第7章 GR和放射性同位素测井

第7章 GR和放射性同位素测井
第7章 GR和放射性同位素测井

放射性测井

放射性测井(核测井)是测量记录反映岩石极其孔隙流体的核物理性质的参数,研究井剖面岩层性质的一类测井方法。

特点:不受井眼介质限制,在裸眼井和套管井、各种钻井泥浆的井中均可测,能进行套管井的地层评价,能够快速分析和确定岩石及其孔隙流体各种化学元素。

分类:按使用的放射性源或测量的放射性类型分

1、伽马测井:以研究伽马辐射为基础,包括GR、NGS、地层密度、岩性密度、放射性同位素示踪测井等。

2、中子测井:以研究中子与岩石及孔隙流体相互作用为基础,包括热中子、超热中子、中子伽马、脉冲中子非弹性散射伽马能谱、中子寿命及活化测井等。

第七章自然伽马测井和放射性同位素测井岩石中含有天然的放射性核素主要是铀系,钍系和钾的放射性同位素.

自然伽马测井:用伽马射线探测器测量岩石总的自然射线强度,以研究井剖面地层性质;

自然伽马能谱测井:在井内对岩石自然伽马射线进行能谱分析,分别测量层内铀、钍、钾含量来研究井剖面地层性质。

第一节伽马测井的核物理基础

一、放射性核素和核衰变

1.核素和同位素

核素:指原子核具有一定数目质子和中子,并处在同一能态上的同类原子。

同位素:指核中质子数相同而中子数不同的核素,它们在元素周期表中占有同一位置。

2.稳定核素和放射性核素

稳定核素:不会自发衰变为另一种核.

放射性核素:原子核能自发地发生衰变,由一种核变为另一种核.

核衰变时发射的三种射线:γ、β、α。

γ——高频电磁波(光子流),穿透能力强,较被测井仪测定(放射性测井探测的主要对象)

β——高速电子流,带负电,穿透能力差;

α——氦核组成的离子流,带正电,穿透能力最差。

3.核衰变定律:

放射性核素——放射出带电粒子(β、α)——激发态的新原子核——辐射γ——稳太的原子核,这个过程称为核衰变。

放射性核数随时间减小而遵循一定的规律,即核衰变定律:

t o e N t N λ-=)(

N0—初始原子个数;λ—衰变常数(表示衰变速度的参数),表示单位时间每个核发生衰变的几率,λ越大,衰变速度越快。

半衰期: 放射性核素因衰变而减少到原来一半所需的时间。 λ693

.0=T ,常见放射性核素的半衰期见表7-1,117页。

4.放射性活度

活度(强度):一定量的放射性核素在单位时间内发生衰变的核素。

单位:1Ci(居里)=3.7X1010核衰变/秒

贝克:1Bq = 1 次核衰变/秒

比度(浓度):放射性核素的放射性活度与其质量之比。

二、岩石的放射性核素

1.主要放射性核素

起决定作用的是铀系,铀系和钾。

2.伽马能谱

不同的核衰变放出的γ能量不同,一般谱成分太多,只选择代表性的伽马射线来识别:

铀系选 92U 238

钍系选 90Th232

钾 19K 40

三、岩石的自然放射性与岩石性质的关系

1.总放射性

(1)沉积岩的放射性低于岩浆岩和变质岩;

(2)沉积岩中自然伽马放射性随泥含量的增加而增加。

粘土中:蒙脱石,伊利石,高岭石,绿泥石(降低)

2.沉积岩中铀,钍,钾的含量

(1)粘土中:钾约含2%,钍约12ppm ,铀约6ppm 。

但与沉积环境有关,不同的粘土矿物,铀钍钾的含量有一定的差别。

(2)砂岩及碳酸岩盐中,随粘土矿物增加,铀、钍、钾含量增加,水流作用可造成铀含量很高。

(3)钍化合物难溶于水,故岩石中钍含量增加,离物源区近 。

(4)四价铀难溶于水,六价铀溶于水,铀含量与沉积环境及成岩后水流作用有关,四价铀氧化成六价铀,六价铀在还原条件下变成四价铀而沉淀。

四、伽马射线与物质的相互作用

1.电子对效应

γ在能量大于1.022Mev 时,它在物质的原子核附近与核的库仑场相互作用,可以转化为一个负电子和一个正电子,而光子本身被全部吸收。

吸收系数(衰减系数):伽马射线通过单位厚度的吸收介质,因此效应而导致γ射线强度的减弱,用吸收系数ае表示:)022.1(2-=?λρE Z A N K A ,K 为常数,E γ为入射γ的能量,NA 为阿佛加德罗常数,6.02486 X 1023mol -1,A 为克原子量,Z 原子序数,ρ为密度。

2.康普顿效应

伽马光子与物质原子核外轨道上的电子发生相互作用,将部分能量传给电子,使电子从某方向射出,而损失了部分能量的伽马光子向另一方向散射出去,该伽马光子被成为散射伽马光子。

康普顿减弱系数:A ZN A e ρσ=Ξ

,由康普顿效应引起的伽马射线通过单位

距离物质减弱程度。

Σe —每个电子的康普顿散射截面,为常数;

Z/A —在一定的介质条件下,可看成常数,因此利用Σ与ρ的关系,可确定介质的密度,是密度测井的核物理基础。

3.光电效应

当一个低能量的伽马光子与原子发生作用时,将全部能量交给一个电子,使它脱离原子成为光电子,而光子本身被完全吸收,这种效应称为光电效应。

线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应

的概率。 n A Z λρτ1

.40089.0=

此式说明: 光电吸收系数主要取决于原子序数,由此发展了岩性密度测井。

4.伽马射线的吸收

线性吸收系数:Ξ++?=τμ ,ρμ∞

为了消除质量的影响,常用质量吸收系数ρμμ/=m 。

若入射伽马的强度为I 0,穿过厚度为L 的吸收介质后的强度为:L e I I

μ-=0。

三种效应发生的比例随Er 而变,一般有:

Er<0.1Mev ,主要为光电效应

0.1Mev

Er>2Mev ,主要为电子对效应

第二节 自然伽马测井

一、岩石的自然伽马放射性 岩石的自然伽马放射性是因岩石含有放射性核素,衰变时放射出发射性射线。 岩石中所含的放射性和的种类和数量不同,放射性强度也不同,根据自然界存在的放射性核素在岩石中的丰度可知,岩石的自然伽马放射性水平主要决定于铀、钍、钾的含量。

二、GR 测井原理

1、仪器

地面仪器:控制面板;

井下仪器:探测器—探测γ射线的强度,转化成电脉冲数;

放大器—将探测器的电信号放大并传至地面;

高压电源—给探测器提供高压。

2、原理

给下井仪供电,探测器工作—提升下井仪经不同地层,当伽马射线照射探测器—探测器输出相应数目的电脉冲—脉冲信号放大,传至地面—单位时间的脉冲数被转化成相应电位差值—记录仪记录。得到是一条随深度变化的计数率曲线(脉冲/

分),现常用API单位(是美国石油学会采用的单位,两倍于北美泥岩平均放射性的模拟地层的自然伽马测井曲线值的1/200定义为1API自然伽马测井单位)。

3、探测范围

岩石放射的γ射线能到达探测器的一个以探测器为球心的球体,半径为30~45cm(与地层的吸收系数有关)。

三、自然伽马测井曲线

1、自然伽马测井的标准化

为什么要标准化?

