生物信息学专业发展规划

生物信息学专业发展规划
生物信息学专业发展规划

生物信息学专业发展规划

生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物数据进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息,而本学科从内容分类又可分为:1)收集、分析数据;2)各类数据库的建立和维护;3)研究生物大分子相关的信息。

生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:⑴新算法和统计学方法研究;⑵各类数据的分析和解释;⑶研制有效利用和管理数据新工具。

生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。

一、专业建设指导思想与基本原则

深入贯彻落实科学发展观,贯彻教育思想,转变教育观念,在通识教育的基础上建立宽口径专业教育,注重交叉创新,坚持知识、能力与素质教育并重。努力建成基础扎实、专业口径宽、理工交叉、宽专结合、人文与科学交融的培养模式及相应的教学体系,为我国发展生物技术科技与产业提供强有力的人才支撑与保障。为了实现上述总的指导思想,培养具有高素质和创新精神的生物信息专业人才,将坚持六大原则,即方向性原则、增强适应性原则、科技与人文教育融合的原则、整体优化的原则、统一性与多样性原则以及因材施教的原则。

二、专业培养目标

本专业培养具有扎实的生命科学理论基础和计算机技术,系统的生物信息学方法和实验技能,能够适应生命科学领域与生物信息学相关产业的发展需要,在生物信息学数据的获得与挖掘、生物软件的开发与应用、生物数据库的建立与管理等方面具有交叉学科综合优势的基础研究和应用型人才。毕业生既能从事生物信息学、生物学、信息学及其相关领域的应用开发和研究工作,也可继续在国内外攻读本学科或相关专业硕士学位。三、专业学科建设现状

我校于2001年成立的生物工程系(2014年更名为生命科学学院),生物信息专业于2011年获教育部批准招生,已经招收4届本专业本科生,目前在校生218人。本专业培养德、智、体、美全面发展,具有较好的分子生物学、计算机科学与技术、数学和统计学素养,掌握生物信息学基本理论和方法,立足生物信息学前沿,通过学习本学科相关基本理论知识和基本技能,并经过上机实验操作的基本训练,形成了以培养学生的“创新能力、

实践能力和拓展能力”为核心,具备生物信息收集、分析、挖掘、利用等方面的基本能力,能在科研机构、高等学校、医疗医药、环境保护等相关部门与行业从事教学、科研、管理、疾病分子诊断、药物设计、生物软件开发、环境微生物监测等工作的高级科学技术人才。

生物信息是郑州大学生命科学学院依据本科专业下设的三个系之一,学院现设有专业实验室:普通生物学实验室、微生物学实验室、细胞生物学实验室、遗传学实验室、生物化学实验室、植物组织培养室、细胞培养室和生物信息专业的机房等相关专业实验室,总面积15000平方米,实验教学用房总面积7000平方米,生均面积>5平方米。学院的教学仪器设备总值近1600万元,生物信息专业的计算机工作站和终端机房,仪器设备总值约200万元。

专业师资方面,学院目前有教职工78人。其中专任教师55人、双聘院士2人、博士生导师10人、教授18人、副教授17人;具有博士学位者50人,享受国务院特殊津贴3人,河南省学术带头人、河南省优秀党员、优秀专家4人,河南省特聘教授1人,河南省青年骨干教师7人,形成了一支高素质和高学历的团队。

在当前大数据的时代背景要求下,依据郑州大学和生命科学学院的总体战略布局,紧密围绕生物信息专业建设的指导思想和办学要求,以培养在生物信息学数据的获得与挖掘、生物软件的开发与应用、生物数据库的建立与管理等方面具有交叉学科综合优势的基础研究和应用型人才为核心,在学科专业课程标准制定、支撑机构与学科建设、教学改革与人才培

养方案修订、基础硬件和师资队伍建设、教学实习基地建设和学生科研训练等方面采取了一系列措施;同时认真对照本专业的建设方案与工作目标,紧贴学校实际情况与中原经济区建设的大局,想方设法创造条件,努力完成各项建设任务和工作承诺,使生物信息专业建设迈上了新的台阶。

四、目前专业学科存在的突出问题

(1)生命科学方面的教学资源和师资力量较为完善,可以满足目前的理论教学和实践、实验教学的要求,但计算机科学和生物信息专业的专业师资力量严重不足,大大影响本专业学生的教育质量;

(2)实验教学设备不足,尤其是计算机系统,不能满足生物信息学教学和科研的需求;

(3)本科生的实践教学不足,学生缺乏的科研训练较为薄弱,尤其是独立进行科学研究的能力还有待进一步加强。

五、专业学科建设具体规划

(一)积极推进教学改革

生物信息本科专业在国内起步较晚,正处于高速发展阶段,国内各高校的培养目标和培养方案总体分为两大类型:基础研究型和应用型。前者注重培养学生的科学素养、学科理论基础,以理论研究为目标,重在为培养高端的理论人才打基础;后者以技术用于为目的,重在技术的培养,为当前的大数据的挖掘提供基本技术理论,核心是技术应用。我院的生物信息专业起步较晚,至今才培养一届本科生毕业生。参照国内先进高校的办学经验,有针对性地采取了3条改革措施:

1、合理修订和完善人才培养方案。通过4年人才培养经验总结,在广

泛调研的基础上,经过郑州大学生命科学学院专业建设工作领导小组论证和郑州大学教学指导委员会批准,2015年修订了生物技术专业的人才培养方案及教学计划。

2、大力加强教学团队建设。通过政策导向和经费投入,调动教师参与教学团队建设的积极性,努力推动建成“普通生物学”、“计算机技术与应用”、“基因组学分析”和“药物信息学”等四个教学团队。争取各个团队在教材编写、教学改革项目申请与实施、精品课建设、MOOC建设、教学成果、学生考研训练、实践与实习等方面团结协作,形成各种的教学特色团体,充分利用现有的教学资源,整体提升本科教学质量。

3、推进实验教学和实践教学改革。在实验教学方面,争取为每一门理论课程,尤其是计算机和生物信息方面需要编程实践的课程,配备了专门的实验设备进行实验教学,实行理论教学和实验教学一体化,“以理论带动实验,在实验中理解理论”,最后形成理论与技术的有机结合,为实践教学奠定基础技能和理论准备。在实践教学方面,利用学院的资源优势,和各个制药企业、测序分析公司、研究院所等单位进行联合,利用暑假选送2-3年级的部分本科生进场实践,主要在生物信息学数据的获得与挖掘、生物信息软件的开发与应用、生物数据库的建立与管理等方面进行基本的技术训练。

