高三物理复习讲义:运动学

高三物理复习讲义:运动学
高三物理复习讲义:运动学

1

一、运动学

1.伽利略在研究自由落体运动时,做了如下的实验:他让一个铜球从阻力很小(可忽略不计)的斜面上由静止开始滚下,并且做了上百次.假设某次试验伽利略是这样做的:在斜面上任取三个位置A 、B 、C ,让小球分别由A 、B 、C 滚下,如图2所示.设A 、B 、C 与斜面底端的距离分别为x 1、x 2、x 3,小球由A 、B 、C 运动到斜面底端的时间分别为t 1、t 2、t 3,小球由A 、B 、C 运动到斜面底端时的速度分别为v 1、v 2、v 3,则下列关系式中正确并且是伽利略用来证明小球沿光滑斜面向下的运动是匀变速直线运动的是( )

A .v 1=v 2=v 3 B.v 1t 1=v 2t 2=v 3t 3 C .x 1-x 2=x 2-x 3 D.x 1t 12=x 2t 22=x 3

t 3

2

2.质点由A 点出发沿直线AB 运动,行程的第一部分是加速度大小为a 1的匀加速运动,接着做加速度大

小为a 2的匀减速运动,到达B 点时恰好速度减为零.若AB 间总长度为s ,则质点从A 到B 所用时间t 为( ) A.

s (a 1+a 2)

a 1a 2

B. 2s (a 1+a 2)a 1a 2

C.2s (a 1+a 2)

a 1a 2

D. a 1a 2

2s (a 1+a 2)

3.如图所示,a 、b 、c 三个物体在同一条直线上运动,其位移-时间图象中,图线c 是一条x =0.4t 2的抛物线.有关这三个物体在0~5 s 内的运动,下列说法正确的是( ) A .a 物体做匀加速直线运动 B .c 物体做匀加速直线运动 C .t =5 s 时,a 物体速度比c 物体速度大

D .a 、b 两物体都做匀速直线运动,且速度相同

4.如图甲所示,一维坐标系中有一质量为m =2 kg 的物块静置于x 轴上的某位置(图中未画出),t =0时刻,物块在外力作用下沿x 轴开始运动,如图乙为其位置坐标和速率平方关系图象的一部分.下列说法正确的是( ) A .物块做匀加速直线运动且加速度大小为1 m/s 2 B .t =4 s 时物块位于x =4 m 处 C .t =4 s 时物块的速率为2 m/s

D .在0~4 s 时间内物块所受合外力做功为2 J

5.甲、乙两物体从同一地点开始沿同一方向运动,其速度随时间的变化关系如图所示,图中t 2=t

42,乙物体的速度时间图象为两段均为1

4圆弧的曲线,则( )

A .两物体在t 1时刻加速度相同

B .两物体在t 2时刻运动方向均改变

C .两物体在t 3时刻相距最远,在t 4时刻相遇

D .0~t 4时间内甲物体的平均速度大于乙物体的平均速度

6.一物体以某一初速度在粗糙的水平面上做匀减速直线运动,最后静止下来.若物体在最初5 s 内通过的位移与最后5 s 内通过的位移之比为x 1∶x 2=11∶5,物体运动的加速度大小为a =1 m/s 2,则( ) A .物体运动的时间可能大于10 s B .物体在最初5 s 内通过的位移与最后5 s 内通过的位移之差为x 1-x 2=15 m C .物体运动的时间为8 s D .物体的初速度为10 m/s

7.A 、B 两小球从不同高度自由下落,同时落地,A 球下落的时间为t ,B 球下落的时间为t

2,当B 球开

始下落的瞬间,A 、B 两球的高度差为(重力加速度为g )( ) A .gt 2 B.38gt 2 C.34gt 2 D.1

4

gt 2

8. 如图所示,直线和抛物线(开口向上)分别为汽车a 和b 的位移—时间图象,则( )

