颜料细化与彩色滤光片

颜料细化与彩色滤光片
颜料细化与彩色滤光片

颜料细化与彩色滤光片

颜料细化与彩色滤光片

1、综述

彩色滤光片(Color filter)是液晶显示器重要组成部件,液晶显示器能呈现彩色的影像,主要依靠彩色滤光片。背光源的白光透过液晶层,照射到彩色滤光片,通过彩色滤光片对应每个象素上的红、绿、蓝三色颜料光阻,形成红、绿、蓝光,最后在人眼中混合形成彩色影像。如图1-1所示。彩色滤光片在TFT—LCD显示面板中的成本比重较大,以15in面板材料成本来看,彩色滤光片占24%左右,是占面板成本比重最大的零组件。

由于用彩色滤光片实现彩色显示非常方便,而且三基色(R,G,B)彩膜在各自特定的光谱范围内具有比较理想的光谱透过率曲线,可获得相当高的色纯度和比较宽阔的彩色再现范围,因此,这种方式已成为液晶显示多色化或全色化的主要方式,尤其在便携式信息终端领域。可见,彩色滤光片的质量及其技术发展对液晶显示器的质量至关重要。

1.1彩色滤光片的性能

彩色层的材料和工艺决定了彩色滤光片的光谱特性、平整度及耐热、耐光和耐化学腐蚀性。对彩色滤光片性能的要求如下。

色纯度和透过率反映显示器件表现色彩的能力和范围。高色纯度和高透过率是TFT- LCD 显示色彩丰富逼真的高画质图象所必备的性能指标。构成彩色层的颜料和颜料光阻是影响色纯度和透过率的决定性因素。应尽可能选择谱峰比较尖锐的颜料,滤掉不必要的波长的光。R 、G 、B 三基色的透射光谱应适中,透射波长范围不能太窄、否则彩色层的透光度太低;透射波长范围也不能太宽、否则三基色光谱将发生重迭,使滤色层的彩色还原能力变差。因此,颜料及颜料光阻的合理选型很重要。

1.2颜料光阻

光阻剂(Photo Resist)是一种感光材料,广泛被使用在半导体及TFT—LCD面板生产线的微影制程;主要成分包括光阻颜料、树脂、溶剂及其他添加剂。

光阻剂有正负型之分,正型光阻分子键被光线照射后会断裂,因此暴露在光线照射的部分易溶于显影液中,一般被应用在TFT Array制程;而负型光阻的分子键,则会因为光线的照射而产生交联(Cross Link)而紧密结合,所以在黄光制程中,被光罩遮蔽的部分,分子间因没有产生交联作用,将被溶于显影液中洗去。目前在TFT产业中,应用于彩色滤光片的光阻属于负型光阻。

表1 颜料光阻的组成

1.3颜料细化

彩色滤光片品质的好坏主要取决于颜料光阻的性能及其涂布工艺。而颜料光阻成分主要包括颜料、连接料和填料等。光阻颜料作为着色剂,其以粒子的形式分散于颜料光阻中,为充分发挥其着色力和鲜艳性,并取得良好的光谱特性,必须尽可能的使颜料粒子呈微细、均匀、稳定的状态分散于颜料光阻中。

颜料的各种应用性能不仅取决于分子内在的化学结构,更多地是与颜料粒子的大小、粒径分布、粒子形状、比表面积、表面的极性、粒子的聚集状态、化学特性有着十分密切的关系,并将直接影响颜料的最终应用性能,如色饱和度、色纯度、透过率、耐久性和耐热性等。因此,为了充分发挥颜料的着色性和鲜艳度,颜料在光阻中的粒径必须足够小,且要求粒度分布均匀、分布带窄。由于颜料平均粒径的降低可导致着色强度的增加,因此着色力在很大程度上取决于颜料的分散水平。

目前国内颜料的主要问题是粒度较大,且粒径分布太宽、无法保证TFT-LCD彩色滤光膜的光谱特性、平整度及各种理化特性(如抗热、抗光、抗化学腐蚀)等基本特征。颜料细化的目的是改进颜料的表面特性及分散性、润湿性以及与介质的兼容性。

2、颜料细化工艺研究

2.1颜料粒径与其性能的关系

1)有机颜料粒径与着色强度、色光的关系

颜料的平均粒径降低可导致其着色强度的增加,即着色力在很大程度上取决于颜料的分散水平,着色强度不仅与粒径大小有直接依赖关系,也与颗粒的形状有关,通常成薄片状或细长的粒子能够好地吸收光线,显示较高的摩尔消光系数,反之如成厚层的聚集粒子,不利于对光线的吸收。

2)有机颜料粒径与透明性的关系

有机颜料的透明性对于一些特定用途是十分重要的。有机颜料粒径大小是影响其透明性的重要因素,当颜料粒径大小为光线波长的一半时,即颜料颗粒直径为200~500nm时,对光的散射能力最强,可导致遮盖力高的非透明性,而当颜料分散体的平均粒径小于此数值时则成透明性,着色力也高。

3)有机颜料粒径与耐候性、耐溶剂性能的关系

颜料在光照之下褪色过程属于气固非均相反应,其反应速度主要与化学结构有关,但也与颜料粒子大小,即与其比表面积有关,通常比表面积大,其耐候性牢度较差。粒径越小、溶解度越大,导致耐溶剂性越差。

4)有机颜料粒径与光泽度的关系

颜料粒径的大小对涂层膜的光泽度也有一定的影响,但光泽度与每个颜料的平均粒径不存在直接关系。

2.2颜料细化

颜色鲜艳、着色强度高的优质颜料都具有分散好、粒径小、分散后的颗粒长期稳定等特点。颜料细化要经过润湿、分散和稳定三个过程。

1)颜料润湿

颜料分散首先要进行润湿。润湿过程使用润湿剂(表面处理剂)润湿、包覆颜料表面。颜料和润湿剂接触时,接触角小,润湿剂吸附在颜料周围,然后渐渐渗透至颜料颗粒之间的孔隙,因而减低了颜料颗粒之间的吸引力,降低了破碎颜料团聚体所需的能量,使颜料容易分散细化。

