分还是依靠化石能源提供能量。可是化石能源分布极不均衡,并且不可再生,而且燃烧化石能源带来的环境污染、雾霾气候和温室效应严重影响到了人类社会的可持续发展。然而太阳能是一种可再生清洁能源,可以提供充足的能量供人类使用,因此开发新能源,是人类社会薪火相传,世代相传的重要保证。 此外,不可再生能源的过快消耗对当今的环境形势提出了新的挑战。例如如何解决温室效应,臭氧空洞等问题。有限的化石能源以及在开发利用不可再生能源的过程中出现的负面影响,不仅阻碍了人类经济的飞速发展,而且还严重影响到社会的可持续发展。因此,发展一种新型能源已然成为世界各国提升自己综合国力和倡导能源发展的一个重要手段。 1. 第一代太阳能电池 第一代太阳能电池是发展时间最久,制备工艺最为成熟的一代电池,一般按照研究对象我们将其可分为单晶硅、多晶硅、非晶硅电池。按照应用程度来说前两者单晶硅与多晶硅在市场所占份额最多,商业前景最好。 单晶硅太阳电池和多晶硅太阳电池。从单晶硅太阳能电池发明开始到现在,尽管硅材料有各种问题,但仍然是目前太阳能电池的主要材料,其比例约占整个太阳电池产量的90%以上。我国北京市太阳能研究所从20世纪90年代起开始进行高效电池研究,采用倒金字塔表面织构化、发射区钝化、背场等技术,使单晶硅太阳能电池的效率达到了19.8%。多晶硅太阳能电池的研究开发成本较低,稳定性也比较好,这两大优势引起了科研工作者的注意。其光电转换效率随着制备工艺的成熟不断提高,它达到的最高的光电转换效率为21.9%,但是它的电池效率在目前的太阳能电池中仍处于一般水平。 2.第二代太阳能电池

(完整版)钙钛矿太阳能电池研究综述

钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr 3和CH 3 NH 3 PbI 3 为光敏化剂。这成功地跨出了钙钛矿太阳能电池发展的 第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CH 3NH 3 PbI 3 为光敏化剂,通过改善工艺及优化原料组 分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。

太阳能电池发展现状及存在的主要问题

太阳能电池发展现状及存在的主要问题 晨怡热管2008-10-17 23:05:45 一、2005年国际太阳能电池产业发展情况 2005年,世界太阳能电池总产量1656MW,其中日本仍居首位,762M W,占世界总产量的46%,欧洲为464M W,占总产量的28%,美国156M W,占总产量的9%,其他274MW,占总产量的17%。 2004年全球前14位太阳能电池公司总产量达到1055MW,占当年世界总产量的88.3%,近五年来,日本Sharp公司一直领先,2004年产量达到324MW,见表1。

以2004年数据分析,各种太阳能电池中硅基太阳能电池占总产量的98%,晶体硅太阳能电池占总产量的84.6%,多晶硅太阳能电池占总量的56%,见表2。

2005年,世界光伏市场安装量1460M W,比2004年增长34%,其中德国安装最多,为837MW,比2004年增长53%,占世界总安装量的57%;欧洲为920MW,占总世界安装量的63%,日本安装量292M W,增幅为14%,占世界总安装量的20%;美国安装量为102MW,占世界总安装量的7%,其他安装量为146M W,占世界总安装量的10%。

至2005年全世界光伏系统累计安装量已超过5GW,2005年一年内投资太阳能电池制造业的资金超过10亿美元。现在,一个世界性的问题是制造太阳能的电池的硅原材料紧缺,尽管2005年全世界硅原材料供应增长了12%,但仍然供不应求,国际上长期供货合同抬价25%。持续的硅材料紧缺将对2006年太阳能电池生产产生较大的影响,预计2006年世界太阳能电池产量的增幅将不限制在10%左右。要解决硅材料的紧缺问题预计将需要5年以上的时间。 根据光伏市场需求预测,到2010年,全世界光伏市场年安装量将在3.2G到3.9GW之间,而光伏工业年收入将达到186美元到231亿美元。 日本和欧美各国都提出了各自的中长期PV发展路线图。 按日本的PV路线图(TV Roadmap 2030),到2030年PV电力将达到居民电力消耗的50%(累计安装容量约为100GW),具体的发展目标见表3和表4。