标准化的基本方法----建立标准刻度井,再刻度井中对每支仪器进行标定。 2.自然咖马测井曲线特点.

1)上下围岩相同时,曲线对称于地层中点,并在地层中点取得极值;

2)地层厚度小于纵向探测范围时,地层厚度减小,曲线幅度降低;

3)地层厚度大于探测范围时,半幅点对应地层界面。

三、影响因素

1、υτ的影响(υ—测井速度,仪器提升速度;τ—记录仪中电路的积分时间常数,υτ越大,曲线幅度越小,对称性越差,极值向提升方向偏移越远(图7-8,p123),因此测井速度受到限制。

2、放射性涨落误差(统计误差)

涨落现象:多次测量,各次读数与全部读数的平均值之差大部分分布在一定范围内。由于涨落现象,使GR曲线呈现“锯齿状”,由于放射性涨落引起的误差,称为涨落误差,记为σ。

±的几率为68.3%,因此,只有当曲物理意义:同一地层各点的读数落在σ

线幅度变化超过上述范围,且超过(2.5~3)σ时,曲线才做分层或地层解释。

3、厚度的影响

薄层,曲线受上下围岩而反变化。

4、井的影响

因泥浆、套管和水泥吸收伽马射线,使曲线幅度降低,裸眼井,主要受井径和泥浆的影响;套管井则要考虑到套管和水泥环的影响,做必要的校正。

四、应用

1.划分岩性和地层对比

I.主要依据:Vsh不同,GR读数不同。

砂泥岩剖面:泥岩层GR幅度最高,纯地层,GR最低;

碳酸盐岩剖面:泥岩、页岩的GR 幅度最高,纯的石灰岩、白云岩GR 幅度最低,而泥质灰岩、泥质白云岩GR 界于中间;

膏盐剖面:盐岩、石膏层的GR 较低,泥岩层GR 幅度最高。

II.地层对比,划分储集层。

砂泥岩剖面:低GR 的为砂岩储集层.在厚层状态可用半幅点分层。

碳酸盐岩剖面:低GR 说明含泥质少的纯岩石,结合高孔隙度低电阻率可划出储集层。

3.计算泥质含量

(1)地质基础(计算条件):地层除粘土矿物外,不含其它放射性矿物(此时伽马为计算Vsh 的最好方法。

(2)方法:I. 相对值法:min

max min GR GR GR GR Ish --= 1

212--=?GCUR Ish GUCR Vsh II. 经验法:用统计发得到Vsh —GR 经验公式。

第三节、自然伽马能谱测井

一、测井基础

不同的放射性核素,放射的γ能量不同,因此分析谱曲线,可得岩层中所含各种放射性元素及其含量,铀、钍、钾的射线能谱见图7-17(p131)

特征值(用以识别铀、钍、钾的特征能量):

K 40—1.46Mev U —1.76Mev Th —2.62Mev 。

二、NGS 与GR 测井的区别

GR 测井记录的是能量大于100Kev 的所有γ造成的总的计数率,反映的是岩层中所有放射性核数的总效应。

NGS 分别对应别铀、钍、钾三种主要放射性核素辐射的γ造成的计数率进行记录,反映的是不同放射性核素的效应。测井得到的曲线分别是反映钍含量(ppm),铀含量(ppm)和K 40含量及总的计数率(API )。

三、NGS 的应用(略)

1、研究生油层

岩石中有机物对铀的富集起着重要作用,因此可用于追踪生油层和评价生油能力。U 或U/K 越高,说明有机碳越多,则泥岩为生油岩,且生油能力强(图7-19)。

实例参照132页图7-20。

2、寻找页岩储集层

富含有机物的高放射性黑色页岩,在局部地段有裂缝、粉砂或碳酸盐岩夹层,可能成为产油层,其特点是钾、钍含量低,而铀含量高。

3、寻找高放射性碎屑岩和碳酸盐岩储集层。

储集层岩石中含有高放射性矿物时,放射性也会较强。

4、用Th/U 研究沉积环境

统计研究表明:陆相沉积、氧化环境、风化层,Th/U>7;海相沉积、灰色或灰绿色页岩, Th/U<7;海相黑色页岩、磷酸盐岩,Th/U<2。

5、求泥质含量

地层中泥质含量与钍或钾的含量有较好的相关关系,而与地层中铀的含量关系较小。一般不用铀含量而用总的计数率、钍含量和钾含量测井值计算泥质含量。

(1)总计数率求泥质含量 min

max min CTS CTS CTS CTS SVCT --= 1

212--=?SVCT GCUR SVCT SVCE 式中:SVCT —用总的计数率求出的泥质含量指数;

CTS —总的计数率;

CTS min —纯地层计数率;

CTS max —泥岩总计数率;

SVCE —用总的计数率求出的泥质体积含量;

GCUR —区域参数;