(二)进一步改善办学条件

为了加强生物信息专业的实验教学,并为学生生产实践创造条件,我院在改善生物信息专业办学条件等方面将采取以下措施:

1、大力加强生物信息学实验教学建设。一是重点投入,高标准建设符

合现代生物信息发展需要生物信息分析实验中心,建设成可满足现有所有生物信息本科学生上机实验要求的中型计算机系统和相关的软件系统,可实现基因组数据的分析、数据库管理、药物核心结构设计等方面,目前该项目已经设计招标完成,实验室正在建设,很快就会投入使用,届时,所有生物信息本科生都可以第一时间在该工作站中完成大数据的运算等工作。二是完善教学实验中心配套管理运行机制和网络化管理机制,中心实现电子化和网络化教学模式。

2、拓展生物信息专业教学实习及服务功能。一方面,充分利用省级和校级重点学科和重点实验室等科研实验室作为生物信息专业学生的教学实习基地,另一方面,积极与校外科研院所、大型企业共建产学研基地。

3、丰富生物技术图书文献资源库。我校是综合性大学,生物学、医学、计算机科学和信息科学等学科方向每年采购大量的书籍,看满足生物信息学的学科交叉的需要。同时,我院还将为学生建设生物学资料阅览室,购买大量原版优秀生物学教材,为学生提供一个生物学的图书文献资料源。

4、加大经费投入力度。我院对生物信息专业的教学经费投入力度将逐年加大,同时,将不断完善教学实验、科研训练、野外实习、企业实践和毕业实习等教学活动的设施和条件,进一步为学生提供良好的学习条件。(三)加快师资队伍建设

建设一支“素质高、业务强、结构合理”的师资队伍是保证生物信息专业人才培养的根本,我们采取的主要措施是:

1、加大人才引进力度。生物信息系在学院的支持下,已从英国、荷兰、法国等国家和地区引进多名高层次人才和优秀青年教师。现在他们已经成

为各学科教学和科研的带头人和学术骨干,并在生物信息专业的学生培养中发挥了重要作用。近3年,根据我院学科建设与发展需要,计划进一步引进海外高层次人次和优秀青年学者4-5人。

2、加快青年教师培养。一是在政策、经费上鼓励和支持教师通过出国进修、国内脱产培训、在职攻读博士学位以及参加国内外学术活动等途径提高业务能力和教学水平。二是制定和实施人才激励导向政策,积极组织教师申报学术带头人和学术骨干的遴选、优秀教师和教学质量标兵的评选,优化教学质量评价制度、教学科研成果奖励制度等工作,以调动教师特别是青年教师的科研和教学积极性。

3、加强教学团队建设。针对以往教学组织上的不足,鼓励设立课程小组,实行首席教师制,安排学术积累深厚和教学经验丰富的教师作为各课程建设的负责人,并指导和带动青年教师参与课程教学研究和教学改革实践;邀请校内外生命科学领域的长江学者、国家杰出青年基金获得者、教育部新世纪优秀人才等知名专家教授,为生物信息专业学生开设专题讲座或学术报告会;邀请生物信息相关企业主要负责人为学生开设创业实践课或创业报告会。近期拟邀请世界著名大学——荷兰的荷兰马斯特里赫特大学的教授来我院讲学。

(四)强化学生早期科研训练

坚实的科学研究是培养创新型、高素质人才的有力保障。为此,生物信息专业将进一步采取的以下措施:

1、加强科学研究带动学生科研训练。近5年来(2011-2015),我院承担多项国家自然科学基金、国家863、973等重大科技项目。强有力的科研

队伍及充足的科研项目和经费,为高层次生物技术基础研究人才的培养及学生科研训练提供了优越的条件。同时,我院进一步要求教师把相关科学研究与实践教学相结合,为培养研究型人才提供宝贵的教学资源。

2、投入专项经费支持学生早期科研训练。由国家、学校、学院共同资助,通过申请立项,支持生物信息专业学生进行为期1-2年的科研能力训练,并由有丰富科研积累、承担国家和省部级科研项目的教师担任学生早期科研训练的指导教师,使学生的课程学习和科研训练有机结合起来,科研素质得到全面发展和提高。

3、营造学术氛围促进科研训练。我院每年邀请大量国内外著名学者和企业人士为学生开设讲座或举办学术报告会,大大开阔了生物信息专业学生的视野,有利于学生及时了解到学科前沿、发展动态及市场前景,提高了他们对生物技术的认识、兴趣和学习动力。我系曾邀请华中科技大学生命科学学院的薛宇教授来我系讲学。以后计划每年的4-5月份召开河南省生物信息学教学与科研的研讨会,邀请国内知名专家和我省生物信息方面的专家进行学术交流。