A .0~1 s 时间内a 车的平均速度大小比b 车的小

B .0~3 s 时间内a 车的路程比b 车的小

C .0~3 s 时间内两车的平均速度大小均为1 m/s

D .t =2 s 时a 车的加速度大小比b 车的大

9.某质点做匀减速直线运动,依次经过A 、B 、C 三点,最后停在D 点.已知AB =6 m ,BC =4 m ,从A 点运动到B 点,从B 点运动到C 点两个过程速度变化量都为-2 m/s ,则下列说法正确的是( ) A .质点到达B 点时速度大小为2.55 m/s B .质点的加速度大小为2 m/s 2 C .质点从A 点运动到C 点的时间为4 s D .A 、D 两点间的距离为12.25 m 10.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移—时间图象,即x -t 图象如图所示,甲图象过O 点的切线与AB 平行,过C 点的切线与OA 平行,则下列说法中正确的是( )

A .在两车相遇前,t 1时刻两车相距最远

B .t 3时刻甲车在乙车的前方

C .0~t 2时间内甲车的瞬时速度始终大于乙车的瞬时速度

D .甲车的初速度等于乙车在t 3时刻的速度

11.物体以速度v 匀速通过直线上的A 、B 两点,所用时间为t ,现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a 1)到某一最大速度v m ,然后立即做匀减速直线运动(加速度大小为a 2)至B 点速度恰好减为0,所用时间仍为t .则物体的( )

A .v m 只能为2v ,与a 1、a 2的大小无关

B .v m 可为许多值,与a 1、a 2的大小有关

C .a 1、a 2必须是一定的

D .a 1、a 2必须满足a 1a 2a 1+a 2=2v

t

12.小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动,取小球的落地点为原点建立坐标系,

竖直向上为正方向.下列速度v 和位置x 的关系图象中,能描述该过程的是( ) 13.磕头虫是一种不用足跳但又善于跳高的小甲虫.当它腹朝天、背朝地躺在地面时,将头用力向后仰,拱起体背,在身下形成一个三角形空区,然后猛然收缩体内背纵肌,使重心迅速向下加速,背部猛烈撞击地面,地面反作用力便将其弹向空中.弹射录像显示,磕头虫拱背后重心向下加速(视为匀加速)的距离大约为0.8 mm ,弹射最大高度为24 cm ,而人原地起跳方式是,先屈腿下蹲,然后突然蹬地向上加速,假设人加速与磕头虫加速过程的加速度大小相等,如果加速过程(视为匀加速)重心上升高度为0.5 m ,那么人离地后重心上升的最大高度可达(空气阻力不计,重力加速度g 取10 m/s 2,设磕头虫撞击地面和弹起的速率相等)( ) A .150 m B .75 m C .15 m D .7.5 m

14.如图所示是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测汽车的速度.图中p 1、p 2是测速仪发出的超声波信号,n 1、n 2分别是p 1、p 2由汽车反射回来的信号.设测速仪匀速扫描,p 1、p 2之间的时间间隔Δt =1.0 s ,超声波在空气中传播的速度是v =340 m/s ,若汽车是匀速行驶的,则根据图可知,汽车在接收到p 1、p 2两个信号之间的时间内前进的距离是______m ,汽车的速度是________m/s.

15.某同学站在一平房边观察从屋檐边滴下的水滴,发现屋檐的滴水是等时的,且第5

滴正欲滴下时,

第1

滴刚好到达地面;

2滴和第

3

滴水刚好位于窗户的下沿和上沿,他测得窗户上、

下沿的高度差为

1 m ,由此求屋檐离地面的高度.

16.在暗室中用如图所示装置做“测定重力加速度”的实验.实验器材有:支

架、漏斗、橡皮管、尖嘴玻璃管、螺丝夹子、接水铝盒、一根荧光刻度的米尺、

频闪仪.具体实验步骤如下:

①在漏斗内盛满清水,旋松螺丝夹子,水滴会以一定的频率一滴滴地落下.