图1 颜料润湿

2)颜料分散

颜料的分散是将团聚体颗粒破碎,它主要依靠颜料颗粒之间的自由运动(冲击应力)和颜料团聚体通过周围介质的应力(剪切应力)来完成。分散过程十分复杂,与众多参数有关:

1)分散剂的类型和比例;

2)分散工艺的确定,包括预分散工艺和研磨工艺;

3)能量输入的高低;

4)研磨过程中剪切力的大小,主要因素是研磨速度;

5)研磨介质;

6)温度的高低。

图2 颜料分散

3)颜料细化后的稳定化

由于颜料经分散细分后,粒径减小、比表面积增大,颜料表面自由能增加,造成细化后的颜料不稳定,所以当机械研磨后,如不做处理,颜料粒会再凝集起来。为此,在颜料研磨后形成新的表面时,在其表面应吸附一层包覆层,使颜料的表面能降低,当带有包覆层颜料的结合体再度碰撞就不会凝聚起来。

3、小结

在彩色滤光片的生产中,光阻剂是其重要的原材料,而颜料在光阻剂中作为着色剂,为充分发挥其着色力和鲜艳性,并取得良好的光谱特性,因此必须使颜料粒子呈微细、均匀、稳定的状态分散于颜料光阻中。

颜料细化后获得的颜料分散体系性能优劣将对颜料光阻的光泽度、透明性、相容性、流平行以及着色强度产生直接的影响,同时良好的颜料分散体系还可以减少VOC。因此,在颜料细化过程中控制良好的细化工艺不仅直接影响到成本、产品性能和稳定性、甚至还能降低VOC,保护环境。

液晶知识扫盲系列4:彩色滤光片(color filter)

液晶知识扫盲系列4:彩色滤光片(color filter) 一,什么是color filter? 彩色滤光片(Color filter)是一种表现颜色的光学滤光片,它可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段。彩色滤光片通常安装在光源的前方,使人眼可以接收到饱和的某个颜色光线。有红外滤光片,绿色,蓝色等。与UV滤光片,VD滤光片相比,凡是带色的滤光片之总称。如反差滤光片、分色用滤光片、LB滤光片等。 LCD上的color filter一般采用R(red 红),G(green 绿),B(blue蓝) 彩色滤光片来控制色彩的显示。要了解他控制颜色的原理,先要了解TFT-color filter的结构及组成,才能明白它是如何可以在LCD上显示出我们需要的图像的。 二,color filter的结构 彩色滤光片基本结构是由玻璃基板(Glass Substrate),黑色矩阵(Black Matrix),彩色层(Color Layer),保护层(Over Coat),ITO导电膜组成。一般穿透式TFT用彩色光片结构如下图。 首先,如果我们使用高倍的放大镜观察color filter, 可以看到如下所示,是由每一个很少的RGB小点构成,我们把每一个绿色的,红色或蓝色的小点称之为sub-pixel. 每一个RGB的组合称之为pixel. 而旁边黑色的部分,我们就称之为black matrix(黑色矩阵)。为什么我们要使用RGB颜色?这是利用三基色混色原理,自然界中的任何颜色可由RGB三种色彩通过不同的比例混合而成。 Color filter 平面图 理解了它们能够显示任何我们想要的颜色之外,我们再看看他是如何显示的。如下图,是液晶面板的结构图。大致可以分为两部:(1)提供光源的Back light unit(背光源,详细介绍请参考上期介绍)。(2)液晶面板(液晶面板可以简单的看是color filter 和TFT中间夹着液晶而成)。 详细的结构剖面图如下

颜料细化与彩色滤光片

颜料细化与彩色滤光片 颜料细化与彩色滤光片 1、综述 彩色滤光片(Color filter)是液晶显示器重要组成部件,液晶显示器能呈现彩色的影像,主要依靠彩色滤光片。背光源的白光透过液晶层,照射到彩色滤光片,通过彩色滤光片对应每个象素上的红、绿、蓝三色颜料光阻,形成红、绿、蓝光,最后在人眼中混合形成彩色影像。如图1-1所示。彩色滤光片在TFT—LCD显示面板中的成本比重较大,以15in面板材料成本来看,彩色滤光片占24%左右,是占面板成本比重最大的零组件。 由于用彩色滤光片实现彩色显示非常方便,而且三基色(R,G,B)彩膜在各自特定的光谱范围内具有比较理想的光谱透过率曲线,可获得相当高的色纯度和比较宽阔的彩色再现范围,因此,这种方式已成为液晶显示多色化或全色化的主要方式,尤其在便携式信息终端领域。可见,彩色滤光片的质量及其技术发展对液晶显示器的质量至关重要。 1.1彩色滤光片的性能 彩色层的材料和工艺决定了彩色滤光片的光谱特性、平整度及耐热、耐光和耐化学腐蚀性。对彩色滤光片性能的要求如下。 色纯度和透过率反映显示器件表现色彩的能力和范围。高色纯度和高透过率是TFT- LCD 显示色彩丰富逼真的高画质图象所必备的性能指标。构成彩色层的颜料和颜料光阻是影响色纯度和透过率的决定性因素。应尽可能选择谱峰比较尖锐的颜料,滤掉不必要的波长的光。R 、G 、B 三基色的透射光谱应适中,透射波长范围不能太窄、否则彩色层的透光度太低;透射波长范围也不能太宽、否则三基色光谱将发生重迭,使滤色层的彩色还原能力变差。因此,颜料及颜料光阻的合理选型很重要。 1.2颜料光阻 光阻剂(Photo Resist)是一种感光材料,广泛被使用在半导体及TFT—LCD面板生产线的微影制程;主要成分包括光阻颜料、树脂、溶剂及其他添加剂。 光阻剂有正负型之分,正型光阻分子键被光线照射后会断裂,因此暴露在光线照射的部分易溶于显影液中,一般被应用在TFT Array制程;而负型光阻的分子键,则会因为光线的照射而产生交联(Cross Link)而紧密结合,所以在黄光制程中,被光罩遮蔽的部分,分子间因没有产生交联作用,将被溶于显影液中洗去。目前在TFT产业中,应用于彩色滤光片的光阻属于负型光阻。 表1 颜料光阻的组成 1.3颜料细化