(2)由钍含量求泥质含量 min

max min Th Th Th Th SVTH --= 1

212--=?SVTH GCUR SVTH SVTE (3)由钾含量求泥质含量

min

max min 4040404040K K K K SVK --= 1

2124040--=?SVK GCUR SVK SVKE 6、区分泥质砂岩和云母

利用钍和钾的含量交会图(图7-13),可以给出石英、云母和泥质的百分含量。

第四节、放射性同位素测井

又称放射性示踪测井,利用人工放射性同位素为示踪剂,研究油井技术和采油注水动态的测井方法。

一、放射性同位素测井找串槽位置

油井投入生产后,由于固井质量差或固井后由于其它工程施工,使水泥环破裂,造成层间串槽。

主要施工步骤:施工前,先测一条自然伽马曲线作为参考曲线,而后将活化液压入找串槽层,与参考曲线比较,则可查出示踪液的通道,找出串槽位置。

实例参照135页图7-25,放射性同位素“找串”曲线。

注入了活化液的B 层,曲线异常幅度较大,被封隔器封隔的A 层处,虽未注入活化液也有明显增大,则A 、B 有串槽;C 层处,两曲线基本重合,则B 、C 无串槽。

二、放射性同位素测井检查封堵效果

串槽油井中部分层段出水、误射孔等井段需要第二次注水泥封堵。

先测一条自然伽马曲线作为参考曲线,然后将加入少量放射性同位素的水泥挤入上述井段,再测一条放射性同位素伽马曲线,若封堵良好,则封堵处由于曲线幅度增大。

实例参照136页图7-26、27,放射性同位素检查封堵效果。

图7-26,A 、B 串通,将B 层射开注入活化水泥,经比较,AB 段曲线幅度明显升高,封堵效果良好。

图7-27,A 、B 、C 、D 同时射开,油水同出,将活化油水泥注入,水层处,油被水替换,水泥凝固将水层堵死;油层处水泥不固结,经抽吸导出地层。经比较,

A 、

B 层曲线幅度增大,则被封堵;

C 、

D 层曲线幅度基本不变,为油层。

三、检查压裂效果的放射性同位素测井

为提高采收率和产能,常对低孔、低渗地层进行压裂。

压裂时将吸附放射性同位素的活化砂(作为示踪剂)压入地层裂缝中,在压裂前测一条参考曲线,压裂后洗井在测一条放射性同位素曲线,两曲线重叠对比可知压裂效果。

实例参照136页图7-28,放射性同位素检查压裂效果。

图中5各地层经两次压裂全部压开,第一次,Jr1、Jr2比较,知上三个地层压开,第二次比较Jr3、Jr1知下两个地层压开

四、放射性同位素载体法测定吸水剖面,计算相对吸水量

测定各小层吸水量,以防止单层突进。

生产中选用半衰期短的放射性同位素作为示踪元素,吸附粒径大于50um 的固相载体做成活化固相载体。放入水中配置成均匀悬浮液。在正常注水条件下,在悬浮液向地层侵入时,固相活化载体和水分离,而虑积在地层表面形成一活化层。地层的吸水量与活化载体在地层表面虑积量成正比,与活化层造成的曲线异常面积的增量成正比。

实例参照137页图7-29,放射性同位素测的吸水剖面图。

各小层段相对吸水量: %100?=∑n

J i i S S q 式中:qi —第I 小层的相对吸水量;Si —第I 小层的放射线强度异常面积。

自然电位附自然伽马

自然电位测井方法原理 在早期的电阻率测井中发现:在供电电极不供电时,测量电 极M在井内移动,仍可在井内测量到有关电位的变化。这个电位 是自然产生的,故称为自然电位。使用图1所示电路,沿井提升 M电极,地面仪器即可同时测出一条自然电位变化曲线。 自然电位曲线变化与岩性有密切关系,能以明显的异常显示 出渗透性地层,这对于确定砂岩储集层具有重要意义。自然电位 测井方法简单,实用价值高,是划分岩性和研究储集层性质的基 本方法之一。 图 1 自然电位测井原理 一、井内自然电位产生的原因 井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。 1.扩散电动势(Ed)的产生 如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将 其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液, 并且在两边分别放人一只电极,此时表头指针发生偏转。此现象 可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达 到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿 过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。 在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散 结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶 图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。这就在两种不同浓度的溶 液间产生了电动势,所以可测到电位差。离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示: mv g/L。 与上述实验现象一样,井内自然电位的产生也是两种不同浓度 的溶液相接触的产物。在纯砂岩井段所测量的自然电位即是扩散电 动势造成的,这是由于浓度为Cw的地层水和浓度为Cmf的泥浆滤 液在井壁附近接触产生扩散现象的结果。通常,Cw>Cmf,所以一般 扩散结果是地层水内富集正电荷,泥浆滤液中富集负电荷,如图3

HAL阵列侧向测井仪质量控制手册

EILog-06快速与成像测井系统 HAL阵列侧向测井仪 质量控制手册 中油测井技术中心 2011年7月

EILog-06 HAL阵列侧向测井仪 质量控制手册 文件代号: 存储代号: 主题词:阵列侧向测井仪 质量控制 资料来源编制 技术装备研究所审核 标准化 提出单位或部门批准 标记处数更改文件号签字日期技术装备科职责签字日期

1.仪器基本介绍 1.1概述 阵列侧向测井仪是继双侧向后发展的新型侧向测井方法。普通双侧向测井能够提供深、浅两条测井曲线,但测量地层信息少,不能详细描述侵入剖面,同时纵向分辨率低,不能满足薄层评价需求。HAL高分辨率阵列侧向测井仪是一种新型高分辨率、多探测深度的阵列化侧向仪器,该仪器是针对复杂油气层识别和评价而研制开发,主要用于定量描述薄层和地层侵入特性、测量地层电阻率,反演地层真电阻率,以及求取地层含油饱和度等。 1.2仪器特点 在薄层地层中,测量结果受围岩影响小; 具有更高的纵向分辨率,可清晰分辨0.3m薄层,层界面显示清晰; 五条不同探测深度曲线可准确判断径向侵入性质; 所有电流返回到仪器本身,没有格罗宁根效应等影响; 深探测受井眼影响小,井眼校正曲线规律; 可反演计算泥浆电阻率; 1维反演能够提供Rt和Rxo; 可替代双侧向连接位置进行组合测井。 1.3仪器结构示意图

仪器有13个供电电极:主电流电极A0,屏流电极A1A2...A6,上下对称。6对监控电极: 主监控电极对 M0-M1,辅助监控电极M2-M3、M4-M5围绕A0上下对称分布。 2.仪器规格

仪器直径 90mm 长度 7.2m 重量 179KG 最高耐压 150℃ 最大耐压 120MPa 最小可测井眼 5英寸 3.质量控制 3.1仪器装配 (1)在电缆头下方必须放置AH-169 绝缘短节; (2)应与带井径测量的仪器同时下井或在回放中加入井径数据; (3)A6 和A6’电极长度必须超过3米; (4)应在仪器上作为A6,A6’的电极上加扶正器,扶正器可用橡胶扶正器或灯笼扶正器, 尺寸要适合井眼大小。 3.2单测与组合测井仪器位置 所有仪器连接顺序应严格按照用户操作手册进行。 绝缘短节的连接尤为重要,特别是单测和组合测井时,仪器上A6用其它仪器外壳代替,代替的仪器上端应正确加装绝缘短节。 绝缘短节连接错误直接影响测井曲线质量。 3.3最大测速 最大测速要求不得超过1000m/h,优选800m/h。因在井下DSP进行了FFT 变换,每个测量点需要足够时间进行处理。否则容易出现错误数据,影响曲线质量。 3.4仪器刻度 在裸眼井段中做测前和测后刻度,注意选择做刻度地点要靠近测量段,并使刻度温度与测井时温度差不得超过20℃,保证仪器电路有相同的响应条件。 所有刻度过程应严格按照用户操作手册进行。