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

异质结太阳能电池综述

异质结太阳能电池研究现状 一、引言: 进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。而太阳能作为一种可再生能源正符合这一要求。太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小

时。而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。太阳能电池的研制和开发日益得到重视。本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。 二、国外异质结太阳能电池 1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池 2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。 图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池 简图 图2 TCO/TiO2/P3HT/Au电池结构示意图 同时采用了卟啉作为敏化剂吸收光子,产生的电子注入

染料敏化太阳能电池学术发展简史

染料敏化太阳能电池学术发展简史 2016-05-07 13:13来源:内江洛伯尔材料科技有限公司作者:研发部 基于钌化合物的染料敏化太阳能电池 1839年,Becquerel发现氧化铜或卤化银涂在金属电极上会产生光电现象,证实了光电转换的可能。 1960年代,H.Gerischer,H.Tributsch,Meier及R.Memming发现染料吸附在半导体上并在一定条件下产生电流的现象,成为光电化学电池的重要基础。 1980年代, 光电转换研究的重点转向人工模拟光合作用,美国州立Arizona大学的Gust和Moore研究小组成功模拟了光合作用中光电子转换过程,并取得了一定的成绩。Fujihia等将有机多元分子用L B 膜组装成光电二极管,开拓了这方面的工作。 1970年代到90年代,R.Memming,H.Gerischer,Hauffe,H.Tributsh等人大量研究了各种染料敏化剂与半导体纳米晶间光敏化作用,研究主要集中在平板电极上,这类电极只有表面吸附单层染料,光电转换效率小于1%。 1991年,Graetzel M.于《Nature》上发表了关于染料敏化纳米晶体太阳能电池的文章以较低的成本得到了>7%的光电转化效率,开辟了太阳能电池发展史上一个崭新的时代,为利用太阳能提供了一条新的途径。 1993年,Graetzel M.等人再次研制出光电转换效率达10 %的染料敏化太阳能电池, 已接近传统的硅光伏电池的水平。 1997年,该电池的光电转换效率达到了10%-11%,短路电流达到18mA/cm2,开路电压达到720mV。 1998年,采用固体有机空穴传输材料替代液体电解质的全固态Gr?tzel电池研制成功,其单色光电转换效率达到33%,从而引起了全世界的关注。 2000年,东芝公司研究人员开发含碘/碘化物的有机融盐凝胶电解质的准固态染料敏化纳米晶太阳能电池,其光电能量转换率7.3 % 。 2001年, 澳大利亚STA 公司建立了世界上第一个中试规模的DSC 工厂。 2002 年, STA建立了迄今为止独一无二的面积为200m2 DSC 显示屋顶,集中体现了未来工业化的前景;PengWang等人用含 1-methyl-3-propylimidazoliumiodide 和poly(viylidenefloride