生物信息学

1.1简述DNA双螺旋结构模型要点 a.DNA两条链逆平行、围绕同中心轴右手螺旋的双链结构,双螺旋结构的直径为2.0nm,螺距为3.4nm。 b.脱氧核糖和磷酸基团构成亲水性骨架位于双螺旋结构的外侧,疏水碱基位于螺旋内侧。每周约10个碱基。 c.两条链借助彼此之间的的氢键结合在一起。AT配对有两个氢键GC配对有三个氢键。每两个碱基对之间的相对旋转角度为36° d.双螺旋结构的表面形成了一个大沟(major groove)和一个小沟(minor groove)。 1.2 名词解释:DNA的变性与复性;DNA分子杂交 DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。DNA变性的本质是双链间氢键的断裂。 DNA的复性:当变性条件缓慢地除去后,两条解离的互补链可重新配对,恢复原来的双螺旋结构,这一现象称为DNA复性(renaturation) 。 DNA分子杂交:热变性的DNA在缓慢冷却过程中,具有碱基序列互补的不同DNA之间或DNA与RNA之间形成杂环双链的现象称为核酸分子杂交。 1.3 简述核酸分子杂交技术 不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件可以在不同的分子间形成杂化双链(heteroduplex)。这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA 分子间形成。这种现象称为核酸分子杂交 1.4生物体内氨基酸有180多种,组成蛋白质的氨基酸只有(20)种,都是(α-氨基酸)。 1.5 写出氨基酸的结构通式 1.6名词解释:氨基酸的等电点 氨基酸的等电点:调节氨基酸溶液PH值,使氨基酸溶液中的氨基和羧基的解离度完全相等,即氨基酸所带静电荷为0,在电场中既不向阴极移动,也不向阳极移动,此时,氨基酸溶液的PH 值称为该氨基酸的等电点,以符号PI表示。 2.1 Sanger通过氨基酸与(2,4-二硝基氟苯(DNFB))反应测定了胰岛素的序列。 2.2 Edman反应是指用(苯异硫氰酸酯(PITC))与氨基酸的氨基发生反应来测定多肽序列的。 2.3名词解释:肽键与肽平面 肽键:氨基酸与氨基酸之间脱水缩合之后形成肽链其中一个氨基酸上的氨基与另一个氨基酸上的羟基脱水缩合后形成的就叫肽键即-CO-NH-. 肽平面:与肽键相关的6个原子共处于一个平面,称为酰胺平面或肽平面。 肽键具有一定程度的双键性质,参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面,此平面就是肽平面,也叫酰胺平面。 2.4详细叙述蛋白质的分子结构。 一级结构:组成蛋白质多肽链的线性氨基酸序列。 二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。 三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 2.5 蛋白质二级结构的有哪几种?

国内外生物信息学发展状况

国内外生物信息学发展状况 1.国外生物信息发展状况 国外非常重视生物信息学的发展各种专业研究机构和公司如雨后春笋般涌现出来,生物科技公司和制药工业内部的生物 信息学部门的数量也与日俱增。美国早在1988年在国会的支持 下就成立了国家生物技术信息中心(NCBI),其目的是进行计 算分子生物学的基础研究,构建和散布分子生物学数据库;欧 洲于1993年3月就着手建立欧洲生物信息学研究所(EBI), 日本也于1995年4月组建了信息生物学中心(CIB)。目前, 绝大部分的核酸和蛋白质数据库由美国、欧洲和日本的3家数 据库系统产生,他们共同组成了 DDBJ/EMBL/Gen Bank国际核 酸序列数据库,每天交换数据,同步更新。以西欧各国为主的 欧洲分子生物学网络组织(EuropeanMolecular Biology Network, EMB Net)是目前国际最大的分子生物信息研究、开 发和服务机构,通过计算机网络使英、德法、瑞士等国生物信 息资源实现共享。在共享网络资源的同时,他们又分别建有自 己的生物信息学机构、二级或更高级的具有各自特色的专业数 据库以及自己的分析技术,服务于本国生物(医学)研究和开 发,有些服务也开放于全世界。 从专业出版业来看,1970年,出现了《Computer Methods and Programs in Biomedicine》这本期刊;到1985年4月, 就有了第一种生物信息学专业期刊《Computer Application

in the Biosciences》。现在,我们可以看到的专业期刊已经很多了。 2 国内生物信息学发展状况 我国生物信息学研究近年来发展较快,相继成立了北京大学生物信息学中心、华大基因组信息学研究中心、中国科学院上海生命科学院生物信息中心,部分高校已经或准备开设生物信息学专业。2002年国家自然科学基金委在生物化学、生物物理学与生物医学工程学学科设立了生物信息学项目,并列入生命科学部优先资助的研究项目。国家 863计划特别设立了生物信息技术主题,从国家需求的层面上推动我国生物信息技术的大力发展[3]。 但是由于起步较晚及诸多原因,我国的生物信息学发展水平远远落后于国外。在PubMed收录的以关键词“Bioinformatics”检索到的历年发表的文章数,可以看出大量的研究文献出现在21世纪以后。其中我国共有138篇占全部5548篇的2.5%,而美国则发表2160篇占全部的39%之多(统计数据截至2004年2月15日)。我国学者在生物信息学领域发表的有高影响力的论文只有不到美国学者发表数量的6%,差距相当大[4]。在生物信息学领域,一些著名院士和教授在各自领域取得了一定成绩,显露出蓬勃发展的势头,有的在国际上还占有一席之地。如北京大学的罗静初和顾孝诚教授在生物信息学网站建设方面、中科院生物物理所的陈润生研究员在EST

生物信息学考试试卷修订稿

生物信息学考试试卷 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、名词解释(每小题4分,共20分) 1、生物信息学 广义:生命科学中的信息科学。生物体系和过程中信息的存贮、传递和表达;细胞、组织、器官的生理、病理、药理过程的中各种生物信息。 狭义:生物分子信息的获取、存贮、分析和利用。 2、人类基因组计划 人类基因组计划准备用15年时间,投入30亿美元,完成人类全部24条染色体的3×109脱氧核苷酸对(bp)的序列测定,主要任务包括作图(遗传图谱、物理图谱的建立及转录图谱的绘制)、测序和基因识别。其中还包括模式生物(如大肠杆菌、酵母、线虫、小鼠等)基因组的作图和测序,以及信息系统的建立。作图和测序是基本的任务,在此基础上解读和破译生物体生老病死以及和疾病相关的遗传信息。 3、蛋白质的一级结构 蛋白质的一级结构是指多肽链中氨基酸的序列 4、基因 基因--有遗传效应的DNA片断,是控制生物性状的基本遗传单位。 5、中心法则 是指遗传信息从传递给,再从RNA传递给,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。 6 、DNA序列比较 序列比较的根本任务是:(1)发现序列之间的相似性;(2)辨别序列之间的差异 目的: 相似序列相似的结构,相似的功能 判别序列之间的同源性 推测序列之间的进化关系 7、一级数据库 数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释 8、基因识别 基因识别,是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因,也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。 9、系统发生学 系统发生学(phylogenetics)——研究物种之间的进化关系。 10、基因芯片 基因芯片(gene chip),又称DNA微阵列(microarray),是由大量cDNA或寡核苷酸探针密集排列所形成的探针阵列,其工作的基本原理是通过杂交检测信息。