自然伽马能谱测井曲线在地质上的解释与应用

自然伽马能谱测井曲线在地质上的解释与 应用 / 汐钎 一 第16卷第1期地学工程进展V o1.16No.1 1999年6月ADV ANCEINEARTHSCIENCEENGINEERINGJun?,1999 擅■通过实倒舟绍了放射性元素铀,钍,钾的地球化学特性和自然佃马能谱曲线在地质上的解释与应用.提出6种有关解释应用的意见.1)商钾多为伊利石桔土岩和钾长 石砂岩,商蚀多由有机质造成.而商牡尉为^山岩有关堆层.2)平曩用钍,钾曲线可以计算 地层据质古量.3)铀异常曲线可以指示地层中流体运动.4)寻拽放射性矿层与异常带. s)研究生油岩.6)进行堆层对比. 关■栩地球化学特性f自然伽马瞎谱曲线}铀,钍,钾异常f解释应用 数控测井中一个必不可少的测井项目自然伽马能谱测井已在世界各地的深井~超深井中 得到广泛采纳和使用,它可在裸眼井和套管井中进行测量,并提供自然伽马射线总计数钾 (),铀(x10)和钍(×10)测量的连续记录.70年代中期,自然伽马能谱铡井首先用于英国北海地区,当时主要为了确定云母和计算粘土含量,作为一种比较有效的测井方法已广泛用 于碳酸盐岩和砂泥岩地层,它不仅有助于评价地层泥质含量,岩性变化.而且可用于操测放射 性矿物,进行地层对比,研究沉积环境.同时还可做为研究生油层的重要资料.

1放射性元素铀,钍,钾的地球化学特性 在自然界中铀有三种同位素(u,U",U),且都具有放射性,铀在地壳中的浓度大约 为3×10~,也是来源于硅酸火戚岩,而且主要戚分为放射性矿物.在自然界中铀以+4和+6 两种离子价的状态而存在.四价铀盐通常不溶解但易变戚六价铀.六价铀盐不仅存在于溶液 中,而且易氧化形戚uO,其氧化物极易溶解且具有很大的流动性.常和有机物碳酸盐岩结合 在一起. 钍同位素Th"是自然界中一种稳定的元素,其他只作为铀系的一部分,很不稳定如Th 和Th,钍在地壳的平均浓度为12×10~.钍来源于硅酸火戚岩以+4价形式存在,形成化舍 物Th(OH),在自然界中由于物理风化作用容易水解.故具有一定的流动性.由于Th"有较 大的离子半径且易被牯土矿物所吸附.除蒙脱石钍含量较低外,绝大部分粘土矿物都有较恒定 收稿日期l1999-O4-l2 作者筒舟橱蕾忙,男-53岁t工程柙,现在中国新星石油公司华北石油局三瞢录井坫工作 用 应 癣 ^^日¨上 质墼地 缀一 曲塑炳舢 I油澳盯 谱醋

第7章 GR和放射性同位素测井

放射性测井 放射性测井(核测井)是测量记录反映岩石极其孔隙流体的核物理性质的参数,研究井剖面岩层性质的一类测井方法。 特点:不受井眼介质限制,在裸眼井和套管井、各种钻井泥浆的井中均可测,能进行套管井的地层评价,能够快速分析和确定岩石及其孔隙流体各种化学元素。 分类:按使用的放射性源或测量的放射性类型分 1、伽马测井:以研究伽马辐射为基础,包括GR、NGS、地层密度、岩性密度、放射性同位素示踪测井等。 2、中子测井:以研究中子与岩石及孔隙流体相互作用为基础,包括热中子、超热中子、中子伽马、脉冲中子非弹性散射伽马能谱、中子寿命及活化测井等。 第七章自然伽马测井和放射性同位素测井岩石中含有天然的放射性核素主要是铀系,钍系和钾的放射性同位素. 自然伽马测井:用伽马射线探测器测量岩石总的自然射线强度,以研究井剖面地层性质; 自然伽马能谱测井:在井内对岩石自然伽马射线进行能谱分析,分别测量层内铀、钍、钾含量来研究井剖面地层性质。 第一节伽马测井的核物理基础 一、放射性核素和核衰变 1.核素和同位素 核素:指原子核具有一定数目质子和中子,并处在同一能态上的同类原子。 同位素:指核中质子数相同而中子数不同的核素,它们在元素周期表中占有同一位置。 2.稳定核素和放射性核素 稳定核素:不会自发衰变为另一种核. 放射性核素:原子核能自发地发生衰变,由一种核变为另一种核. 核衰变时发射的三种射线:γ、β、α。 γ——高频电磁波(光子流),穿透能力强,较被测井仪测定(放射性测井探测的主要对象)

β——高速电子流,带负电,穿透能力差; α——氦核组成的离子流,带正电,穿透能力最差。 3.核衰变定律: 放射性核素——放射出带电粒子(β、α)——激发态的新原子核——辐射γ——稳太的原子核,这个过程称为核衰变。 放射性核数随时间减小而遵循一定的规律,即核衰变定律: t o e N t N λ-=)( N0—初始原子个数;λ—衰变常数(表示衰变速度的参数),表示单位时间每个核发生衰变的几率,λ越大,衰变速度越快。 半衰期: 放射性核素因衰变而减少到原来一半所需的时间。 λ693 .0=T ,常见放射性核素的半衰期见表7-1,117页。 4.放射性活度 活度(强度):一定量的放射性核素在单位时间内发生衰变的核素。 单位:1Ci(居里)=3.7X1010核衰变/秒 贝克:1Bq = 1 次核衰变/秒 比度(浓度):放射性核素的放射性活度与其质量之比。 二、岩石的放射性核素 1.主要放射性核素 起决定作用的是铀系,铀系和钾。 2.伽马能谱 不同的核衰变放出的γ能量不同,一般谱成分太多,只选择代表性的伽马射线来识别: 铀系选 92U 238 钍系选 90Th232 钾 19K 40 三、岩石的自然放射性与岩石性质的关系 1.总放射性 (1)沉积岩的放射性低于岩浆岩和变质岩; (2)沉积岩中自然伽马放射性随泥含量的增加而增加。 粘土中:蒙脱石,伊利石,高岭石,绿泥石(降低)