太阳能电池的发展与趋势

《物理演示实验》结课论文题目:太阳能电池的发展与趋势 学生姓名: 学号: 专业班级: 2013年 5月25日

摘要:现代社会应是节约型的社会,而社会生活也应是节约能耗的生活。而太阳能作为一种取之不尽的新型环保能源已成为世界各国世界上能源探究工作中的一个重要课题。是我国在经济目前状况下采取的较为简单、经济、环保、可靠的节能办法。近些年,随着我国经济的飞速发展、科技水平的快速提升,太阳能技术已逐渐普及、应用到各个行业领域乃至人们的生活中,而市面上也涌现出了大量的太阳能热水器、太阳能发电设备、太阳能照明器具等产品。其中,太阳能电池的应用,不仅充分发挥了太阳能技术环保、节能、可再生的特点,同时也有效满足了当代社会发展、科技进步的需求。本文就太阳能电池新发展的新概念及新的方向作简要的分析、探讨。 关键字:太阳能新能源太阳能电池 一、引言 太阳内部进行着剧烈的由氢聚变成氦的核反应,并不断向宇宙空间辐射出巨大的能量,可以说是“取之不尽、用之不竭”的能源。地面上的太阳辐射能随时间、地理纬度、气候变化,实际可利用量较低,但可利用资源仍远远大于满足现在人类全部能耗及2100年后规划的能源利用量?。地球上太阳能资源一般以全年总辐射量[kJ/(m^2·年)]和全年日照总时数表示。就全球而言,美国西南部、非洲、澳大利亚、中国西藏、中东等地区的全年总辐射量或日照总时数最大,为世界太阳能资源最丰富地区。我国陆地面积每年接收的太阳辐射总量3.3×10^3~8.4×10^6 kJ/(m^2·年)之间,相当于2.4×10^4亿t标煤,属太阳能资源丰富的国家之一。全国总面积2/3以上地区年日照时数大于2200h,日照在5×10^6kJ/(m^2·年)以上。我国西藏、青海、新疆、甘肃、宁夏、内蒙古高原的总辐射量和日照时数均为全国最高,属太阳能资源丰富地区;除四川盆地、贵州资源稍差外,东部、南部及东北等其他地区为资源较富和中等区,所以在我国太阳能有很大的发展前景。 随着新型太阳能电池的涌现,以及传统硅电池的不断革新,新的概念已经开始在太阳能电池技术中显现,从某种意义上讲,预示着太阳能电池技术的发展趋势。通过对太阳能电池的发展背景、现状进行分析,可将太阳能电池发展的新概念、新方向归纳为薄膜电池、柔性电池、叠层电池、以及新概念太阳能电池。 二、太阳能电池概况 1、太阳能电池定义 太阳能电池就是把太阳光转化为电的一种器件,在一般的情况下(注意条件),太阳能电池 的效率随光强增加而增加的。再进一步说就是太阳能电池效率和安装地的综合气候条件有关系。2、太阳能电池的分类 不同的材料对光的吸收系数不同,禁带宽度也不同,量子效率自然也不同,电池效率自然也 不同了。一般来说,单晶硅/多晶硅对光的系数系数远小于非晶硅的,所以非晶硅太阳能电池厚度仅仅有单晶硅/多晶硅厚度的百分之一即可较好的吸收太阳光。另外理论上讲GaAs太阳能电池的极限效率要大于其他太阳能电池的极限效率,因为GaAs太阳电池的禁带宽度在1.4ev,和地面太阳光光谱能量的最值最为接近。根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池3、功能高分子材料制备的太阳能电池4、纳米晶太阳能电池等。硅是最理想的太阳能电池材料,这是太阳能电池以硅材料为主的主要原因。在以上电池中单晶硅太阳能电池转换效率最高,技术也最为成熟,光电转化效率可达23.3%。随着新材料的不断开发和相关技术的发展,以其它材料为基础的太阳能电池也愈来愈显示出诱人的前景。目前国际成本大规模生产技术的研究主要集中在多晶硅、大面积薄膜非晶硅、CdTe电池、CIS 电池的制造技术、III-V族化合物半导体高效光电池,非晶硅及结晶硅混合型薄膜光电池等方面。 三、太阳能电池发展综述 长期以来,世界各国在大力发展经济的同时,各行业领域的过度生产消耗了大量的能源,倘若继续按照此种趋势发展,在未来的五十年里,能源危机将是影响人类生活、阻碍社会进步的首要问题。目前,不同国家、地区、种类的全部能源中,能够使用的化石能源占90%以上,若是以现阶段世界各国的能源消耗状态发展到二十一世纪的中期,可供使用的能源储备、化石能源所占比例将减少近50%,之后的能源需求必将是以可再生能源、核能为主。基于此种趋势,预计到2100年,在人类所使用的能源中,可再生资源将占有30%以上。可供开发、使用的可再生能源主要有地热能、生