②用频闪仪发出的白闪光将水滴流照亮,由大到小逐渐调节频闪仪的频率直到

第一次看到一串仿佛固定不动的水滴.

③用竖直放置的米尺测得各个水滴所对应的刻度.

④采集数据进行处理.

(1)实验中看到空间有一串仿佛固定不动的水滴时,频闪仪的闪光频率满足的条件是________________.

(2)实验中观察到水滴“固定不动”时的闪光频率为30 Hz,某同

学读出其中比较远的水滴到第一个水滴的距离如图所示,根据数

据测得当地重力加速度g=______ m/s2;第8个水滴此时的速度

v8=______ m/s.(结果都保留三位有效数字)

(3)该实验存在的系统误差可能有(答出一条即可):_______________________________

17.某研究性学习小组用图装置来测定当地重力加速度,主要操作如下:

①安装实验器材,调节试管夹(小铁球)、光电门和纸杯在同一竖直线上;

②打开试管夹,由静止释放小铁球,用光电计时器记录小铁球在两个光电门

间的运动时间t,并用刻度尺(图上未画出)测量出两个光电门之间的高度h,

计算出小铁球通过两光电门间的平均速度v;

③保持光电门1的位置不变,改变光电门2的位置,重复②的操作.测出多

组(h,t),计算出对应的平均速度v;④画出v-t图象.

请根据实验,回答如下问题:

(1)设小铁球到达光电门1时的速度为v0,当地的重力加速度为g.则小铁球

通过两光电门间平均速度v的表达式为________.(用v0、g和t表示)

(3)根据v-t图象,可以求得当地重力加速度g=______ m/s2,试管夹

到光电门1的距离约为______ cm.(以上结果均保留两位有效数字

18.在一次低空跳伞训练中,当直升机悬停在离地面224 m高处时,伞兵离开飞机做自由落体运动.运动一段时间后,打开降落伞,展伞后伞兵以12.5 m/s2的加速度匀减速下降.为了伞兵的安全,要求伞兵落地速度最大不得超过5 m/s,求:(取g=10 m/s2)

(1)伞兵展伞时,离地面的高度至少为多少?

(2)伞兵在空中的最短时间为多少?19.如图所示,A、B两同学在直跑道上练习4×100 m接力,他们在奔跑时有相同的最大速度.B从静止开始全力奔跑需25 m才能达到最大速度,这一过程可看做匀变速运动,现在A持棒以最大速度向B奔来,B在接力区伺机全力奔出.若要求B接棒时速度达到最大速度的80%,则:

(1)B在接力区需跑出的距离x1为多少?

(2)B

应在离

A

的距离

x2

为多少时起跑?

20.如图所示,运动员从离水面10 m高的平台上向上跃起,举起双臂直体离开台面,

此时其重心位于从手到脚全长的中点,跃起后重心升高0.45 m达到最高点,落水时身

体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计,计算时可以把运动员

看成全部质量集中在重心的一个质点,g取10 m/s2),求:

(1)运动员起跳时的速度v0.

(2)从离开跳台到手接触水面的过程中所经历的时间t(结果保留3位有效数字).

21.假设收费站的前、后都是平直大道,大假期间过站的车速要求不超过v t=21.6 km/h,事先小汽车未

减速的车速均为v0=108 km/h,制动后小汽车的加速度的大小为a1=4 m/s2.试问:

(1)大假期间,驾驶员应在距收费站至少多远处开始制动?

(2)假设车过站后驾驶员立即使车以a2=6 m/s2的加速度加速至原来的速度,则从减速开始至最终恢复到

原来速度的过程中,汽车运动的时间至少是多少?

(3)在(1)(2)问题中,车因减速和加速过站而耽误的时间至少为多少?