滤光片

什么是OLPF光学低通滤光片 OLPF 全名是Optical lowpass filter,即 光学低通滤光片,主要工作用来过滤输 入光线中不同频率波长光讯号,以传送 至CCD,并且避免不同频率讯号干扰到 CCD对色彩的判读。OLPF对于假色 (false colors)的控制上有显著的影响, 假色的产生主要来自于密接条纹、栅栏 或是同心圆等主体影像,色彩相近却不 相同,当光线穿过镜头抵达CCD时,由 于分色马赛克滤光片仅能分辨25%的红 与蓝色以及50%的绿色,再经由色彩处 理引擎运用数据差值运算整合为完整 的影像。 因为先天上色彩资料短缺,CCD根本无法判断密接条纹相邻色彩的参数,终于导致引擎判断错误输出错误的颜色。由于细条纹的方向不同,需用相对应角度的光学低通滤波晶片加以消除,又因为不同型号的CCD摄像机与CMOS 图象传感器在规格上有些差异,为针对不同的型号及同时兼顾不同方向所产生的干扰杂音,需用不同厚度、片数、角度组合的OLPF的设计,以提高取象品质。 IR-CUT双滤光片切换的作用 IR-CUT双滤光片的使用可以有效解决双峰滤光片产生问题。IR-CUT双滤光片由一个红外截止滤光片和一个全光谱光学玻璃构成,当白天的光线充分时红外截止滤光片工作,CCD还原出真实彩色,当夜间光线不足时,红外截止滤光片自动移开,全光谱光学玻璃开始工作,使CCD充分利用到所有光线,从而大大提高了低照性能。 IR CUT双滤光片专为CCD摄影机修正偏色、失焦的问题,促使撷取影像画面不失焦、不偏色,红外夜视更通透,解决红外一体机,日夜图像偏色影响,能够过滤强光让画面色彩纯美更柔和、达到人眼视觉色彩一致。 普通日夜型摄象机使用能透过一定比例红外光线的双峰滤片,其优点是成本低廉,但由于自然光线中含有较多的红外成份,当其进入CCD后会干扰色彩还原,比如绿色植物变得灰白,红色衣服变成灰绿色等等(有阳光室外环境尤其明显)。在夜间由于双峰滤光片的过滤作用,使CCD不能充分利用所有光线,其低照性能难以令人满意。

液晶知识扫盲系列彩色滤光片colorfilter

液晶知识扫盲系列彩色滤光片c o l o r f i l t e r The following text is amended on 12 November 2020.

液晶知识扫盲系列4:彩色滤光片(color filter) 一,什么是color filter 彩色滤光片(Color filter)是一种表现颜色的光学滤光片,它可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段。彩色滤光片通常安装在光源的前方,使人眼可以接收到饱和的某个颜色光线。有红外滤光片,绿色,蓝色等。与UV滤光片,VD滤光片相比,凡是带色的滤光片之总称。如反差滤光片、分色用滤光片、LB滤光片等。 LCD上的color filter一般采用R(red 红),G(green 绿),B(blue蓝) 彩色滤光片来控制色彩的显示。要了解他控制颜色的原理,先要了解TFT-color filter的结 构及组成,才能明白它是如何可以在LCD上显示出我们需要的图像的。 二,color filter的结构 彩色滤光片基本结构是由玻璃基板(Glass Substrate),黑色矩阵(Black Matrix),彩色层(Color Layer),保护层(Over Coat),ITO导电膜组成。一般穿透式TFT用彩色光片结构如下图。 首先,如果我们使用高倍的放大镜观察color filter, 可以看到如下所示,是由每一个很少的RGB小点构成,我们把每一个绿色的,红色或蓝色的小点称之为sub-pixel. 每一个RGB的组合称之为pixel. 而旁边黑色的部分,我们就称之为black matrix(黑色矩阵)。为什么我们要使用RGB颜色这是利用三基色混色原理,自然界中的任何颜色可由RGB三种色彩通过不同的比例混合而成。 Color filter 平面图 理解了它们能够显示任何我们想要的颜色之外,我们再看看他是如何显示的。如下图,是液晶面板的结构图。大致可以分为两部:(1)提供光源的Back light unit(背光源,详细介绍请参考上期介绍)。(2)液晶面板(液晶面板可以简单的看 是color filter 和TFT中间夹着液晶而成)。 详细的结构剖面图如下 Color filter 剖面图 Panel 结构图 三,color filter的显示原理 我们顺着光的路线走,就能明白液晶的显示原理及color filter在LCD显示中的作 用了。 首先,背光源发出我们要的特定色域的光(色坐标的知识后续再讲),光通过下偏光片,把光处理成统一方向的偏向光(与上偏光片偏向相差90度)。光透过ITO (Indium Tin Oxide 氧化铟锡,是一种用在LCD制程上的透明电极,主要利用其可 以导电又能透光的特性),光透过下玻璃基板(用来固定TFT用,也就是TFT是生成在下玻璃基板上的),再透过TFT,TFT是具有开关作用的,类似于每个小窗子。每 个小窗子对应每个color filter的sub-pixel,这里TFT开关的作用,就是用来显示我们需要的图像的,根据电路控制,需要显示的,窗子打开,不需显示的,窗子关闭。光再通过液晶(重点理解,实际上窗子的打开与半闭,实际是控制液晶分子是否发生偏转)偏转传递的方式,光再透过ITO(上下两层ITO就是为了制控TFT的并关用的)传到color filter并透过它,有光透过的地方,就显示该种颜色,光再透过 上玻璃基板(同TFT的基板一样,上琉璃基板是用来固定color filter用的)。然