放射性 测井

第九章 放射性测井 放射性测井是根据岩石和介质的核物理性质,研究钻井地质剖面,寻找油气藏以及研究油井工程的地球物理方法。 放射性测井方法,按其探测射线的类型可分为两大类,即探测伽马射线的伽马测井法和探测中子的中子测井法。 ?????? ???????????????????脉冲中子测井中子伽马测井中子测井确定孔隙度)中子测井岩性密度密度测井自然伽马能谱自然伽马泥质含量、划分岩性)伽马测井放射性测井(( 放射性测井的优点:1、裸眼井、套管井内均可进行测井;2、在油基泥浆、高矿化度泥浆以及干井中均可测井;3、是碳酸岩剖面和水化学沉积剖面不可缺少的测井方法。但是它的测速慢,成本高。由于生产和解释方法的改进,放射性测井解决生产问题的范围不断扩大,它仍是一项重要的测井方法。特别是核磁共振测井仪的研制成功,更加扩大了放射性测井的应用范围。 第一节 放射性测井的基本知识 一、原子核的衰变及其放射性 1、原子的结构 ????????负电荷 核外电子:带一个单位:不带电 中子位正电荷氢的原子核,带一个单质子原子核A原子(N):(Z) 2、核素和同位素 核素:是指原子核中具有一定数目质子和中子并在同一能态上的同类原子,同一核素的原子核质子数和中子数相等。 同位素:是指核中质子数相同而中子数不同的核素,它们在元素周期表中占同一位置。 3、核衰变 放射性同位素的原子核自发地发生分解,转变成另外某种原子核,并放出放射性射线λβα、、,这种现象叫核衰变,放出放射性射线的性质叫放射性。如: -+→β40204019Ca K

λβ+→→+-4018*40184019A A K 任何放射性元素衰变时,其原子核数量都是按下列规律减少的: t e N N λ-=0 N 0:放射性元素的初始量;N :经过时间t 后的放射性元素量;λ:衰变常 数,表征衰变速度的常数。由上式可看出,随着t ↗,放射性元素的原子数↘,当t →∞,原子数量越接近于零。 除了用λ外,还用半衰期T 来说明衰变的速度。半衰期就是从放射性元素原子核的初始量,开始到一半原子已发生衰变时所经历的时间,T 和λ有如下关系:λ693 .0=T 。 λ越大,T 越短,放射性元素的衰变越快。 4、放射性射线的性质 在放射性射线中γβα、、,此外还有其它射线,这里只介绍γβα、、射线。 ①α射线:是氢的原子核流,氢的原子核是4 2He ,因其质量大,易引起物质的电离或激发,被物质吸收,所以它在物质中运动时,射程很小,在空气中为 2.5cm 左右,在岩石中和金属矿层中,约为数十万分之一米,因α射线穿透能力很差,所以在井内探测不到α射线。 ②β射线:是高速运动的电子流。它在物质中的射程也较短。 ③γ射线:是频率很高的电磁波(波长为3x10-11~10-9cm )或光子流,不带电荷,但其能量很高,一般在几十万电子伏特以上,并且有很强的穿透能力,例如要使给定的γ射线强度减弱到一半,则需要穿过12.7mm 厚的铅层(铅的吸收能力很强),所以γ射线在放射性测井中能被探测到而得到利用。 5、伽马射线与物质的作用 γ射线穿过物质时,与构成物质的原子发生作用,主要产生如下现象:光电效应,康普顿效应,电子对效应。 (1) 光电效应:γ射线穿过物质,与构成物质的原子中的电子相碰撞,γ量子将 其所有能量交给电子,使电子脱离原子而运动形成光电子,γ量子本身则整个被吸收,这种效应称为光电效应。光电效应和γ射线的能量与吸收物质的原子序数有密切关系,随原子序数增加而迅速增大,但随射线能量增大光电效应迅速减小。(岩性密度测井的部分原理)