计算机在生物信息学中的应用_王帆

2012年第35期生物信息学是利用计算机为工具,用数学及信息科学的理论和方法研究生命现象,对生物信息进行收集、加工、存储、检索和分析的科学。生物信息学的核心是基因组信息学,基因组学是研究生物基因组和如何利用基因的一门学问,该学科提供基因组信息以及相关数据系统,试图解决生物、医学和工业领域的重大问题。对于基因组学研究所产生的大量数据必须借助于先进的计算机技术收集和分析处理这些生物学信息,因此计算机科学为生物信息学的研究和应用提供了非常好的支撑。 1.序列比对 序列比对其意义是从核酸、氨基酸的层次来比较两个或两个以上符号序列的相似性或不相似性,进而推测其结构功能及进化上的联系。研究序列相似性的目的是通过相似的序列得到相似的结构或功能,也可以通过序列的相似性判别序列之间的同源性,推测序列之间的进化关系。序列比对是生物信息学的基础,非常重要。 序列比对中最基础的是双序列比对,双序列比较又分为全局序列比较和局部序列比较,这两种比较均可用动态程序设计方法有效解决。在实际应用中,某些在生物学上有重要意义的相似性不是仅仅分析单条序列,只能通过将多个序列对比排列起来才能识别。比如当面对许多不同生物但蛋白质功能相似时,我们可能想知道序列的哪些部分是相似的,哪些部分是不同的,进而分析蛋白质的结构和功能。为获得这些信息,我们需要对这些序列进行多序列比对。多重序列比对算法有动态规划算法、星形比对算法、树形比对算法、遗传算法、模拟退火算法、隐马尔可夫模型等,这些算法都可以通过计算机得以解决。 2.数据库搜索 随着人类基因组计划的实施,实验数据急剧增加,数据的标准化和检验成为信息处理的第一步工作,并在此基础上建立数据库,存储和管理基因组信息。这就需要借助计算机存储大量的生物学实验数据,通过对这些数据按一定功能分类整理,形成了数以百计的生物信息数据库,并要求有高效的程序对这些数据库进行查询,以此来满足生物学工作者的需要。数据库包括一级数据库和二级数据库,一级数据库直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是对基本数据进行分析、提炼加工后提取的有用信息。 分子生物学的三大核心数据库是GenBank 核酸序列数据库,SWISS-PROT 蛋白质序列数据库和PDB 生物大分子结构数据库,这三大数据库为全世界分子生物学和医学研究人员了解生物分子信息的组织和结构,破译基因组信息提供了必要的支撑。但是用传统的手工分析方法来处理数据显然已经无法跟上新时代的步伐,对于大量的实验结果必须利用计算机进行自动分析,以此来寻找数据之间存在的密切关系,并且用来解决实际中的问题。 3.基因组序列分析 基因组学研究的首要目标是获得人的整套遗传密码,要得到人的全部遗传密码就要把人的基因组打碎,测完每个小的序列后再把它们重新拼接起来。所以目前生物信息学的大量工作是针对基因组DNA 序列的,建立快速而又准确的DNA 序列分析方法对研究基因的结构和功能有非常重要的意义。对于基因组序列,人们比较关心的是从序 列中找到基因及其表达调控信息,比如对于未知基因,我们就可以通过把它与已知的基因序列进行比较,从而了解该基因相关的生理功能或者提供疾病发病机理的信息,从而为研发新药或对疾病的治疗提供一定的依据,使我们更全面地了解基因的结构,认识基因的功能。因此,如何让计算机有效地管理和运行海量的数据也是一个重要问题。 4.蛋白质结构预测 蛋白质是组成生物体的基本物质,几乎一切生命活动都要通过蛋白质的结构与功能体现出来,因此分析处理蛋白质数据也是相当重要的,蛋白质的生物功能由蛋白质的结构所决定,因此根据蛋白质序列预测蛋白质结构是很重要的问题,这就需要分析大量的数据,从中找出蛋白质序列和结构之间存在的关系与规律。 蛋白质结构预测分为二级结构预测和空间结构预测,在二级结构预测方面主要有以下几种不同的方法:①基于统计信息;②基于物理化学性质;③基于序列模式;④基于多层神经网络;⑤基于图论;⑥基于多元统计;⑦基于机器学习的专家规则;⑧最邻近算法。目前大多数二级结构预测的算法都是由序列比对算法BLAST 、FASTA 、CLUSTALW 产生的经过比对的序列进行二级结构预测。虽然二级结构的预测方法其准确率已经可以达到80%以上,但二级结构预测的准确性还有待提高。 在实际进行蛋白质二级结构预测时,往往会把结构实验结果、序列比对结果、蛋白质结构预测结果,还有各种预测方法结合起来,比较常用的是同时使用多个软件进行预测,把各个软件预测结果分析后得出比较接近实际的蛋白质二级结构。将序列比对与二级结构预测相结合也是一种常见的综合分析方法。 蛋白质二级结构指蛋白质多肽链本身的折叠和盘绕的方式。二级结构主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素,常见的二级结构有α-螺旋和β-折叠。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。研究蛋白质空间结构的目标是为了了解蛋白质与三维结构的关系,预测蛋白质的二级结构预测只是预测蛋白质三维形状的第一步,蛋白质折叠问题是非常复杂的,这就导致了蛋白质的空间结构预测的复杂性。蛋白质三维结构预测方法有:同源模型化方法、线索化方法和从头预测的方法但是无论用哪一种方法,结果都是预测,采用不同的算法,可能产生不同的结果,因此还需要研究新的理论计算方法来预测蛋白质的三维结构。 图4.1蛋白质结构(下转第100页) 计算机在生物信息学中的应用 王帆刘帅 (长春工程学院计算机基础教学中心吉林 长春 130012) 【摘要】生物信息学是一门新兴的、正在迅速发展的交叉学科,它不仅对认识生物体的起源与进化研究有重要意义,而且还可以为人类诊断疾病及物种的改良提供一定的理论依据。生物研究过程中产生的海量数据又需要具有数据处理和分析能力的大容量、高性能的超级计算机的支持,因此计算机技术在生物信息学的研究中显得尤为重要,本文就简单介绍了计算机在生物信息学研究中的哪些方面起到了不可忽略的作用。 【关键词】生物信息学;计算机科学;基因组学 作者简介:王帆(1980—),男,长春人,毕业于长春理工大学,本科学历,信息与计算科学专业。 刘帅(1979—),女,长春人,东北师范大学硕士研究生,主要研究方向为计算机软件与理论 。 ◇高教论述◇