彩色滤光片RGB漏光不良工艺改善探究

彩色滤光片RGB漏光不良工艺改善探究 针对高清晰液晶显示器制作所需的高开口率彩色滤光片制作过程中出现的RGB漏光不良进行工艺改善探究。实验验证了Align Tolerance、PCP温度及Overlay补正等改善方法对产品的影响情况,同时结合成本及对实际生产的影响进行比较,成功导入最合适的PCP温度、新的Overlay补正方案,降低了高开口率产品的漏光不良发生率。 标签:彩色滤光片;漏光不良;工艺改善 Abstract:In view of the poor RGB leakage caused by the fabrication of high aperture color filters in the production of high-definition liquid crystal display (LCD),process improvement is explored. The experiment verified the effect of Align Tolerance,PCP temperature and Overlay correction on the product. At the same time,compared with the cost and the effect on the actual production,the most suitable PCP was introduced. The temperature and the new Overlay correction scheme have reduced the incidence of poor leakage of products with high opening rate. Keywords:color filter;bad light leakage;process improvement 引言 随着高清晰,高透过率产品技术的发展,液晶面板的关键组件彩色滤光片制作工艺中BM线宽需要更窄,开口率需要更高,阵列基板与彩色滤光片基板对位成盒时所需的精度也越来越高,极易出现对位偏差,而对位偏差又会导致漏光不良。实际生产中不同时间建立的TFT-LCD生产线的设备精度均有差异,因此,在现有生产线设备精度的基础上对彩色滤光片的RGB工艺图形位置和精度的改善研究对控制漏光不良发生及适应高开口率产品的导入具有重要意义。本文从RGB工艺制作过程控制角度,在现有设备精度和开发工艺的基础上探讨如何减少漏光不良的发生。 1 漏光不良及工艺管控 1.1 不良现象 如图1,2所示,分别为三种亚像素透射光下漏光现象,多数情况下漏光是对应亚像素向Overlap方向偏移,不良在成盒工序完成后会形成规则的亮点或亮线。 1.2 漏光不良工艺管控 为保证不同layer位置精度,设计引入Overlay Mark 作为过程监控标志。如图3所示(差异放大20000倍示意图),采用6shot 曝光时,color Pattern和BM

窄带滤光片设计报告

窄带滤光片设计报告 综述: 窄带滤光片是一种带通滤波器,它利用电解质和金属多层膜的干涉作用,可以从入射光中选取特定的波长,窄带滤光片的带通一般比较短,通常为中心波长的5%以下。干涉滤光片是由两块内表面镀有高反射膜(介质或金属膜)的相互平行的高平面度玻璃板或石英板组成,在内表面之间形成多次反射以产生多光束之间的干涉。其作用是让光源中某一窄带光谱的光波以尽可能高的透射率通过,而使其他光谱范围的光波衰减,以获得单色性良好的准单色光。窄带滤光片可代替如光栅那样的昂贵的分光器件,广泛应用于光学实践和工业领域。 设计内容: 窄带滤光片的设计与制作 窄带滤光片工作原理:多光束干涉 由多光束干涉中光程差公式 当相干光束数目很大时,只有确定的n 、d 、i 值,光源中只有严格满足上述公式的波长才能够基本无衰减的通过,微小的偏差使上述条件的波长成分将由于近似相消而衰减,从而实现窄带滤波。 设计要求: 入射介质0n =1;出射介质g n =1.52;入射角0θ=?0;中心波长λπ?i n d M sin 42 20=-=?

=450(亦即参考波长),中心波长透过率大于95%,透射光谱的半0 宽度小于45nm。使用n H=2.26(TiO2), n L=1.45(Al3O2)。 膜系设计: H L H H H H L H 软件模拟效果: 模拟数据: 中心波长:450nm 半波宽度:43nm 中心透过率:95.23%

窄带滤光片的制备过程: 1.清洗镀膜机,安装监控片,将待蒸发的薄膜材料放入蒸发容器 中; 2.清洗玻璃基片,由于设计要求不高,镜片只用酒精进行擦拭。 3.根据膜系设计的结果将设计参数置入镀膜机的控制系统;然后在控制系统的监控下镀膜机镀膜机全自动镀制干涉滤光片。 但是由于在实验过程中机器出现故障,所以临时决定使用溅射的方法来进行镀膜, 在镀膜之前算好每层膜所需要的时间,然后人为的对仪器镀膜时间进行控制,由于我们初次接触,这样的工作由一位博士生学长进行,并在镀膜的同时为我们讲解相关知识。 窄带滤光片实测数据: 中心波长:422nm 半波宽度:57nm 中心透过率:67.14% 误差分析: 1.中心波长向左漂移28nm : 根据公式 2λ =nd ,由于间隔层的光学厚度较小,导致中心波长减小即向左漂移。其造成误差因素包括两个:①使用的镀膜金属中含有杂质,导致其折射率降低,影响了光学薄膜的光学厚度。②镀膜时间计算不准确或在镀膜时,没有掌握好镀膜时间,导致膜厚度较窄,降低了光学厚度。