浅论放射性同位素示踪技术的应用

浅论放射性同位素示踪技术的应用-----《原子物理》课程论文 这学期通过学习XX老师的《原子物理》课程,我对原子物理其中一个领域—放射性同位素产生了很大的兴趣,这兴趣源于我在高中时期对生物学科中同位素示踪法的学习经历,当时我就感觉这一技术十分奇妙,但不明原理,《原子物理》课程让我认识并理解了物理和生物两大学科之间的这一联系。课堂上老师简明扼要地介绍了一些有关的应用,但是我仍不满足。老师只能作为课程的引路人,为学生指明入门方向,要想横向更加广泛地,纵向更加深入地了解这一课程的某个领域还是要学生在课外多方搜集资料,筛选整合有价值的信息,通过比较和研究,最终形成自己对这一领域的独特而深刻的认识,放射性同位素的应用浩瀚广博,即使仅仅只谈它的示踪技术应用,也远非我这篇小论文可以概述详尽的,所以我也只能用“浅论”这两个字。下面我就对放射性同位素示踪技术的应用进行浅显的介绍和论述。 具体论述前我们首先要明确相关的基本概念,无论结构多么复杂的物理学大厦,它的地基都是由一块块叫做“基本概念”的砖石筑成的。基本概念不明晰,我们就无法理解为什么放射性同位素具有如此广泛而丰富的应用。那么什么是“放射性同位素”呢?科学家发现,元素周期表中同一位元素的原子并不完全一样,有的原子重些,有的原子轻些;有的原子很稳定,不会变,有的原子有放射性,会变化,衰变后成了另一种元素的原子。我们把这些处于同一位的元素但有不同性质(质子数相同,但中子数不同)的原子称为同位素。同位素中有的会放出射线,因此称放射性同位素。 放射性同位素不断发出射线,它到哪里,人们就可以追踪到哪里,可作为示踪剂使用。示踪剂可以是示踪原子,也可以做成示踪化合物。因为加入示踪剂之后,就像贴上标记一样,所以又称之为标记化合物。人们已经用氚、碳-14、磷-32、硫-35、碘-125等许多核素合成了许许多多标记化合物。用放射性同位素示踪技术(以下简称示踪技术)作检测,具有灵敏度高、方法简便、干扰少、准确性好等优点,因此,在工农业生产、医疗、环保、国防和科学研究等许多领域有着十分广泛的应用,并且这种应用还在迅速扩展。 (一)示踪技术在生物学领域的应用 高中时期我们就曾经学过同位素示踪法在生物学科的应用,即用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。它可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。有关光合作用的基本产物的知识,也是在利用二氧化碳-14(14CO2)作为示踪剂之后才被人们所了解的。二氧化碳-14中的碳-14是碳的一个放射性同位素。此外,有些植物具有非常巧妙的机能——在夜间,不断地吸收二氧化碳,到了白昼,就在叶子中进行光合作用。这一现象也是利用二氧化碳-14进行研究后才发现的。利用示踪剂二氧化碳-14还可以研究有关植物呼吸的详细情况。例如,由于昼夜之间的差别,植物的呼吸情况有什么不同?呼吸对光合作用有什么影响?不同植物之间,呼吸有什么差异等等。 (二)示踪技术在工业生产领域的应用 放射性示踪剂在工业生产中有着广泛的应用。石油蕴藏在地下,油层非均匀性质很严重,油水分布复杂。搞清地下油水分布的情况,对提高采油率有着十分重要的意义。如果用氚或碘-125、硫-35作示踪剂,注入油井中,打一些监测井进行监测,就可以知道地下油水的分布情况。再如,不同公司生产的石油往往共用一条输油管道,要想把哪个公司输送过来的石油分辨得一清二楚,也可找示踪剂来帮忙。例如在甲公司的石油中加入放射性碘做示踪剂,在乙公司的石油中加入放射性硫做示踪剂,当接收站测到放射性碘示踪剂信号时,就知道甲公司的石油过来了,就会自动打开甲公司的贮油槽。当测到放射性硫示踪剂信号时,就知道是乙公司的石油过来了,就会打开乙公司的贮油槽,保证不会认错货。 (三)示踪技术在科学研究领域的应用 用氚标记示踪剂可以帮助水利学家们研究江河中泥沙是怎么淤积的。利用氯-36示踪剂可以帮助人们了解地下水运动走向和渗透率的大小。利用碳-14示踪剂可以研究大洋水流的循环模式和全球气候变暖的原因,等等。磷-32、硫-35、碘-125、碳-14或氚作示踪剂,可以帮助医生从分子水平研究神经系统、内分泌系统疾病的机制,进行药物代谢,基因工程等研究。用磷-32或硫-35标记的核苷酸,可用于DNA(脱氧核糖核酸)和RNA(核糖核酸)分子序的测定。 (四)示踪技术在医学领域的应用 通过查阅相关医学文献,我发现在医学研究中,经常需要了解某种物质在机体内的分布情况和代谢规律,包括药物、抗体、细胞膜受体,基因片段以及蛋白质等各种分子。如何能够较为方便地在活体动物或人体条件下了解这些情况呢?示踪技术是一种较为常用的方法。随着放射性标记药物的品种不断增加,在体外探测体内放射性分布的设备不断进步,示踪技术应用越来越广泛。最早,我们为了解甲状腺的功能,给病人口服放射性碘,然后测定甲状腺部位的放射性高低,定量显示甲状腺的摄碘功能,这一方法沿用至今,对于甲状腺整体和甲状腺肿块局部功能的评价,用数字或图像的方式很容易获得。还可以用于

EILog HAL6505阵列侧向在测井现场的应用研究

EILog HAL6505阵列侧向在测井现场的应用研究 【摘要】鄂尔多斯盆地井下情况复杂,探明地下情况,为长庆油田公司实现年产量5000万吨作辅助,必须要求高质量的井下仪器。高分辨率双侧向测井仪是常规裸眼井测井项目之一,由于其技术的成熟可靠,已得到长庆油田的充分认可,目前广泛应用于苏里格区块的气井勘探中。而HAL高分辨率阵列侧向测井仪是中国石油测井有限公司继双侧向之后发展的新型侧向测井仪,具有分层能力强,围岩影响小等特点。本文阐述了阵列侧向的原理,分析了曲线质量,评价了实际现场的应用。 【关键词】探测深度井眼影响分层能力 1 前言 阵列侧向测井仪通过增加屏蔽电极个数来实现六种不同探测深度的测量,一次可测得6条电阻率曲线,探测从泥浆、侵入带到地层深部电阻率变化,清晰描述侵入特性,有井眼围岩等影响比较简单、分层能力强等特点。主要用于定量描述薄层和地层侵入特性、测量地层电阻率,反演地层侵入参数和真电阻率,求取地层含油饱和度,能对薄层进行更有效的探测识别。 2 曲线质量对比 图1为X井HYHAL与HRDL效果对比图,在气层处,阵列侧向与双侧向曲线的差别一致。 3 井眼、围岩的影响对比 由其工作原理可知,高分辨率双侧向只有两条测量曲线,分别是径向测量深度为1.2m的深侧向曲线和测量深度为0.4m的浅侧向曲线,两者测量深度差距较大且中间没有连续变化的电阻率测量值。而阵列侧向的径向探测深度分别为0.25m,0.32m,0.39m,0.48m,0.64m。探测深度随工作模式的切换而逐步变化,具有一定规律性,易于识别校正。另外,AL0模式主电流没有聚焦,返回电极的距离又很近,所以主要探测泥浆和井眼的影响。其中AL0模式测得的RAL0曲线可以反演泥浆电阻率,能够进行有效井眼校正,从而使五条曲线能够较好地反映地层侵入变化。 图2为Y井HYHAL与HRDL在井眼处效果对比图,井眼附近阵列侧向的重合性明显优于双侧向曲线。 4 分层能力对比 一般在划分岩性剖面时,由于井孔的分流小,对于电阻率不同的岩层都有明显的曲线变化,厚度在0.6以上的岩层一般清晰可辨。如果与临近层位电阻率差

常用测井曲线符号及单位(最规范版)

常用测井曲线符号单位 测井曲线名称符号(常用) 单位符号单位符号名称 自然伽玛 GR API 自然电位 SP MV 毫伏 井径 CAL cm 厘米 中子伽马 NGR 冲洗带地层电阻率 Rxo 深探测感应测井 Ild 中探测感应测井 Ilm 浅探测感应测井 Ils 深双侧向电阻率测井 Rd 浅双侧向电阻率测井 Rs 微侧向电阻率测井 RMLL 感应测井 CON 声波时差 AC 密度 DEN g/cm3 中子 CN v/v 孔隙度 POR 冲洗带含水孔隙度 PORF 渗透率 PERM 毫达西 含水饱和度 SW 冲洗带含水饱和度 SXO 地层温度 TEMP 有效孔隙度 POR 泥浆滤液电阻率 Rmf 地层水电阻率 Rw 泥浆电阻率 Rm 微梯度 ML1或MIN 微电位 ML2或MNO 补偿密度 RHOB或DEN G/CM3 补偿中子 CNL或NPHI 声波时差 DT或AC US/M 微秒/米 深侧向电阻率 LLD或RT OMM 欧姆米 浅双侧向电阻率 LLS或RS OMM 欧姆米 微球电阻率 MSFL或SFLU、RFOC 中感应电阻率 ILM或RILM 深感应电阻率 ILD或RILD 感应电导率 CILD MMO 毫姆欧 PERM绝对渗透率,PIH油气有效渗透率,PIW水的有效渗透率。