生物信息学医学数据

生物信息学在医学数据分析中的应用 1.前言 随着信息技术的飞速发展,医疗数据以爆炸般的速度积累增长,特别是临床医疗数据的大量积累,但是如何有效的整合和利用这些数据进行科学研究,这就对有效数据的管理和挖掘提出了更高的要求。 近年来,数据挖掘得到迅速发展,并逐渐应用到现实生活中,在分类分析方面表现相当出色,因此,已有专家将数据挖掘技术与基因表达数据分类问题相结合,发掘基因之间的关联联系,基因表达正常与非正常的活动范围,由此来理解基因表达的内在规律[1],给疾病的诊断和预测、新特药的设计提供新的思路和方法。但目前医学数据的整合还存在以下问题: 一是医院临床数据通常是分散存在的。分布于医院信息系统、检验信息系统、检查信息系统、电子病历系统等医院建立的各种信息系统当中,有的甚至存在于医生手写的随访记录本当中,这样分散存在的数据不利于收集、整合与分析。 二是以往的临床科学研究都是以手工的方式去收集和整合数据,数据的可靠性和准确性得不到保证,而且容易产生数据丢失。与此同时,人工收集数据工作量大,数据采集速度慢、试验周期长的状况,这对临床科研数据的统计和分析结果的准确性提出来质疑。 三是在对手工搜集到的分散的数据资源进行统计分析和查询的过程中,效率滞后,容易影响科研进度。 针对上述几个问题,为确保收集数据的准确性、有效性和完整性,以便进行统计分析,基于临床科研的数据管理系统应运而生。 2. 支持向量机在医疗数据中的应用 在疾病检测中,单一的生理信息不足以反映人体的健康状况,因此对多种生理信息综合分析是十分有必要的。在心脏病的诊断中就涉及诸如年龄、血压、心跳等几种,甚至几十种理化指标。医生综合这些检测的数据,根据自己的经验、知觉和见解等对人体的健康状况做出某种诊断。显然,这种诊断是主观性的,对同一个人,有时不同的医生甚至会做出截然相反的判别。多生理信息融合( Information Fusing)技术可以直接从原始样本数据出发建立某种规则模型,并将这种模型在计算机上实现,利用这一模型可以帮助医生对待测人体做出更客

浅谈生物信息学在生物方面的应用

浅谈生物信息学在生物方面的应用 生物信息学(bioinformaLics)是以核酸和蛋白质等生物大分子数据库及其相关的图书、文献、资料为主要对象,以数学、信息学、计算机科学为主要手段,对浩如烟海的原始数据和原始资料进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。并通过对生物信息的查询、搜索、比较、分析,从中获得基因的编码、凋控、遗传、突变等知识;研究核酸和蛋白质等生物大分子的结构、功能及其相互关系;研究它们在生物体内的物质代谢、能量转移、信息传导等生命活动中的作用机制。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA 序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 生物信息学中的主要方法有:序列比对,结构比对,蛋白质结构的预测,构造分子进化树,聚类等。基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 生物信息学在人类基因组计划中也具有重要的作用。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧密依赖基因组信息学的软件和数据库的。特别是拼接和填补序列间隙更需要把实验设计和信息分析时刻联系在一起.拼接与组装中的难点是处理重复序列,这在含有约30%重复序列的人类基因组中显得尤其突出。 人类基因组的工作草图即将完成,因此发现新基因就成了当务之急。使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段,可以说大部分新基因是靠理论方法预测出来的。比如啤酒酵母完整基因组(约1300万bp)所包含6千多个基因,大约60%是通过信息分析得到的。 当人类基因找到之后,自然要解决的问题是:不同人种间基因有什么差别;正常人和病人基因又有什么差别。”这就是通常所说的SNPs(单核苷酸多态性)。构建SNPs及其相关数据库是基因组研究走向应用的重要步骤。1998年国际已开展了以EST为主发现新Spps 的研究。在我国开展中华民族SNPs研究也是至重要的。总之,生物信息学不仅将赋予人们各种基础研究的重要成果,也会带来巨大的经济效益和社会效益。在未来的几年中DNA 序列数据将以意想不到的速度增长,这更离不开利用生物信息学进行各类数据的分析和解释,研制有效利用和管理数据新工具。生物信息学在功能基因组学同样具有重要的应用目前应用最多的是同源序列比较、模式识别以及蛋白结构预测。所谓同源序列,是指从某一共同祖先经趋异进化而形成的不同序列。利用数据库搜索找出未知核酸或蛋白的同源序列,是序列分析的基础[lol。如利用BLASTn和BLASTx两种软件分别进行核苷酸和氨基

生物信息学基本知识

1.DNA:遗传物质(遗传信息的载体) 双螺旋结构,A,C,G,T四种基本字符的复杂文本 2.基因(Gene):具有遗传效应的DNA分子片段 3.基因组(Genome):包含细胞或生物体全套的遗传信息的全部遗传物质。人类包括细胞核基因组和线粒体基因组 OR一个物种中所有基因的整体组成 4.人类基因组:3.0×109bp模式生物 5.HGP的最初目标通过国际合作,用15年时间(1990~2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA的全部核苷酸序列,定位约10万基因,并对其它生物进行类似研究。 6.HGP的终极目标 阐明人类基因组全部DNA序列; 识别基因; 建立储存这些信息的数据库; 开发数据分析工具; 研究HGP实施所带来的伦理、法律和社会问题。 7.遗传图谱(genetic map)又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。 遗传图谱的建立为基因识别和完成基因定位创造了条件。 8.遗传连锁图:通过计算连锁的遗传标志之间的重组频率,确定它们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)表示。 9.物理图谱(physical map)是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。 10.转录图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。 11.序列图谱:随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。 DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱 12.大规模测序基本策略 逐个克隆法:对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划) 全基因组鸟枪法:在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司) 13.基因识别(gene identification)是HGP的重要内容之一,其目的是识别全部人类的基因。 基因识别包括: 识别基因组编码区 识别基因结构 基因识别目前常采用的有二种方法: 从基因组序列中识别那些转录表达的DNA片段 从cDNA文库中挑取并克隆。 14.基因组多态性(Polymorphism):是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic

生物信息学在医学领域的应用前沿

生物信息学在医学领域的应用前沿 摘要:生物信息学是有生命科学、信息学、数学、物理、化学等学科相互交融而形成的新兴学科。生物信息数据库几乎覆盖了生命科学的各个领域,截止至2010年,总数已达1230个。生物信息学已不断渗透到医学领域的研究中。生物信息学在医学领域中主要应用于医学基础研究、临床医学、药物研发和建立与医学有关的生物信息学数据库。 关键词:生物信息学;医学;基因;应用 生物信息学是20世纪80年代以来随着人类基因组生命科学与信息科学以及数学、物理、化学等学科相互交融而形成的新兴学科,是当今最具发展前途的学科之一。人类基因组计划的顺利推进产生了海量基因数据,这些数据中蕴藏着丰富的生物学内涵,如果能充分挖掘并加以利用,可能揭示出很多对人类有用的信息。生物信息学已经成为生物学、医学、农学、遗传学、细胞生物学等学科发展的强大推动力量。随着生物信息学研究的深入与发展,它已不断渗透到医学领域的研究中。近年来,伴随着对基因组的研究不断深入,部分应用领域取得了令人瞩目的突破,其潜在的经济利益更是吸引了众多国家、企业及大量科研人员投入到相关研究中,生物信息学得到了迅猛的发展。 一、主要数据库 数据库是生物信息学的主要内容,各种数据库几乎覆盖了生命科学的各个领域。截止至2010年,生物信息数据库总数已达1230个。生物信息数据可可分为一级数据库和二级数据库。一级数据库的数据都直接来源于实验获得的原始数据,只经过简单的归类整理和注释,如Genbank数据库、SWISS-PROT数据库;二级数据库是在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步整理,如人类基因组图谱库GDB。 在医学领域中常用的生物信息数据库主要有:核酸类数据库,如NCBI核苷酸序列数据库(Gen Bank )、欧洲核苷酸序列数据库(EMBL)、日本DNA 数据库(DDB)等;蛋白相关数据库,如蛋白质数据库(SWISS-PROT)、蛋白质信息资源库(HR)、Entrez 的蛋白三维结构数据库(MMDB)、蛋白质交互作用数据库(DIP)等;疾病相关数据库,包括综合临床数据库,如NCBI疾病基因数据库、Gene Cards等;遗传性疾病数据库,如遗传性疾病数据库(GDB)、人类遗传性疾病数据库(Gene Dis)等;肿瘤相关数据库,如肿瘤基因组解剖工程(CGAP)等;心血管疾病相关数据库,如心血管疾病相关生物医学数据库(Cardio)、心脏疾病计划及临床决策支持系统(HDP &CDM)等;免疫性疾病数据库,如免疫功能分子数据库( HMM)、免疫缺陷资源库(IDR)等;药物相关数据库,如药物和疾病数据库(Drugs)、FDA药品评审与研究中心(CDER)等。 二、生物信息学在医学领域的应用 2.1 生物信息学在医学基础研究中的应用 2.1.1 新基因的发现与鉴定 疾病的发生发展与特异基因的改变有关,鉴定与疾病相关的基因是科学家在积极探索的一个方向,对治疗某些疑难杂症带来新的契机。发现新基因是当前国际上基因组研究的热点,使用生物信息学的方法是发现新基因的重要手段。现在很多疾病的致病基因已经发现,包括癌症、肥胖、哮喘、心脑血管病等,其中与癌症相关的原癌基因约有1000个,抑癌基因约有100个。 目前发现新基因的主要方法有以下3种:①通过多序列比对从基因组DNA序列中预测新基因,其本质是把基因组中编码蛋白质的区域和非编码蛋白质的区域区分开来。②基因的电子克隆,即以计算机和互联网为手段,通过发展新算法,对生物信息数据库中存储的表达序列标签进行修正、聚类、拼接和组装,获得完整的基因序列,以期发现新基因。③发现单核苷酸多态性。 例如,2010年我国学者通过生物信息学EST 拼接技术,RT-PCR等技术,克隆出30个人类未知功能的新基因,并通过生物信息学分析该基因

生物信息学基本分析

核酸序列的基本分析 运用DNAMAN软件分析核酸序列的分子质量、碱基组成和碱基分布。同时运用BioEdit(版本7.0.5.3)软件对基因做酶切谱分析。 碱基同源性分析 运用NCBI信息库的BLAST程序对基因进行碱基同源性分析(Translated query vs.protien database(blastx))网站如下:https://www.360docs.net/doc/fe10423882.html,/BLAST/ 参数选择:Translated query-protein database [blastx];nr;stander1 开放性阅读框(ORF)分析 利用NCBI的ORF Finder程序对基因做开放性阅读框分析,网址如下: https://www.360docs.net/doc/fe10423882.html,/projects/gorf/orfig.cgi 参数选择:Genetic Codes:1 Standard 对蛋白质序列的结构功能域分析 运用简单模块构架搜索工具(Simple Modular Architecture Research Tool,SMART)对基因的ORF出的蛋白质序列进行蛋白质结构功能域分析。该数据库由EMBL建立,其中集成了大部分目前已知的蛋白质结构功能域的数据。 网址如下:http://smart.embl-heidelberg.de/ 运用NCBI的BLAST程序再对此蛋白质序列进行rpsBlast分析 参数选择:Search Database:CDD v2.07-11937PSSM Expect:0.01 Filter:Low complexity Search mode:multiple hits 1-pass 同源物种分析 用DNAMAN软件将蛋白质序列相关基因序列比对,根据结果绘出系统进化树,并进行分析。 蛋白质一级序列的基本分析 运用BioEdit(版本7.0.5.3)软件对基因ORF翻译的蛋白的一些基本性质,对分子量、等电点、氨基酸组成等作出分析。 二级结构和功能分析 信号肽预测 利用丹麦科技大学(DTU)的CBS服务器蛋白质序列的信号肽(signal peptide)预测,进入Prediction Serves 页面。 网址如下:http://www.cbs.dtu.dk/services/SignalP/ 参数选择: Eukaryotes;Both;GIF (inline);Standard; 疏水性分析 利用瑞士生物信息学研究所(Swiss Institute of Bioinformatics,SIB)的ExPASy服务器上的ProtScale程序对ORF 翻译后的氨基酸序列做疏水性分析 网址如下: https://www.360docs.net/doc/fe10423882.html,/cgi-bin/protscale.pl 参数选择:

生物信息学基础知识

分子生物学基础知识太仓生命信息研究所 2011-7

前言 本文仅适用于对非生物专业的员工进行基础知识普及。如有深入学习的要求,请选用正规权威教材。 本教材以蛋白质、DNA、RNA、复制、转录和翻译为主要讲解内容,目的是帮助员工理解在工作中会遇到的常见生物学概念及术语 目录 前言 (2) 目录 (2) 蛋白质 (3) 1. 什么是蛋白质 (3) 2. 蛋白质的3D结构 (5) DNA (7) 1. DNA的组成—4种碱基 (7) 2. DNA的复制 (8) 3. DNA转录为RNA (9) 4. mRNA翻译成氨基酸序列 (11)

蛋白质 1.什么是蛋白质 蛋白质是由20中基本氨基酸链接而成的,生物体的大部分是有蛋白质构成的。每种氨基酸由4部分组成:碳原子C,羧基coo-,氨基H3N和R group。 20中氨基酸按照不同的排列和不同的长度,就形成了蛋白质。不同的R group把氨基酸分为5类: 无极性脂肪类R Group:

芳香类R Group 有极性,无电荷R Group

正电荷R Group 负电荷R Group 2.蛋白质的3D结构 氨基酸链在三维空间里呈现出一定的结构。各个氨基酸分子于相邻的氨基酸之间有氢键连接。 一级结构:氨基酸的排列顺序,可以用氨基酸的缩写在书面上表达。 氨基和羧基之间的氢键使得单个的氨基酸分子能够链接起来。

二级结构:单条氨基酸链所形成的2D形态。常见的有Alpha helix Beta sheet。 Alpha helix:氨基酸分子按顺时针或逆时针的方向螺旋上升。 Beta sheet:多条氨基酸分子链并列在一起。 三级结构:氨基酸链在各个方向的形态综合在一起。

生物信息学在医学领域的应用研究现状

生物信息学在医学领域的应用研究现状 摘要生物信息学是研究生物信息处理(采集、管理和分析应用),并从中提取生物学新知识的一门科学,它连接生物数据和医学科学研究。生物信息数据库几乎覆盖了生命科学的各个领域,截止至2010年,总数已达1230个。生物信息学已不断渗透到医学领域的研究中。生物信息学在医学领域中主要应用于医学基础研究、临床医学、药物研发和建立与医学有关的生物信息学数据库。 关键词生物信息学,医学,应用 前言据统计,生物学信息正以每14个月翻一倍的速度增长。随着基因组及蛋白质序列数据库的快速增长,以及从这些序列中获取最大信息的需求,生物信息学(bioinformatics)作为一门独立学科应运而生。简言之,生物信息学就是利用计算和分析工具去收集、解释生物学数据的学科。生物信息学是一门综合学科,是计算机科学、数学、物理、生物学的结合。它对于管理现代生物学和医学数据具有重大意义,其研究成果将对人类社会和经济产生巨大推动作用。生物信息学的基础是各种数据库的建立和分析工具的发展。 数据库 迄今为止,生物学数据库总数已达500个以上。归纳起来可分为4大类:即基因组数据库、核酸和蛋白质一级结构数据库、生物大分子三维空间结构数据库,以及以上述3类数据库和文献资料为基础构建的二级数据库。 生物信息学在临床医学上的应用 1.疾病相关基因的发现:很多疾病的发生与基因突变或基因多态性有关。发 现新基因是当前国际上基因组研究的热点,使用生物信息学的方法是发现新基因的重要手段。目前发现新基因的主要方法有多种:(1)基因的电脑克隆:所谓基因的“电脑克隆”, 就是以计算机和互联网为手段,发展新算法,对公用、商用或自有数据库中存储的表达序列标签(express sequence tags,EST)进行修正、聚类、拼接和组装, 获得完整的基因序列, 以期发现新基因。(2)通过多序列比对从基因组DNA 序列中预测新基因[1]:从基因组序列预测新基因,本质上是把基因组中编码蛋白质的区域和非编码蛋白质的区域区分开来。(3)发现单核苷酸多态性[2]:现在普遍认为SNPs研究是人类基因组计划走向应用的重要步骤。这主要是因为SNPs将提供一个强有力的工具,用于高危群体的发

生物信息学基本知识

1. DNA: 遗传物质(遗传信息的载体)à双螺旋结构,A, C, G, T四种基本字符的复杂文本 2. 基因(Gene):具有遗传效应的DNA分子片段 3. 基因组(Genome):包含细胞或生物体全套的遗传信息的全部遗传物质。人类包括细胞核基因组和线粒体基因组 OR 一个物种中所有基因的整体组成 4. 人类基因组:3.2×109 bp 5.HGP的最初目标通过国际合作,用15年时间(1990~2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA的全部核苷酸序列,定位约10万基因,并对其它生物进行类似研究。 6.HGP的终极目标 阐明人类基因组全部DNA序列; 识别基因; 建立储存这些信息的数据库; 开发数据分析工具; 研究HGP实施所带来的伦理、法律和社会问题。 7.遗传图谱(genetic map)又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。 遗传图谱的建立为基因识别和完成基因定位创造了条件。 8. 遗传连锁图:通过计算连锁的遗传标志之间的重组频率,确定它们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)表示。 9. 物理图谱(physical map)是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。 10. 转录图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。 11. 序列图谱:随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。 DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱 12. 大规模测序基本策略 逐个克隆法:对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划) 全基因组鸟枪法:在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司) 13. 基因识别(gene identification)是HGP的重要内容之一,其目的是识别全部人类的基因。 基因识别包括: 识别基因组编码区 识别基因结构 基因识别目前常采用的有二种方法: 从基因组序列中识别那些转录表达的DNA片段 从cDNA文库中挑取并克隆。 14. 基因组多态性(Polymorphism):是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic

生物信息学分析方法

核酸和蛋白质序列分析 蛋白质, 核酸, 序列 关键词:核酸序列蛋白质序列分析软 件 在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信息,从而指导进一步的实验研究。通过染色体定位分析、内含子/外显子分析、ORF分析、表达谱分析等,能够阐明基因的基本信息。通过启动子预测、CpG岛分析和转录因子分析等,识别调控区的顺式作用元件,可以为基因的调控研究提供基础。通过蛋白质基本性质分析,疏水性分析,跨膜区预测,信号肽预测,亚细胞定位预测,抗原性位点预测,可以对基因编码蛋白的性质作出初步判断和预测。尤其通过疏水性分析和跨膜区预测可以预测基因是否为膜蛋白,这对确定实验研究方向有重要的参考意义。此外,通过相似性搜索、功能位点分析、结构分析、查询基因表达谱聚簇数据库、基因敲除数据库、基因组上下游邻居等,尽量挖掘网络数据库中的信息,可以对基因功能作出推论。上述技术路线可为其它类似分子的生物信息学分析提供借鉴。本路线图及推荐网址已建立超级链接,放在北京大学人类疾病基因研究中心网站(https://www.360docs.net/doc/fe10423882.html,/science/bioinfomatics.htm),可以直接点击进入检索网站。 下面介绍其中一些基本分析。值得注意的是,在对序列进行分析时,首先应当明确序列的性质,是mRNA序列还是基因组序列?是计算机拼接得到还是经过PCR扩增测序得到?是原核生物还是真核生物?这些决定了分析方法的选择和分析结果的解释。 (一)核酸序列分析 1、双序列比对(pairwise alignment) 双序列比对是指比较两条序列的相似性和寻找相似碱基及氨基酸的对应位置,它是用计算机进行序列分析的强大工具,分为全局比对和局部比对两类,各以Needleman-Wunsch 算法和Smith-Waterman算法为代表。由于这些算法都是启发式(heuristic)的算法,因此并没有最优值。根据比对的需要,选用适当的比对工具,在比对时适当调整空格罚分(gap penalty)和空格延伸罚分(gap extension penalty),以获得更优的比对。 除了利用BLAST、FASTA等局部比对工具进行序列对数据库的搜索外,我们还推荐使用EMBOSS软件包中的Needle软件(http://bioinfo.pbi.nrc.ca:8090/EMBOSS/),和Pairwise BLAST (https://www.360docs.net/doc/fe10423882.html,/BLAST/)。以上介绍的这些双序列比对工具的使用都比较简单,一般输入所比较的序列即可。 (1)BLAST和FASTA FASTA(https://www.360docs.net/doc/fe10423882.html,/fasta33/)和BLAST (https://www.360docs.net/doc/fe10423882.html,/BLAST/)是目前运用较为广泛的相似性搜索工具。这两

生物信息学在生物医学文献中自动提取疾病相关信息的运用

生物信息学在生物医学文献中自动提取疾 病基因点突变信息的运用 生物信息学(Bioinformatics)一词由美籍学者林华安博士(Hwa A.Lim)首先创造和使用。生物信息学是多学科的交叉产物,涉及生物、数学、物理、计算机科学、信息科学等多个领域。狭义的讲,生物信息学是对生物信息的获取、存储、分析和解释;计算生物学则是指为实现上述目的而进行的相应算法和计算机应用程序的开发。这两门学科之间没有严格的分界线,统称为生物信息学。生物医学研究的重要目标就是找到突变和相应的疾病表型。但是大多数的疾病相关的突变数据都以文本的形式埋藏在生物医学文献之中,缺乏必要的结构来便于检索和查找。 信息的快速更新和持续增长的文献储存使得提取这些突变信息变得困难。蛋白质和DNA的突变信息储存在像Mendelian inheritance in man(OMIM)和Swiss-Prot 等数据库中。数据挖掘的方法从这些数据库中提取突变信息可以达到0.98的准确性,但是还没有正确的自动转到疾病相关的突变的方法。现有算法可以实现鉴定点突变(比如MutationFinder)或者突变和其相关的基因以及蛋白质的名称(比如MEMA和MuteXe)。大多数“突变+基因”的方法可以通过各自不同的界面和算法来实现对点突变信息的表述和文本数据收集。比如:Mutation Grab采用基于图表的(Graph based)的方法,而MutationMiner采用结构可视化的方法来表现。但是所有方法都关注于提取点突变和相关基因的正确性。 新的高效的从生物医学文献中鉴别点突变以及他们和疾病表型的关系。结合了数据挖掘(data mining)和序列分析(sequence analysis)来鉴定点突变和相关疾病。采用PubMed引擎来从MEDLINE中检索一系列摘要。将词汇索引控制在MEDLINE's Medical Subject Heading (MeSH)。根据MeSH提交一个简单的查询“mutation"然后下载所有可用的摘要,为XML格式。用MetaMap来鉴定疾病 状态。在生物领域中,最大的词汇资源为United Medical Language System (UMLS)Metathesaurus。MetaMap是专门发现Metathesaurus中的生物医学实体的软件。用MetaMap来鉴定题目和摘要中的疾病的名称。其方法如下:(1) EMU突变抽取工具被用来从突变疾病相关的文库中来鉴定和检索突变。同时也从文本中识别基因的名称。(2)应用一个过滤器(SEQ_Filter)来排除所有氨基酸和报道的相关蛋白序列中的不同的突变。(3) SEQ前后的结果可以人为建立一个全注释的疾病突变数据库。 首先,用EMU来鉴定基因信息。在生物医学文献中,基因和蛋白质的记录没有一个标准的形式。所以自动抽取基因和蛋白质信息是在数据挖掘上的一个很大的挑战。我们采用在内部词典中来进行字串查找(string look up)来确的基因的名字。使用Human Gnome Organization(HUGO)和National Center for Biotechnology Information (NCBI)的数据库来进行。所有和密码子一样的基因名称被除去了。其次,用SEQ_Filter来过滤氨基酸位置上不一致的突变。对于在摘要中鉴定的基因名称和突变,都可以在NCBI中查找了相应的蛋白质信息。对于每个蛋白质,根据相应位置上的突变来确定野生型的氨基酸。如果在突变位置的野生型氨基酸(或者突变型)至少有一个相关的蛋白质,那么基因和突变之间的联系证明是有效的。最后,建立黄金标准(gold standards)。和疾病基因相

相关文档
最新文档