22.王兵同学利用数码相机连拍功能(此相机每秒连拍10张),记录下北京

奥运会跳水比赛中小将陈若琳和王鑫在10 m跳台跳水的全过程.所拍摄

的第一张恰为她们起跳的瞬间,第四张如图甲所示,王兵同学认为这是她

们在最高点;第十九张如图乙所示,她们正好身体竖直双手触及水面.设

起跳时她们的重心离台面的距离和触水时她们的重心离水面的距离相

等.由以上材料(g取10 m/s2)(1)估算陈若琳的起跳速度;

(2)分析第四张照片是在最高点吗?如果不是,此时重心是处于上升还是下降阶段?

23.某次训练中,航空母舰以速度v0匀速航行,舰载机以水平速度v从舰尾落到长为l的水平甲板上并

钩住阻拦索.之后飞机的运动可以近似为匀减速运动,则飞机的加速度至少应为多大?不考虑飞机着舰对航空母舰运动情况的影响.

24.有些航空母舰上装有帮助飞机起飞的弹射系统,已知某型号的战斗机在跑道上加速时可能产生的最大加速度为5.0 m/s2,当飞机的速度达到50 m/s时才能离开航空母舰起飞.设航空母舰处于静止状态.问:

(1)若要求该飞机滑行160 m后起飞,弹射系统最少使飞机具有多大的初速度?

(2)若某舰上不装弹射系统,要求该种飞机仍能在此舰上正常起飞,该舰身长至少为多长?

(3)若航空母舰上不装弹射系统,设航空母舰甲板长为L=160 m,为使飞机仍能在此舰上正常起飞,这

时可以先让航空母舰连同飞机沿飞机起飞方向以某一速度匀速航行,然后再让飞机加速起飞,则航空母舰匀速航行时的速度至少为多少?

2

高中物理运动学公式总结

高中物理运动学公式总结 The Standardization Office was revised on the afternoon of December 13, 2020

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3= =?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23-): :(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt= s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高三物理复习讲义:运动学