彩色滤光片品质检测方法

彩色滤光片品质检测方法 在LCD的材料中,彩色滤光片(Color Filter;CF)占有相当重要的比例,也因为彩色滤光片的重要性,所以我们必须对于彩色滤光片的生产品质体系有更进一步的了解,以能共同投注心力将其品质更向上提升。 有关彩色滤光片的品管方式:一是彩色滤光片生产工厂品质体系;另一是说明彩色滤光片的品质检查项目与检查方法。 CF生产工厂品质体系 对于品质确认,一般而言可分为四个种类:试作开发,生产,QC检查,及受入检查,如(表一)所示。 在试作开发阶段,品质着重在设计上的评价是否满足原先预期,并尽可能地进行一些试验,以确保将来进入生产后不会发生过于意想不到的疏失。 在生产端,基本上处理生产过程中的品质,是借着工程检查及早发现问题,及时解决,出货前的检查是以与客户协议的规格作最后品质的确认。

在QC的立场而言,必须是有一只脚踏在客户那一边,因此,必须针对产品生产过程作详尽而周延的检查,包括:每批定期抽检来检核工程检查是否确实;对出货产品的抽验也是为了确定生产本身没有因为生产压力而放水;性能检查则是为保障客户的规格有忠实地被满足。 接下来,QC必须以自身公司的立场进行对产品的信赖性检查,以便能向客户保证产品的可靠度。当客户端发现产品有问题时,QC需尽速了解问题,分析产品失效故障的原因,回馈到生产,甚至到设计部门,以确保公司品质的信誉。另外,在客户端也会依据双方订定的规格进行必要项目的全检与抽验工作,确认产品品质OK,以确保其自身的权益。 品质检查项目与检查方法彩色滤光片规格包含:玻璃基板,BM材质性能,彩色滤光膜材质性能,O/C材质性能,ITO材质性能,信赖性测试,检查报告,及品管Issue(抽验方式)。对于彩色滤光片的品质,LCD厂一般是以彩色滤光片厂所提供之检测专用样品(不包含于出货数量中)做各项检测。 另外,由于彩色滤光片占LCD之成本很高,因此LCD厂也会不定期至彩色滤光片厂去查看,进行品质稽核,以了解彩色滤光片之制程状况是否有变化,作法一般是对照彩色滤光片工厂提出的QC工程图。正常来说,LCD厂所配合之彩色滤光片厂是不轻易更换的,其原因

ICR滤光片切换原理

影像传感器对成像效果起着至关重要的作用,像素越高,影像传感器内部集成的感光电极也越多,同时我们也应该想到提升像素势必要涉及到制造成本,每提高一个等级,数码相机的价格都要高出一截,而且提升到一定程度后,CCD传感器由于制造工艺的限制,短时间内很难再有所突破。 目前主流的DSLR机型使用的CCD最多为600万像素左右,即使现在索尼生产出了700万、800万像素的CCD,但想要将其安置在DSLR机身内的话,最终效果只能是与预期效果背道而驰不合实际。而CMOS传感器却高达1600万像素以上。 CMOS的成像原理 CMOS可细分为被动式像素传感器(PassivePixelSensorCMOS)与主动式像素传感器(ActivePixelSensorCMOS)。它原本是计算机系统内一种重要的芯片,保存了系统引导最基本的资料。可是有人偶然间发现,将CMOS加工也可以作为数码相机中的影像传感器,紧跟着就由XirLink公司于1999年首次推向市场,2000年5月,美国Omnivision 公司又推出了新一代的CMOS芯片。 CMOS最初曾被尝试使用在数码相机上,但与当时如日中天的CCD相比信噪比差,敏感度不够,所以没能占居主流位置。当然它也具备多种优点,普通CCD必须使用3 个以上的电源电压,可是CMOS在单一电源下就可以运作,与CCD产品相比同像素级耗电量小。另外CMOS是标准工艺制程,可利用现有的半导体制造流水线,不需额外投资生产设备,并且品质可随半导体技术的进步而提升,这点正是今年索尼IRCUT双滤光片对视频成像技术的影响文/彭中能够在很短时间内开发制造出CMOS芯片的原因。 从技术角度分析成像原理,核心结构上每单位像素点由一个感光电极、一个电信号转换单元、一个信号传输晶体管,以及一个信号放大器所组成。理论上CMOS感受到的光线经光电转换后使电极带上负电和正电,这两个互补效应所产生的电信号(电流或者

彩色滤光片简介

彩色濾光片簡介 彩色化之關鍵零組件 彩色濾光片(Color filter)為液晶平面顯示器(Liquid Crystal Display)彩色化之關鍵零組件。液晶平面顯示器為非主動發光之元件,其色彩之顯示必需透過內部的背光模組(穿透型LCD)或外部的環境入射光(反射型或半穿透型LCD)提供光源,再搭配驅動IC(Drive IC)與液晶(Liquid Crystal)控制形成灰階顯示(Gray Scale),而後透過彩色濾光片的R,G,B彩色層提供色相(Chromacity),形成彩色顯示畫面。 基本結構 彩色濾光片基本結構是由玻璃基板(Glass Substrate),黑色矩陣(Black Matrix),彩色層(Color Layer),保護層(Over Coat),ITO導電膜組成。一般穿透式TFT用彩色光片結構如下圖。 圖一TFT彩色濾光片之結構 顏料分散法 彩色濾光片生產歷史中曾出現印刷法、染色法、染料分散法、電著法、乾膜法等等,但目前最主流的量產方式為顏料分散法(Pigment Dispersed Method),其中顏料分散型彩色光阻(Pigment Dispersed Color Resist,PDCR)為形成彩色層之原材料。 彩色濾光片之製造流程 顏料分散法之彩色層形成類似半導體的黃光微影製程,首先將顏料分散型彩