测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀 KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL 核磁共振成像

放射性同位素示踪注水剖面测井工艺

第四章放射性同位素示踪注水 剖面测井工艺 第一节测井前的准备 一、施工条件准备 1、井场 放射性同位素示踪注水剖面测井要求井场清洁、平整、无杂物堆放,能同时摆放××(或吊车)、仪器车和绞车三台车。其中井架车(或吊车)要靠近井口,绞车摆放要××20m以上,以保证电缆能正常起下。 2、井架车 在放射性同位素示踪注水剖面测井施工中,升降仪器串和井口防喷装置应使用井架××提升高度必须大于6m,悬重必须大于6m。目前,各油田在施工中多使用5-8t吊车××车。为了充分利用这台吊车,还可以将井口防喷装置如高压注脂泵、防喷管等安装在吊××。 3、井口 为了保证测井资料准确可靠,要求注水井井口的各种压力表齐全、完好,注水量×× 4、井下注水管 对于油井转注水井时间不久的井,在测井前必须进行洗井作业,清除油、套管××污,确保井内干净,无沾污。 二、测井施工设计和测井通知单 1、测井通知单的基本内容 测井通知单的内容不仅包括测井施工单位进行施工设计的依据,而且还是测井××的基础参数和信息。它是由用户提出的,基本内容如下: (1)井下基础数据。井下基础数据主要是井身结构方面的数据。包括有套管规范××深度、固井质量、水泥返高、人工井底、砂面(或落物鱼顶位置)、油补距或套补距××(2)注水情况。包括投注时间、累积注水量、注水方式、注水压力(泵压、油××压)、日注水量,如果是分层注水,还应提供注水层、层段深度、配水嘴直径、分层××水量和实际注水量。 (3)射孔层位数据。包括注水井段每个射孔层的完井解释序号、层位、深度、××度、有效厚度、渗透率等数据。 (4)注水管柱结构。包括注水管柱下入日期、油管规范、封隔器和配水型号、××下入深度、撞击筒深度(或喇叭口深度),井下管柱结构示意图。如有卡、堵、停注××须加以说明。 (5)对应油井生产情况。包括对应油井的生产层位、工作制度、日产油量、日××见水期等。 (6)特殊情况的说明和提示。注水井是否进行过压裂、×化、化堵等作业。用户对该井测井条件和施工方法有无特殊要求,井下特殊情况的提示等。

放射性同位素测井的应用探析

放射性同位素测井的应用探析 摘要:本文主要分析了放射性同位素测井的应用范围,除了在油藏动态检测中广泛应用外,其还向油田后期开发、剩余油研究、油藏数值模拟等研究方向发展。对同位素示踪法用于吸水剖面测试问题进行分析,探讨其形成的原因以便提升技术质量。 关键词:放射性同位素;测井;注水 1、放射性同位素测井应用 随着该技术的不断成熟和推广应用,其已经成为我国水驱油田注水剖面测井的主要监测手段。除了在油藏动态检测中广泛应用外,其还向油田后期开发、剩余油研究、油藏数值模拟等研究方向发展。其应用有如下几个方面: 1.1检查漏失、串槽井段,为封堵提供支持 由于固井质量差或者固井后由于射孔及其他施工使得水泥环破坏,则可造成层间串通形成串槽,进而对采油或注水造成严重影响。为了封堵管外的串槽和漏失点,应该先找到串槽井段,而放射性测井可以很好的提供这些信息。对于油层找串通常注入活化油,对于水层找串则相应注入活化水。通过测量注入前后伽马曲线并进行对比,若发生串槽,则除了注入层外,在曲线上必会有其它层段伽马曲线值相对于基线值显著增加,从而可以确定串槽井段,进而为封堵提供支持。 1.2检查封堵情况 串槽、油井中部分层段出水、误射孔等井段需要二次注水泥封堵,封堵效果可以用放射性同位素测井检查。先测一条伽马曲线作为基线参考,然后向封堵井段挤入加入放射性同位素的水泥,再次测量伽马曲线,通过比较两次测得的伽马曲线即可判断出封堵效果:若封堵层段因挤入活化水泥后曲线幅度明显变大则表明封堵良好,反之则说明封堵效果差。 1.3 检查酸化压裂效果 在低孔低渗储层中,常需要采用一定的措施才能提高油田的采收率和产能,现今压裂酸化就是最常用的方法。将放射性同位素加入压裂液中,将压裂液压入目的地层,测量压裂前后的两条伽马射线曲线,通过对比即可判断出压裂效果:若在压裂层段两条曲线具有明显的幅度差,则说明压裂效果明显,反之则说明压裂效果差,压裂液未被压进地层。 1.4 确定水泥面返回高度,判断固井质量

自然伽马能谱测井原理及其应用

班级资工11101班学号 201107964 姓名陈强

目录 自然伽马能谱测井原理 (3) 自然伽马能谱测井分析与应用 (5) 关于自然伽玛能谱的几点认识与总结 (9)

自然伽马能谱测井原理及其应用 The Principle and Application of Natural Gamma Ray Spectrometry Logging 1 自然伽马能谱测井原理 1.1 自然伽马能谱测井的理论基础 地层中存在的放射性核素,主要是天然放射性核素,这些核素又分放射系和非放射系的天然放射性核素。放射系为钍系、铀系和锕铀系,但锕铀系的头一个核素235U在自然界中的丰度很低,其放射性贡献甚微,不予考虑。非放射系的天然放射性核素如表1所列。从表中可见,主要是87Rb和40K,但是87Rb无伽马辐射。所以,在研究地层中的自然伽马能谱主要是238U、232Th放射系和40K放射的伽马射线能谱。