1 一、运动学 1.伽利略在研究自由落体运动时,做了如下的实验:他让一个铜球从阻力很小(可忽略不计)的斜面上由静止开始滚下,并且做了上百次.假设某次试验伽利略是这样做的:在斜面上任取三个位置A 、B 、C ,让小球分别由A 、B 、C 滚下,如图2所示.设A 、B 、C 与斜面底端的距离分别为x 1、x 2、x 3,小球由A 、B 、C 运动到斜面底端的时间分别为t 1、t 2、t 3,小球由A 、B 、C 运动到斜面底端时的速度分别为v 1、v 2、v 3,则下列关系式中正确并且是伽利略用来证明小球沿光滑斜面向下的运动是匀变速直线运动的是( ) A .v 1=v 2=v 3 B.v 1t 1=v 2t 2=v 3t 3 C .x 1-x 2=x 2-x 3 D.x 1t 12=x 2t 22=x 3 t 3 2 2.质点由A 点出发沿直线AB 运动,行程的第一部分是加速度大小为a 1的匀加速运动,接着做加速度大 小为a 2的匀减速运动,到达B 点时恰好速度减为零.若AB 间总长度为s ,则质点从A 到B 所用时间t 为( ) A. s (a 1+a 2) a 1a 2 B. 2s (a 1+a 2)a 1a 2 C.2s (a 1+a 2) a 1a 2 D. a 1a 2 2s (a 1+a 2) 3.如图所示,a 、b 、c 三个物体在同一条直线上运动,其位移-时间图象中,图线c 是一条x =0.4t 2的抛物线.有关这三个物体在0~5 s 内的运动,下列说法正确的是( ) A .a 物体做匀加速直线运动 B .c 物体做匀加速直线运动 C .t =5 s 时,a 物体速度比c 物体速度大 D .a 、b 两物体都做匀速直线运动,且速度相同 4.如图甲所示,一维坐标系中有一质量为m =2 kg 的物块静置于x 轴上的某位置(图中未画出),t =0时刻,物块在外力作用下沿x 轴开始运动,如图乙为其位置坐标和速率平方关系图象的一部分.下列说法正确的是( ) A .物块做匀加速直线运动且加速度大小为1 m/s 2 B .t =4 s 时物块位于x =4 m 处 C .t =4 s 时物块的速率为2 m/s D .在0~4 s 时间内物块所受合外力做功为2 J 5.甲、乙两物体从同一地点开始沿同一方向运动,其速度随时间的变化关系如图所示,图中t 2=t 42,乙物体的速度时间图象为两段均为1 4圆弧的曲线,则( ) A .两物体在t 1时刻加速度相同 B .两物体在t 2时刻运动方向均改变 C .两物体在t 3时刻相距最远,在t 4时刻相遇 D .0~t 4时间内甲物体的平均速度大于乙物体的平均速度 6.一物体以某一初速度在粗糙的水平面上做匀减速直线运动,最后静止下来.若物体在最初5 s 内通过的位移与最后5 s 内通过的位移之比为x 1∶x 2=11∶5,物体运动的加速度大小为a =1 m/s 2,则( ) A .物体运动的时间可能大于10 s B .物体在最初5 s 内通过的位移与最后5 s 内通过的位移之差为x 1-x 2=15 m C .物体运动的时间为8 s D .物体的初速度为10 m/s 7.A 、B 两小球从不同高度自由下落,同时落地,A 球下落的时间为t ,B 球下落的时间为t 2,当B 球开 始下落的瞬间,A 、B 两球的高度差为(重力加速度为g )( ) A .gt 2 B.38gt 2 C.34gt 2 D.1 4 gt 2 8. 如图所示,直线和抛物线(开口向上)分别为汽车a 和b 的位移—时间图象,则( ) A .0~1 s 时间内a 车的平均速度大小比b 车的小 B .0~3 s 时间内a 车的路程比b 车的小 C .0~3 s 时间内两车的平均速度大小均为1 m/s D .t =2 s 时a 车的加速度大小比b 车的大 9.某质点做匀减速直线运动,依次经过A 、B 、C 三点,最后停在D 点.已知AB =6 m ,BC =4 m ,从A 点运动到B 点,从B 点运动到C 点两个过程速度变化量都为-2 m/s ,则下列说法正确的是( ) A .质点到达B 点时速度大小为2.55 m/s B .质点的加速度大小为2 m/s 2 C .质点从A 点运动到C 点的时间为4 s D .A 、D 两点间的距离为12.25 m 10.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移—时间图象,即x -t 图象如图所示,甲图象过O 点的切线与AB 平行,过C 点的切线与OA 平行,则下列说法中正确的是( ) A .在两车相遇前,t 1时刻两车相距最远 B .t 3时刻甲车在乙车的前方 C .0~t 2时间内甲车的瞬时速度始终大于乙车的瞬时速度 D .甲车的初速度等于乙车在t 3时刻的速度 11.物体以速度v 匀速通过直线上的A 、B 两点,所用时间为t ,现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a 1)到某一最大速度v m ,然后立即做匀减速直线运动(加速度大小为a 2)至B 点速度恰好减为0,所用时间仍为t .则物体的( ) A .v m 只能为2v ,与a 1、a 2的大小无关 B .v m 可为许多值,与a 1、a 2的大小有关 C .a 1、a 2必须是一定的 D .a 1、a 2必须满足a 1a 2a 1+a 2=2v t 12.小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动,取小球的落地点为原点建立坐标系, 竖直向上为正方向.下列速度v 和位置x 的关系图象中,能描述该过程的是( ) 13.磕头虫是一种不用足跳但又善于跳高的小甲虫.当它腹朝天、背朝地躺在地面时,将头用力向后仰,拱起体背,在身下形成一个三角形空区,然后猛然收缩体内背纵肌,使重心迅速向下加速,背部猛烈撞击地面,地面反作用力便将其弹向空中.弹射录像显示,磕头虫拱背后重心向下加速(视为匀加速)的距离大约为0.8 mm ,弹射最大高度为24 cm ,而人原地起跳方式是,先屈腿下蹲,然后突然蹬地向上加速,假设人加速与磕头虫加速过程的加速度大小相等,如果加速过程(视为匀加速)重心上升高度为0.5 m ,那么人离地后重心上升的最大高度可达(空气阻力不计,重力加速度g 取10 m/s 2,设磕头虫撞击地面和弹起的速率相等)( ) A .150 m B .75 m C .15 m D .7.5 m 14.如图所示是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测汽车的速度.图中p 1、p 2是测速仪发出的超声波信号,n 1、n 2分别是p 1、p 2由汽车反射回来的信号.设测速仪匀速扫描,p 1、p 2之间的时间间隔Δt =1.0 s ,超声波在空气中传播的速度是v =340 m/s ,若汽车是匀速行驶的,则根据图可知,汽车在接收到p 1、p 2两个信号之间的时间内前进的距离是______m ,汽车的速度是________m/s. 15.某同学站在一平房边观察从屋檐边滴下的水滴,发现屋檐的滴水是等时的,且第5 滴正欲滴下时, 第1 滴刚好到达地面; 第 2滴和第 3 滴水刚好位于窗户的下沿和上沿,他测得窗户上、 下沿的高度差为 1 m ,由此求屋檐离地面的高度.