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

太阳能光伏电池论文中英文资料对照外文翻译文献综述

光伏系统中蓄电池的充电保护IC电路设计 1.引言 太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。 2.系统设计与考虑 系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。 免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因

素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。 根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。 3.单元模块设计 3.1充电模块 芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。 该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从

钙钛矿电池和燃料敏化电池综述

CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY 新能源材料(论文) 文献综述 题目:染料敏化太阳能电池与 钙钛矿太阳能电池概述 学生姓名: 学号: 班级: 专业: 指导教师: 2015年1月4日

染料敏化太阳能电池钙钛矿太阳能电池概述 一、引言 进入 21 世纪,世界人口的剧烈增长和环境污染的日益严重,还有能源的枯竭以及生态环境的破坏,使人类对能源尤其是清洁的新能源的开发利用有了更大的需求。太阳能是一种可再生能源,并且具有取之不尽,功率巨大,使用安全等优点,引起了人们极大的关注,而太阳能电池是开发利用太阳能最有效的方法之一。近年来太阳能电池的产量以每年 30%的速度增长。预计到本世纪中叶,它将占世界总发电量的 15~20%。 太阳能电池是利用太阳光和材料相互作用直接产生电能的,是对环境无污染的可再生能源。它的应用可以解决人类社会发展在能源需求方面的问题。太阳能是一种储量极其丰富的洁净能源,太阳每年向地面输送的能量高达 3×1024焦耳,相当于世界年耗能量的 1.5 万倍。因此太阳能电池作为人们利用可持续的太阳能资源,是解决世界范围内的能源危机和环境问题的一条重要途径。 然而,提高太阳能电池的转化效率以及降低成本一直是学者们努力的方向。其中,染料敏化太阳能电池和钙钛矿太阳能电池以其低价的成本和较高的转化效率获得了科学家们的青睐。 摘要: 关键词:染料敏化太阳能电池纳米多孔半导体单一敏化染料准固态电解质固态电解质染料敏化太阳能电池的效率钙钛矿太阳能电池钙钛矿材料

CH3NH3PbX3的制备方法钙钛矿太阳能电池研究进展 二、染料敏化太阳能电池的相关研究 2.1 工作原理 当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并最终回到对电极上。而由于染料的氧化还原电位高于氧化还原电解质电对的电位,这时处于氧化态的染料分子随即被还原态的电解质还原。然后氧化态的电解质扩散到对电极上得到电子再生,如此循环,即产生电流。电池的最大电压由氧化物半导体的费米能级和氧化还原电解质电对的电位决定。 2.2 染料敏化太阳能电池的研究现状 (1)光阳极上纳米多孔半导体的研究进展 DSSC 光阳极上的半导体材料多采用纳米多孔TiO2,它是染料分子的载体,同时分离并传输电荷。目前光阳极的研究重点主要是两方面:①寻找制备半导体光阳极薄膜时,可以增大 TiO2比表面积和改善 TiO2表面活性的方法;②由于电子在TiO2薄膜中电子的传输阻力大,影响电池转换效率的进一步提高,故寻找可以替代 TiO2的其它半导体材料。 制备光阳极纳米多孔薄膜的方法很多,包括溶胶-凝胶法,粉末涂敷法、水热法、液相沉积法、化学气象沉积法、电化学法等。其中粉末涂敷法在工业生产中称为丝网印刷法,具有工艺简单、适合大规模