因为地层岩石的自然伽马射线主要是由铀系和钍系中的放射性核素及40K产生的。而铀系和钍系所发射的伽马射线是由许多种核素共同发射的伽马射线的总和,但每种核素所发射的伽马射线的能量和强度不同,因而伽马射线的能量分布是复杂的。而40K只能发射一种伽马射线,其能量1.46Mev的单能。如果我们把横座标表示为伽马射线的能量,纵座标表示为相应的该能量的伽马射线的强度。把这些粒子发射的伽马射线的能量画在座标系中,那么就得到了伽马射线的能量和强度的关系图,这个图称为自然伽马的能谱图。铀系和钍系在放射性平衡状态下系内核素的原子核数的比例关系是确定的,因此不同能量伽马的相对强度也是确定的,因此我们可以分别在这两个系中选出某种核素的特征核素伽马射线的能量来分别识别铀和钍。这种被选定的某种核素称为特征核素,它发射的伽射线的能量称为特征能量,在自然伽马能谱测井中,通常选用铀系中的214Bi发射的1.76MeV 的伽马射线来识别铀,选用钍系中的208Tl发射的2. 62MeV的伽马射线来识别钍,用1.46MeV的伽马射线来识别钾。当我们把伽马射线按我们所选定的特征能量分别计数,那么这就叫测谱。测谱测出的结果打印成数据表或绘成能谱图。因而将测得的自然伽马能谱转换成地层的铀、钍、钾的含量,并计录在磁带上或以连续测井曲线的形式输出,这就是自然伽马能谱测井。要用自然伽马能谱测井,必须满足两个条件:(1)地层岩石中必须存在具有7辐射的放射性核素,或者说,岩石中的放射性核素必须具有7辐射;(2)放射性核素在地层岩石中的分布必须具有特异性。

自然伽马能谱操作手册

自然伽马能谱(SL1318XA) 操作手册

一、仪器简介 1318XA能谱测井仪是一种自然伽马测井仪,能定量地辨别自然放射性的三种主要来源:钾(K)40、铀系核素和钍系核素。 基本能谱测井曲线为四条深度函数曲线,一条为总伽马射线强度(按API单位刻度),其余三条为地层中测得的钾(按百分比刻度)、铀(按ppm刻度)和钍(按ppm刻度)的浓度。还能得到这些曲线中任意两条的比值。 1318XA能谱测井仪可以使用单芯电缆或多芯电缆,可用150V D.C.或180V A.C.供电(马龙头电压)。 二、仪器技术指标 部件号:112226 仪器长度:7.0ft(2.13m) 外壳直径:3.63in(9.22cm),最大3.70in(9.398cm)。 重量:115LB(52.2Kg)。 最大耐压:20 000PSI(1406Kg/cm2或137.9MPa)。 电缆头供电电压:150V D.C.;45-50mA。 180V A.C.;45-50mA。 最大测速:10ft(3m)/min;(推荐值) 测量基准点:从后堵头尖端至探测器晶体 12in(30.48cm)。 缆芯用法:2,10-150V D.C.;(开关S1在D.C.处)。 4, 6-180V A.C.;(开关S1在A.C.处)。 7-信号输出。 10-地。 探测器: 型号:钠活化碘化铯晶体。 长度:12in(30.48cm)。 直径:2in(5.08cm)。 温度:400°F(持续4小时)。

三、仪器外形尺寸 仪器外形尺寸图 四、所需设备 1、9204信号恢复面板内的1、 2、3号插板。 2、1318XA能谱测井仪刻度筒。 五、信号流程 六、开关档位设置 9206面板:“7芯/临时/测试”开关置“7芯”档。 “测井/马达/扩展”开关置“测井”档。 “7芯/非标准/扩展Ⅲ”开关置“7芯”档。 “测井/模拟/扩展Ⅱ”开关置“测井”档。 9204面板:“INT/EXT”置“INT”。

同位素示踪法

同位素示踪法 放射性同位素的应用-同位素示踪法 同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie于1934年发现了人工放射性,以及其后生产方法的建立(加速器、反应堆等),为放射性同位素示踪法的更快的发展和广泛应用提供了基本的条件和有力的保障。 一、同位素示踪法基本原理和特点 同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质和生物学性质是相同的,只是具有不同的核物理性质。因此,就可以用同位素作为一种标记,制成含有同位素的标记化合物(如标记食物,药物和代谢物质等)代替相应的非标记化合物。利用放射性同位素不断地放出特征射线的核物理性质,就可以用核探测器随时追踪它在体内或体外的位置、数量及其转变等,稳定性同位素虽然不释放射线,但可以利用它与普通相应同位素的质量之差,通过质谱仪,气相层析仪,核磁共振等质量分析仪器来测定。放射性同位素和稳定性同位素都可作为示踪剂(tracer),但是,稳定性同位素作为示踪剂其灵敏度较低,可获得的种类少,价格较昂贵,其应用范围受到限制;而用放射性同位素作为示踪剂不仅灵敏度,测量方法简便易行,能准确地定量,准确地定位及符合所研究对象的生理条件等特点: 1.灵敏度高 放射性示踪法可测到10-14-10-18克水平,即可以从1015个非放射性原子中检出一个放射性原子。它比目前较敏感的重量分析天平要敏感108-107倍,而迄今最准确的化学分析法很难测定到10-12克水平。 2.方法简便 放射性测定不受其它非放射性物质的干扰,可以省略许多复杂的物质分离步骤,体内示踪时,可以利用某些放射性同位素释放出穿透力强的r射线,在体外测量而获得结果,这就大大简化了实验过程,做到非破坏性分析,随着液体闪烁计数的发展,14C和3H等发射软β射线的放射性同位素在医学及生物学实验中得到越来越广泛的应用。 3.定位定量准确 放射性同位素示踪法能准确定量地测定代谢物质的转移和转变,与某些形态学技术相结合(如病理组织切片技术,电子显微镜技术等),可以确定放射性示踪剂在组织器官中的定量分布,并且对组织器官的定位准确度可达细胞水平、亚细胞水平乃至分子水平。 4.符合生理条件 在放射性同位素实验中,所引用的放射性标记化合物的化学量是极微量的,它对体内原有的相应物质的重量改变是微不足道的,体内生理过程仍保持正常的平衡状态,获得的分析结果符合生理条件,更能反映客观存在的事物本质。放射性同位素示踪法的优点如上所述,但也存在一些缺陷,如从事放射性同位素工作的人员要受一定的专门训练,要具备相应的安全防护措施和条件,在目前个别元素(如氧、氮等)还没有合适的放射性同位素等等。在作示踪实验时,还必须注意到示踪剂的同位素效应和放射效应问题。所谓同位素效应是指放射性同位素(或是稳定性同位素)

相关文档
最新文档