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理运动学公式word版(带答案)可编辑

匀变速直线运动公式: 加速度的定义式:a=速度与时间的关系:v= 位移与时间的关系:X=平均速度与中间时刻瞬时速度的关系:末速度与初速度的平方差关系:等时相邻的两段位移差的关系:ΔX=a 某段时间内中间时刻的瞬时速度:经过某段位移中点时的瞬时速度: 初速为零的匀加速直线运动的比例关系: ①前1秒、前2秒、前3秒……前n秒末的速度之比为: 1 : 2 : 3 : …… : n ②第1秒、第2秒、第3秒……第n秒末的速度之比为: 1 : 2 : 3 : …… : n ③前1秒、前2秒、前3秒……前n秒内的位移之比为: 1 : 4 : 9 : …… : ④第1秒、第2秒、第3秒……第n秒内的位移之比为: 1 : 3 : 5 : …… : (2n-1) ⑤前1米、前2米、前3米……前n米所用的时间之比为: 1 : : : …… : ⑥第1米、第2米、第3米……第n米所用的时间之比为: 1 : : : …… : ⑦第1米、第2米、第3米……第n米末的速度之比为: 1 : : : …… : 自由落体运动规律: 加速度:a=速度与时间的关系:v= 下落高度与时间的关系:h=平均速度与中间时刻瞬时速度的关系:末速度与下落高度的关系:等时相邻的两段高度差的关系:Δh=g 某段时间内中间时刻的瞬时速度:经过某段下落高度中点时的瞬时速度:落地时间:t= 竖直上抛运动规律: 运动性质:上升时为_匀减速直线运动__,下落时为自由落体运动 . 加速度:a=速度与时间的关系:v= 上升的时间:回到抛出点的时间:

位移与时间的关系(位移的初位置在抛出点):X= 上升时的平均速度与初速度的关系: . 最高点离抛出点的高度:h m=落回抛出点的速度为v=- 平抛运动 1、实质:水平方向做匀速直线运动,竖直方向做自由落体运动。 2、水平分运动:水平分速度:水平位移: 3、竖直分运动:竖直分速度:竖直位移:。 4、合运动:位移:X=速度:V=。 5、下落时间:t= 6、任意时刻:速度与水平面夹角α的正切值: 位移与水平面夹角β的正切值: 7、某时刻速度、位移与初速度方向的夹角α、β的关系为 8、平抛运动的物体,任意时刻随时速度的反向延长线一定通过水平位移的中点。 顺着斜面平抛物体,物体又重新落在斜面上 1、落在斜面上时速度方向与斜面加角恒定 . 2、物体在斜面上运动时间: 3、运动过程中距离斜面的最大距离: 4、运动过程中离斜面距离最大的时间:t= 5、水平位移和竖直位移的关系: 6、物体的位移:X=