太阳能电池的种类特点及发展趋势word资料14页

太阳能电池的种类特点及发展趋势 一、种类 按照材料分类 ?硅太阳能电池:以硅为基体材料(单晶硅、多晶硅、非晶硅) ?化合物半导体太阳能电池:由两种或两种以上的元素组成具 半导体特性的化合物半导体材料制成的太阳能电池(硫化镉、 砷化稼、碲化镉、硒铟铜、磷化铟) ?有机半导体太阳能电池:用含有一定数量的碳-碳键且导电 能力介于金属和绝缘体之间的半导体材料制成的电池(分子 晶体、电荷转移络合物、高聚物) 单晶硅太阳电池 特点 硅系列太阳能电池中,单晶硅的光电转换效率最高,技术也最成熟,高性能单晶硅电池是建立在高质量单晶硅材料和相关成熟的加工工艺基础上。提高转换效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。单晶硅太阳能电池的转换效率无疑是最高的,在大规模应用和工业生产中仍旧占据主导地位,但由于受单晶硅材料价格及相应繁琐的电池工艺影响,致使单晶硅成本据高不下,严重影响了其广泛应用。 单晶硅太阳能电池的特点是对于大于0.7μm的红外光也有一定的灵敏度。以p型单晶硅为衬底,其上扩散n型杂质的太阳能电池与n型单晶硅为衬底的太阳能电池相比,其光谱特性的峰值更偏向左边(短波长一方)。它对从蓝到紫色的短波长(波长小于0.5μm)的光有较高的灵敏度,但其制

法复杂,成本高,仅限于空间应用。此外,带状多晶硅太阳能电池的光谱特性也接近于单晶硅太阳能电池的光谱特性。 1. 多晶硅太阳电池 特点 单晶硅太阳能电池的缺点是制造过程复杂,制造电池的能耗大。为解决这些问题,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。在1976年证明用多晶硅材料制作的太阳能电池的转换效率已超过10%,对大晶粒的电池,有报道效率可达20%。这种低成本的多晶硅太阳能电池已经大量生产,目前,它在太阳能电池工业中所占的分额也相当大。 但是多晶硅材料质量比单晶硅差,有许多 晶界存在,电池效率比单晶硅低; 晶向不一致,表面织构化困难。 单晶、多晶与非晶的区别 多晶:短程有序(团体有序),成百上千个原子尺度,通常是在微米的量 铸造多晶硅 ?结晶形态分 单晶硅 多晶硅 非晶硅 高纯多晶硅 薄膜多晶硅 带状多晶硅 区熔单晶硅 直拉单晶硅

太阳能电池的研究与发展

太阳能电池的研究与发展 文献综述 摘要:能源是人类不可忽视的一个问题,因为它同我们的生活息息相关并且制约着未来经济的发展。面临非可再生能源被大规模地开采利用,其储量越来越少,总有枯竭之时这样一个现实问题,可再生能源显得尤为重要,因为可再生能源可以循环再生,不因长期使用而减少。而我国作为一个能耗大的国家,考虑到我国资源情况及国际环境和我国的环境状况,若到22世纪初不能用核能、太阳能等这些非化石能源代替化石能源,那么我们国家、我们民族的发展都会受到严重的影响。 太阳能具有环境友好、与之不尽用之不竭等特点,由此在可再生能源中的位置得以突显。而本文选择从光伏发电这个方面来说明太阳能电池的研究与发展。讲述了太阳能光伏发电的模式,输送方式及原理等。 关键词:太阳能;光伏发电;独立光伏发电;并网光伏发电;分布式光伏发电 1引言 能源是现今人类不得不考虑的一个重大问题,面临着严峻的能源形势和生态环境的恶化,人们对于绿色能源的需求显得迫切起来。改变现有能源结构、发展可持续发展的绿色能源已成为世界各国极为关注的课题。 化石燃料为不可再生能源,随着社会的进步与发展,人类对能源的需求量日益增大,所以化石燃料是无法满足的。除此之外,化石燃料煤、石油和天然气都是含碳元素的物质.其中还含硫元素等杂质。这些燃料燃烧时,会产生二氧化硫等污染空气的气体,燃料燃烧不充分,会产生一氧化碳和碳粒,加上未燃烧的碳氢化合物,如果直接排放到空气中必然对空气造成污染。因此,对于可再生能源的概念中最重要的要保证两点:第一,要求提供的可再生能源的源头是巨大的、无限制的。第二,从整体技术效率而言,要有明显的安全保障性。从这两点出发,显现了太阳能的利用在可再生能源中领域中的重要地位。 太阳能发电分光热发电和光伏发电。但不论产销量、发展速度和发展前景、光热发电都赶不上光伏发电。光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源可以无处不在。