色光阻塗佈於已形成黑色矩陣的玻璃基板上,經軟烤(Pre-bake),曝光對準(Aligned),顯影(Developed),光阻剝離(Stripping),硬烤(Post-bake)重覆此流程三次形成R,G,B 之三色圖形(Pattern)。 顏料分散法之彩色濾光片之製造流程如下。 圖二顏料分散型彩色濾光片製造流程 畫素設計排列 Pattern圖形是由曝光對準製程中之光罩(Photo Mask)而來,一般皆是由面板廠(Panel)指定,提供設計圖樣。Pattern上之紅、綠、藍(R,G,B)畫素(Pixel)排列方式並不一定,可為馬賽克式、直條式、三角形式、四畫素等方式排列,主要是依顯示器之用途及視訊電極(Pixel Electrode)之形狀和大小而定。一般而言如要顯示AV動態畫面需採用如馬賽克式之不規則設計,如較常顯示文字畫面,如Note book,則採用直條式之設計。 (一)馬賽克式(二)直條式(三)三角形式(四)四畫素

滤光片的制程与发展

彩色滤光片的制程与发展 随着彩色显示的快速发展,LCD的彩色化无可逆转。据市场调查机构iSuppli公司的统计,到2010年,LCD彩色化比率将高达94%。彩色滤光片(color filter,简称CF)作为LCD实现彩色显示的关键零部件,其性能(主要为开口率、色纯度、色差)直接影响到液晶面板的色彩还原性、亮度、对比度。而彩色滤光片的成本也占了液晶面板总成本的25 %。根据FPDisplay预测,2005-2009年全球CF产值将以年复合增长率12.37%持续成长。台湾地区2006年的彩色滤光片产业产值约新台币923.2亿元,比前一年成长23.3%。 彩色滤光片的基本结构主要为玻璃基板、BM(黑矩阵)、彩色光阻、保护层(OC)、ITO、spacer(图1)。彩色滤光片的传统制程主要有染色法(Dyeing Method)、颜料分散法(Pigment Dispersed Method)、电沉积法(Electro Deposition Method)、印刷法(Printing Method),其中以颜料分散法为主。目前很多公司也开发出了许多具有实际生产应用价值的新方法,尤其是在大尺寸彩色滤光片的生产上,比如DuPont的热多层技术(Thermal multi-layer tech.)、凸版印刷(Toppan)的反转印刷法(Reverse printing method)和大日本印刷(DNP)的喷墨打印法(Ink Jet printing)。其中,大日本印刷已经在其6代线以上采用了喷墨打印法。另外,根据结构设计的不同,彩色滤光片的新类型还有COA型、半透半反型等。 1 传统的彩色滤光片制程方法 传统方法的四种制程,如图2所示。 染色法使用染料作为着色剂,可用明胶或压克力树脂作为树脂材料。其制程主要有涂布、曝光显影、染色固化,利用该制程在BM已经图案化的玻璃基板上分三次分别制备的R、G、B三色光阻。染色法制得的CF价格便宜,色彩鲜艳,透过率高,但是耐热耐光性差,不适合高档LCD。电沉积法的树脂主要是聚酯,以颜料为着色剂。电沉积法先通过曝光显影得到图案化的ITO,然后在ITO上分别沉积R、G、B三色光阻,然后再通过涂布、曝光、显影得到BM。电沉积法制备彩色光阻只需曝光显影一次,但在成本上不占有优势。颜料分散法以颜料为着色剂,压克力为树脂树脂。其主要制程为涂布、曝光、显影,制备R、G、B三色光阻需要经过三次该制程。颜料分散法工艺相对简单,耐候性好,目前中小尺寸的彩色滤光片绝大部分采用该方法。印刷法的树脂为环氧树脂,以颜料为着色剂。其主要制程滚筒颜料附着、印刷,在BM已经图案化的玻璃基板上制得彩色光阻。印刷法制程简单,但精度不高。 除以上所述的四种方法外,还有染料分散法、颜料刻蚀法,但都因工艺复杂、成本较高,很少使用。 2 大尺寸彩色滤光片的制程新方法 随着液晶面板的不断增大,原有的传统CF制程都显得力不从心,新的制程方法也应运而生。其中主要有DuPont 的热多层技术(Thermal multi-layer tech.)、凸版印刷(Toppan)的反转印刷法(Reverse printing method)和大日本印刷(DNP)的喷墨打印法(Ink Jet printing)。 2.1 热多层技术 热多层技术是杜邦公司的独创发明,其通过激光定向加热Donor film层,使Donor film层中的颜料层脱落并转印在基板上,从而得到所需的彩色光阻。目前杜邦已经能够制备G 8的设备。

LCD彩色滤光片行业调查报告

LCD显示面板市场调研 侯朝昭 U201011317 摘要:LCD显示技术是21世纪的重要显示技术,而彩色滤光片作为LCD面板的重要组成部件,在LCD产业链中占有一定的主导地位,而中国在彩色滤光片的生产水平方面与日本、韩国等有很大差距。本文在介绍液晶显示器的重要组成部件彩色滤光片结构及制造原理的基础上,概述了目前中国大陆及世界其他国家在LCD及LCD的组成部件彩色滤光片方面的产业发展状况,并对如何发展中国液晶显示面板上游产业,尤其是如何打破垄断,自制彩色滤光片提出了针对性意见。 关键字:LCD;彩色滤光片;受制于人;打破垄断 一、LCD行业发展现状概述 目前CRT显示技术已经相当成熟,要想在技术上和显示效果上有所突破已经相当困难,在这种情况下,唯有下一代显示技术的主流—LCD(液晶)显示技术获得了极大的发展,随着LCD显示技术的成熟以及产品价格的下降,LCD已成为显示器和电视机市场成长最快的产品[1]。 表1所列世界最大15家电视厂商中,中国大陆虽有6家厂商名列其中,但其规模都偏小,其中最大的TCL公司2012年市占率仅为5.8%,不敌日本的Sony 和东芝,更谈不上韩国三星和LG,中国6家厂商的合计市占率23.8%,也仅比三星一家高近4个百分点,以这样的规模和分散程度去参与世界竞争自当不易,与本土的巨大市场也很不相称。 表1 世界各大液晶生产厂商