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度; t x V = 定义式平均速率; t s V = 2、有用推理ax Vo Vt 22 2 =- 3、中间时刻速度;2 2V Vt V Vt += =平 4、末速度Vt=V0+at 5、中间位置速度2 2 2 2 Vt V Vx += 6、位移 t 2t 2 a t 0t t 2 V V V s = +==平 7、加速度t V Vt a 0 += (以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论; S1-S2=S3-S2=S4-S3= =? x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23- ): :( 1-- n n ) 11、a= t n m Sn Sm 2 --(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0=s m ;加速度a=s m 2 ;末速度Vt= s m 1 s m =3.6 h km 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度 ) 位置向下计算 从00(2 2 V g h t = 4推论t 2 V =2gh

注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。 2a=g=9.8s 2 m ≈10s 2 m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下) 3)竖直上抛运动 1位移S=V o t- 22 gt 2末速度Vt=V o-gt 3有理推论0 2 2 V Vt -=-2gs 4上升最大高度H m= g Vo 22 (从抛出到落回原位置的时间) 5往返时间g t Vo 2 2= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对 3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3=ΛΛ=?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3ΛΛ:Sn=1:3:5ΛΛ:(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3ΛΛ:tn=1:(12-0):(23-):ΛΛ:(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt=s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22 V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

2a=g=s 2m ≈10s 2m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下)3) 竖直上抛运动 1位移S=Vot-22 gt 2末速度Vt=Vo-gt 3有理推论02 2V Vt -=-2gs 4上升最大高度Hm= g Vo 22(从抛出到落回原位置的时间) 5往返时间g t Vo 22= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。 打点计时器

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高一物理复习运动学专题复习

高一物理运动学专题复习 知识梳理: 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即V =S/t ,单位:m / s ,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V =(V 0+V t )/2只对匀变速直线运动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 3.速率:瞬时速度的大小即为速率; 4.平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a =0,v=恒量. 3.位移公式:S =vt . 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢...... 的物理量。 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a = t v ??=t v v ?-1 2。 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高三物理复习〈运动学〉测试题

1.(07北京理综18)图示为高速摄影机拍摄到的子弹穿透苹果瞬间的照片.该照片经放大后分析出,在曝光时间内,子弹 影像前后错开的距离约为子弹长度的1%~2%.已知子弹飞 行速度约为500 m/s,由此可估算出这幅照片的曝光时间最 接近() A.10-3 s B.10-6 s C.10-9 s D.10-12 s 2.(1)在测定匀变速直线运动加速度的实验中,将以下步骤的代号按合理顺序填空写在横线上:_____________. (A)拉住纸带,将小车移至靠近打点计时器处,先接通电源,后放开纸带; (B)将打点计时器固定在平板上,并接好电路; (C)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码; (D)断开电源,取下纸带; (E)将平板一端抬高,轻推小车,使小车恰能在平板上作匀速运动; (F)将纸带固定在小车尾部,并穿过打点计时器的限位孔; (G)换上新的纸带,再重复做两三次. (2)某同学利用打点计时器所 记录的纸带来研究做匀变速 直线运动小车的运动情况, 实验中获得一条纸带,如图 三所示,其中两相邻计数点 间有四个点未画出。已知所 用电源的频率为50H Z,则打A点时小车运动的速度v A=_______m/s,小车运动的加速度a=_______m/s2。(结果要求保留三位有效数字) 3.如右图所示,甲、乙两个同学在平直跑道上练习“4×100m” 接力,他们在奔跑时具有相同的最大速度。乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可视为匀变速运动。现在甲手持接力棒以最大速度向乙奔来,乙在接力区伺机全力奔出。若要 求乙接棒时奔跑速度达到最大速度的80%,试求: ⑴乙在接力区须奔跑多少距离? ⑵乙应在距离甲多远处时起跑?5.(07全国卷Ⅰ23)甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保 持9 m/s 的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的.为了确定乙起跑的时机,需在接力区前适当的位置设置标记.在某次练习中,甲在接力区前s0=13.5 m 处作了标记,并以v=9 m/s 的速度跑到此标记时向乙发出起跑口令.乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒.已知接力区的长度为L=20 m.求: (1)此次练习中乙在接棒前的加速度 a. (2)在完成交接棒时乙离接力区末端的距离. 6.(08·四川理综·23)A、B两辆汽车在笔直的公路上同向行驶,当B车在A车前84 m 处时,B 车速度为 4 m/s,且以2 m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零.A车一直以20 m/s的速度做匀速运动,经过12 s后两车相遇.问B车加速行驶的时间是多少? .如图所示,直线MN表示一条平直公路,甲、乙两辆汽车原来停在A、B两处, A、B间的距离为85m,现甲车先开始向右做匀加速直线运动,加速度a1=2.5m/s2, 甲车运动 6.0s时,乙车立即开始向右做匀加速直线运动,加速度a2=5.0m/s2,求两 辆汽车相遇处距A处的距离. 8.火车A以速度v1匀速行驶,司机发现正前方同一轨道上相距s处有另一火车B沿同方向以速度v2(对地,且v2小于v1)做匀速运动,A车司机立即以加速度(绝对值)a紧急刹车,为使两车不相撞,a应满足什么条件?