太阳能电池片技术发展的现状和趋势

太阳能电池片生产技术的发展和趋势 LED光伏电子项目部 2009/2/22

1太阳能电池片的生产工艺 1.1太阳能电池的工作原理 典型的太阳电池本质上是一个大面积半导体二极管,它利用光伏效应原理把太阳辐射能转换成电能。当太阳光照射到太阳电池上并被吸收时,其中能量大于 禁带宽度Eg的光子能把价带中电子激发到导带上去,形成自由电子,价带中留下带正电的自由空穴,即电子-空穴对,通常称它们为光生载流子。自由电子和空穴在不停的运动中扩散到pn结的空间电荷区,被该区的内建电场分离电子被扫 到电池的n型一侧,空穴被扫到电池的p型一侧,从而在电池上下两面(两极) 分 别形成了正负电荷积累,产生“光生电压”,即“光伏效应”(photovoltaic effect)若在电池两侧引出电极并接上负载,负载中就有“光生电流”通过,得到可利用的电能,这就是太阳电池的工作原理,如图1所示。 图1太阳电池的工作原理 光伏效应是1839年法国Becqueral第一次在化学电池中观察到的。1876年在固态硒(Se)的系统中也观察到了光伏效应,随后开发出Se/CuO光电池。硅光电池 的报道出现于1941年1954年,贝尔实验室Chapin等人开发出效率为6%的单晶硅光电池,为太阳能光伏发电奠定了技术基础,成为现代太阳电池时代的划时代标志。作为能源,硅太阳电池于1958年首先在航天器上得到应用。在随后10。多年里,硅太阳电池在空间应用中不断扩大,工艺不断改进,电池设计逐步定型。70 年代初,许多新技术引入电池制造工艺,转换效率有了很大提高。与此同时,硅太阳电池开始引入地面应用,70年代末,地面太阳电池产量已经超过了空间电池产 量,促使成本不断降低。80年代初,硅太阳电池发展进入快速发展时期,技术进步和研究开发使太阳电池效率进一步提高,商业化生产成本持续降低,应用不断 扩大。在太阳电池的整个发展历程中,先后开发出各种不同结构的电池,如肖特基(MS)电池、MIS电池、MINP电池、异质结电池等,其中同质p2n结电池自始 至终占着主导地位,其他结构电池对太阳电池的发展也产生了重要影响。在材料 方面,有晶硅电池、非晶硅薄膜电池、铜铟硒(CIS)薄膜电池、碲化镉(CdTe)薄膜电池、砷化镓薄膜电池等,由于薄膜电池被认为是未来大幅度降低成本的根本出

太阳能电池关于温度的综述

关于硅和砷化镓太阳能电池组件在热性能方面的综述 摘要: 本综述总结了近年来在结晶和非晶硅太阳能电池组件领域获得的温度性能。它给出了一个通用的结果分析和评论的应用程序构建集成光伏(PV)热系统,将光能转化成电能,热能等。空气冷却和水冷却以及“混合式”光伏热太阳能收集器也被提及到。本文还包括非晶硅太阳能模块在塑料薄膜,薄膜太阳能电池等方面的灵活应用以及对将来这方面的展望。其主要包括对光伏模块传热机制的实验结果的分析。 关键词:太阳能电池;光伏;太阳能;能量转换;混合系统 目录 1.介绍﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.1.太阳能电池早期研究的回顾﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.2.半导体硅和砷化镓的温度上限﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒410 2.高温太阳能电池和组件的影响:理论背景﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.1.热对硅太阳能电池的输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒41

1 2.2.硅太阳能电池的温度系数﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.1.短路电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.2.暗电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.3.开路电压﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.4.输出功率﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.3.照明光源对输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 13 3.光伏热电混合太阳能系统﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 413 3.1.空气冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.水冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.1.冷却组件中的输出温度﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒

相关文档
最新文档