随着近年多条TFT-LCD高世代生产线的相继投产,我国平板显示产业整体呈现出高速、良性的发展态势,2012年产业规模达700多亿元。我国在全球市场的占有率提升到11.2%,国内液晶面板的自给率大幅提高,其中电视面板的自给率达到30%,手机面板已能满足境内企业50%的需求[2]。 如此巨大的投资必将极大地拉动产业链上游的巨大需求,带动基板玻璃、液晶材料、偏光片、彩色滤光片、光学薄膜、触摸屏、背光源等相关原材料、元器件及相关设备等上游产业的发展。据测算,2016年之后,我国TFT-LCD产业每年至少需要液晶材料250吨、1.0亿平方米基板玻璃(含彩膜用玻璃)、1.0亿平方米偏光片、5000万平方米彩色滤光片、十几亿平方米光学薄膜、几亿背光源组件以及数以亿计的驱动IC等,其总价值将接近千亿元[2]。 从产业结构上来看,液晶显示产业可以分为上游基本材料制造、中游液晶面板制造及液晶模组、下游的各种光电显示产品。在上游产业众多材料制备的工业要求很高,基本上由日本企业和少数的美韩企业所垄断。中游产业包括液晶面板的制造、模组组装等,其中面板生产基本由日、韩、中国台湾地区所瓜分,由于模组生产对技术要求不高,现阶段许多企业逐步向大陆沿海,例如厦门、上海、深圳等城市转移。下游产业为终端显示产品相关的制造产业,包括各式家电、信息通讯等消费类产品,当前主要集中在中国大陆,或正在大量向中国大陆的相关城市转移[3]。 整体而言,我国液晶面板的上游配套产业起步要更晚一些。至今我们还没能建成完整的上游配套产业。从某种意义上讲,建立一个完整的上游配套工业体系要比建设几条高世代器件生产线更艰巨、更复杂。中国现在还只是刚刚起步,还有很长的路要走。 二、彩色滤光片的市场调研情况 根据最近的走访调研,我参观了苏宁电器、国美电器等电器商场,发现液晶电视的主要品牌如下:三星SAMSUNG、索尼SONY、夏普、LG、飞利浦Philips、海信Hisense、TCL、创维Skyworth、长虹、康佳、东芝等。其中4K超清电视最为流行,以三星的显示效果为最佳。如今的液晶显示已经进入4K时代。 而彩色滤光片是液晶显示器中的三大关键件之一,要想发展TFT-LCD产业,彩色滤光片技术是必须掌握的关键技术。

滤光片常见问题

滤光片常见问题FAQ 1、购买滤光片时能否通过X,Y,Z色坐标选型? 答:可以,通常滤光片是直接通过燃料、荧光素或波长来选型的,也有客户直接通过波长来选型,但我们也支持通过XYZ色坐标选型。 2、是否有匹配现有显微镜的滤光片和盒子?是否能够根据目前滤光片上的型号下单? 答:Chroma滤光片都设计了针对各种显微镜的尺寸,能否满足各个显微镜厂家的需求。用户可以根据在用样品上的型号下单,可以在标准型号中选择相同或最接近的滤光片型号。 3、如果购一整套滤光片和滤光片块盒或滑块是否有优惠? 答:如果购买一整套滤光片就会直接享受相应的折扣优惠,滤光片盒子或滑块和滤光片是分别计价的,购买整套滤光片和滤光片盒子也有相应的折扣。 4、标准的滤光片(二向色镜)的尺寸是什么? 答:对于滤光片,没有标准尺寸这一说。不过比较普遍的尺寸是25mm直径的圆形,另外比较常用的尺寸有25.5x36mm 和26x38mm。滤光片的尺寸定制非常方便。 5、我在搜索某一种荧光素(FITC)时,发现有D型滤光片,HQ型滤光片和ET系列滤光片三个选项,他们之间有什么异同? 答:这三组滤光片都是专门针对FITC燃料的方案,D系列滤光片和HQ系列滤光片光谱看起来比较接近,差别在于HQ滤光片的边缘更加陡直,在使用时可以选择波长差更接近的滤光片组合。ET系列滤光片不仅具有非常陡直的过渡区,而且具有95%~98%的透过率,远远好于D和HQ系列。

6、激发和发射滤光片波长和波长范围的选取原则是什么?激发和发射滤光片的投射光谱可以只相差10nm 吗? 答:激发和发射滤光片组合的选择不是取决于透射光谱,而是取决于光密度谱线(表示对光线的阻挡)。宽场光源要求两个滤光片焦点OD>5,而激光光源一般则要求OD>6。 7、为什么光密度值(OD值)如此重要? 答:如果激光滤光片和发射滤光片的波段匹配不好,则会导致部分激光光透过发射滤光片。轻者导致信噪比降低,荧光收到激发光源的强烈干扰,重则会损伤人眼或损坏探测器。激光光的强度往往是荧光的数量级倍数,因此需要表示光密度衰减的OD来评估。 8、如果我的荧光滤光片看起来已经有一点损坏怎么办? 答:有些滤光片太接近光源容易导致损伤。我们建议使用一种KG1红外吸收肖特玻璃,放在滤光片和光源之间就能有效保护滤光片。 9、二向色镜的反射波段和透射波段相差多少nm? 答:二向色镜一般是45°入射,一般反射波段和透射波段相差10~30nm。 10、Chroma有多少种滤光片型号? 答:Chroma到目前为止已经有超过12000种滤光片型号,但这些型号并不是都挂在网上,网站列出的只是部分最常用的型号。如果有特殊需求,请联系海纳光学。 11、滤光片滑块(塑料)是干什么用的? 答:滤光片滑块(Slider)的作用是提供非常好平行度和一致性,以保证荧光激发的一致性。