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高一物理必修一运动学练习题

1.一辆汽车从静止开始由甲地出发,沿平直公路开往乙地,汽车先做匀加速运动,接着做匀减 速运动,开到乙地刚好停止,其速度图象如图所示,那么在0~t 0和t 0~3t 0两段时间内 ( ) A 加速度的大小之比为3 B 位移大小比之为 1:3 C 平均速度之比为 2:1 D 平均速度之比为 1:1 2、骑自行车的人沿着直线从静止开始运动,运动后,在第1 s 、2 s 、3 s 、4 s 内,通过的路 程分别为1 m 、2 m 、3 m 、4 m ,有关其运动的描述正确的是 ( A .4 s 内的平均速度是2.5 m/s B .在第3、4 s 内平均速度是3.5 m/s C .第3 s 末的即时速度一定是3 m/s D .该运动一定是匀加速直线运动 3、汽车以20 m/s 的速度做匀速直线运动,刹车后的加速度为5 m/s2,那么开始刹车后2 s 与开始刹车后6 s 汽车通过的位移之比为 ( ) A .1∶4 B.3∶5 C.3∶4 D.5∶9 4、如图所示为甲、乙两物体相对于同一参考系的s -t 图象, 下列说法不正确的是( ) A .甲、乙两物体的出发点相距s 0 B .甲、乙两物体都做匀速直线运动 C .甲物体比乙物体早出发的时间为t 0 D .甲、乙两物体向同一方向运动 5、有一个物体开始时静止在O 点,先使它向东做匀加速直线运动,经过5 s ,使它的加速 度方向立即改为向西,加速度的大小不改变,再经过5 s ,又使它的加速度方向改为向东, 但加速度大小不改变,如此重复共历时20 s ,则这段时间内 ( ) A .物体运动方向时而向东时而向西 B .物体最后静止在O 点 C .物体运动时快时慢,一直向东运动 D .物体速度一直在增大 6、物体做匀变速直线运动,某时刻速度的大小为4 m/s ,1 s 后速度的大小变为10 m/s ,关 于该物体在这1 s 内的位移和加速度大小有下列说法 ①位移的大小可能小于4 m ②位移的大小可能大于10 m ③加速度的大小可能小于4 m/s 2 ④加速度的大小可能大于10 m/s 2 其中正确的说法是 ( ) A .②④ B.①④ C.②③ D.①③

相关文档
最新文档