滤光片

滤光片 一、定义 通过所需波长的光波,过滤掉不需要波长光波的一种光学器件。用来选取所需辐射波段的光学器件。滤光片的一个共性,就是没有任何滤光片能让天体的成像变得更明亮,因为所有的滤光片都会吸收某些波长,从而使物体变得更暗。 二、原理 滤光片是在塑料或玻璃基材中加入特种染料或在其表面蒸镀光学膜制成,用以衰减(吸收)光波中的某些光波段或以精确选择小范围波段光波通过,而反射(或吸收)掉其他不希望通过的波段。通过改变滤光片的结构和膜层的光学参数,可以获得各种光谱特性,使滤光片可以控制、调整和改变光波的透射、反射、偏振或相位状态。 三、透射率 透射是入射光经过折射穿过物体后的出射现象。被透射的物体为透明体或半透明体,如玻璃,滤色片等。若透明体是无色的,除少数光被反射外,大多数光均透过物体。为了表示透明体透过光的程度,通常用入射光通量与透过后的光通量之比z来表征物体的透光性质,z被称为光的透射率。 四、光学薄膜 1、光学薄膜干涉原理 光是一种电磁波。可以设想光源中的分子或原子被某种原因激励而振动, 这种振动导致分子或原子中的电磁场发生电磁振动。可以证明, 电场强度与磁场强度两者有 单一的对应关系,同时在大多光学现象中电场强度起主导作用, 所以我们通常将电场振动称为光振动,这种振动沿空间方向传播 出去就形成了电磁波。 电磁波的波长λ、频率f、传播速度v三者之间的关系为: v=λ f 各种频率的电磁波在真空中的速度都是一样的,即3 ×1 08m /s ,常用C 表示。但是在不同介质中,传播速率是不一样的。 假设某种频率的电磁波在某一介质中的传播速度为v,则C 与v 的比值称为这种介质对这种频率电磁波的折射率。 频率不同的电磁波,它们的波长也不同。波长在400到760 nm 这样一段电磁波能引起人们的视觉,称为可见光。普通光源如太阳、白炽灯等内部大量振动中的分子或原子彼此独立,各自有自己的振动方向、振幅及发光的起始时间。每个原子每一次振动所发出的光波只有短短的一列,持续时间约为10- 8秒。我们通常观察到的光都是光源内大量分子或原子振动辐射出来的结果,而观察不到其作为一种波动在传播过程中所能表现出来的特征——干涉、衍射和偏振等现象。这是因为实现光的干涉是需要条件的,即只有频率相同、相位差恒定、振动方向一致的两列光波才是相干光波, 这样的两列波辐射到同一点上,彼此叠加,产生稳定的干涉抵 消(产生暗影)或者干涉加强( 产生比两束光能简单相加更强的 光斑) 图像,才是我们观察到的光的干涉现象。光学薄膜可以 满足光干涉的这些条件。如图1所示,它表示一层镀在基底( n2) 上的折射率为n1厚度为d1的薄膜,假定n1 < n2,n0为入射 介质的折射率。入射光束I 中某一频率的波列W 在薄膜的界 面1 上反射形成反射光波W 1,透过界面的光波穿过薄膜在界 面2 上反射后再次穿过薄膜,透过界面1 在反射空间形成反

滤光片的技术详解和应用参数

什么是OLPF光学低通滤光片 OLPF全名是Optical lowpass filter,即 光学低通滤光片,主要工作用来过滤输 入光线中不同频率波长光讯号,以传送 至CCD,并且避免不同频率讯号干扰到 CCD对色彩的判读。OLPF对于假色 (false colors)的控制上有显著的影响, 假色的产生主要来自于密接条纹、栅栏 或是同心圆等主体影像,色彩相近却不 相同,当光线穿过镜头抵达CCD时,由 于分色马赛克滤光片仅能分辨25%的红 与蓝色以及50%的绿色,再经由色彩处 理引擎运用数据差值运算整合为完整 的影像。 因为先天上色彩资料短缺,CCD根本无法判断密接条纹相邻色彩的参数, 终于导致引擎判断错误输出错误的颜色。由于细条纹的方向不同,需用相对应 角度的光学低通滤波晶片加以消除,又因为不同型号的CCD摄像机与 CMOS 图象传感器在规格上有些差异,为针对不同的型号及同时兼顾不同方向所产生的 干扰杂音,需用不同厚度、片数、角度组合的OLPF的设计,以提高取象品质。 IR-CUT双滤光片切换的作用 IR-CUT双滤光片的使用可以有效解决双峰滤光片产生问题。IR-CUT双滤 光片由一个红外截止滤光片和一个全光谱光学玻璃构成,当白天的光线充分时红 外截止滤光片工作,CCD还原出真实彩色,当夜间光线不足时,红外截止滤光 片自动移开,全光谱光学玻璃开始工作,使CCD充分利用到所有光线,从而大 大提高了低照性能。 IR CUT双滤光片专为CCD摄影机修正偏色、失焦的问题,促使撷取影像画 面不失焦、不偏色,红外夜视更通透,解决红外一体机,日夜图像偏色影响,能 够过滤强光让画面色彩纯美更柔和、达到人眼视觉色彩一致。 普通日夜型摄象机使用能透过一定比例红外光线的双峰滤片,其优点是成 本低廉,但由于自然光线中含有较多的红外成份,当其进入CCD后会干扰色彩 还原,比如绿色植物变得灰白,红色衣服变成灰绿色等等(有阳光室外环境尤其 明显)。深圳纳宏光电技术有限公司是一家专业生产精密光学滤光片的厂家。在夜间由于双峰滤光片的过滤作用,使CCD不能充分利用所有光线, 其低照性能难以令人满意。

相关文档
最新文档