固体酸催化剂的分类以及研究近况

固体酸催化剂的分类以及研究近况
固体酸催化剂的分类以及研究近况

固体酸催化剂的分类以及研究近况

刘庆辉,詹宏昌,汤敏擘

(广东省安全科学技术研究所评价中心,广州510620)

摘 要:固体酸作为一种新型绿色环保型催化剂引起了人们的广泛关注。到目前为止,已经开发出固载化液体酸、简单氧化物、硫化物、金属盐、沸石固体酸、杂多酸固体酸、阳离子交换树脂、粘土矿、固体超强酸等九类固体酸。笔者在综合国内外的研究近况的基础上,提出了对固体酸催化剂研究的展望。

关键词:固体酸;催化剂;近况

Classif ication and R esearch Development of Solid Acid C atalyst

L IU Qi ng2hui,ZHA N Hong2chang,TA N G M i ng2bo

(Safety Assessment Center,Guangdong Institute of Safety Science&Technology,Guangzhou510620,China)

Abstract:Recently,solid acids as new green catalysts have attracted considerable attention.By far,nine kinds of solid acids,such as solid2supported liquid acid,ordinary oxid,sulfide,salt,zeolite solid acid,cation ex2 change resin,clunch and solid superacid had been developed.The prospects for solid acids were proposed on the base of colligating recent domestic and abroad researching.

K ey w ords:solid acids;catalyst;research development

固体酸是近年来研究与开发的一种新型酸催化剂,也是具有广泛的工业应用前景的环境友好的催化剂之一,因而对固体酸的研究具有十分重要的意义,成为当前催化研究的热点之一[1]。根据固体酸催化剂的特点进行分类,讨论了各种固体酸的研究近况,并在此基础上提出了对固体酸催化剂研究展望。1 固体酸催化剂的分类

1979年日本科学家Hino等人首次合成出SO42-/Fe2O3固体酸,引起了人们的广泛重视,人们便对固体酸进行了大量研究,并合成了一系列SO42-/WxOy固体酸体系催化剂。到目前为止,开发出的固体酸大致可分为九类[2],见表1。

表1 固体酸的分类

序号酸类型实例

1固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土

2氧化物简单:Al2O3,SiO2,B2O3,Nb2O5

复合:Al2O3-SiO2,Al2O3/B2O3

3硫化物CdS,ZnS

4金属盐磷酸盐:AlPO4,BPO4

硫酸盐:Fe2(SO4)3,Al2(SO4)3,CuSO4

5沸石分子筛ZSM-5沸石,X沸石,Y沸石,B沸石

丝光沸石,非沸石分子筛:AlPO SAPO系列

6杂多酸H3PW12O40,H4SiW12O40,H3PMo12O40

7阳离子交换树脂苯乙烯-二乙烯基苯共聚物Nafion-H

8天然粘土矿高岭土,膨润土,蒙脱土

9固体超强酸SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3/ZrO2

作者简介:刘庆辉,男,湖南人,硕士研究生,2006年毕业于华南理工大学化工学院,师从博士生导师,彭峰教授,同年5月进入广东省安全科学技术研究所工作,主要从事于化工企业管理,安全评价,危险化学品从业单位安全标准化考评等工作。目前发表或接收的论文4篇,其中1篇被SCI(网络版)收录。

2 各类固体酸催化剂的研究近况

2.1 固载化液体酸

硅胶固载化的烷基磺酸、芳香磺酸、部分卤代芳香磺酸、全卤代芳香磺酸等有机磺酸对乙酸和烯烃的酯化反应也具有很好的催化活性,但其载体硅胶最好预先用酸进行处理[3]。

此类催化剂的优点是催化效率高,但反应后液体酸催化剂分离困难,副产物也比较多;将其固载后使用,一定程度上解决了催化剂的分离问题,但反应过程中活性组分会不断流失,催化剂使用寿命短。此外,严重的腐蚀问题也难以解决。2.2 简单氧化物

以SiO 2和Al 2O 3为例,它们实际上都不是B 酸,SiOH 基的p K a 值位于4~7之间,仅相当于浓度为5×10-5和8×10-5(wt %)的硫酸溶液,或者它们的质子浓度仅和CH 3COOH (p K a =4.75)以及CH 3CH (NO 2)CH 3(p K a =7.7)的相当。这两种氧化物中的OH 即使在吡啶的作用下也不能释放出质子。在这些氧化物的表面,通常认为同时存在两类活性位,表面羟基和嵌入特殊环境中的金属阳离子。如果

假定Al 2O 3的表面主要是(111)晶面(

η-Al 2O 3),同时在其尖晶石晶格中铝阳离子又可能有两种配布,那就可以区分出5种表面羟基[4]。它们可以表示为(氧原子上的电荷为负值)

:

图1 Al 2O 3的酸碱模型

目前对所有简单氧化物已可按上述分析,根据各自端羟

基上氧原子的部分电荷区分出其为酸性或为碱性。因此,从一般意义上讲,简单氧化物酸的主要来源是表面羟基和暴露的金属离子,这分别相当于液体酸中的B 酸和L 酸。它们存在的范围,因简单氧化物本身的性质而不同,取决于该元素在元素周期表中所处的位置,即电负性[5]。2.3 硫化物

最近20年来,以硫离子合成微孔结构非氧化合物的研究工作逐渐开展起来,这类化合物的特殊结构导致其奇特的物理、化学性能,如超导、非线性光学及催化性能,逐渐成为固体化学一个十分活跃的研究领域[6]。微孔复合金属硫族化合物在催化、离子交换等方面具有应用价值,而且因其独特的光电性能,在半导体、光电导体、非线性光学等方面具有应用前景,因此成为十分活跃的研究领域[7]。2.4 金属盐

磷酸盐和硫酸盐都可用作酯化反应的催化剂,其中人们对硫酸盐的水合物研究较多。刘新河以硫酸铁水合物为催化剂催化合成苯甲酸异戊酯,其最佳工艺条件:醇酸比3:1,催化剂用量4%,反应时间3.0h ,反应温度140~145℃,酯

收率92.7%[8]。邵作范等以硫酸铁水合物为催化合成了乙酸乙酯、丙酯、丁酯、戊酯、异戊酯等,产率均在85%以上[9]。夏泽斌等[10]用水合硫酸铁作催化剂,催化丙烯酸与多种醇的酯化反应,发现其具有良好的催化活性,并探讨了催化酯化反应的可能机理。无机盐复合物如AlCl 3-Fe 2(SO 4)3,邹新禧等认为其具有超强酸性[11]。2.5 沸石固体酸

沸石固体酸是工业催化剂的重要种类,具有高的酸强度和催化活性。1998年有关于HB ,HZSM -5,HY ,DHY 和γ

-Al 2O 3等沸石作为酯化反应的研究[12,13]。此后国内有不

少人以沸石做催化剂进行了大量的研究。张怀斌等人以HZSM -5,HY ,HZAM -12及HM 沸石为催化剂[14],在釜式和固定床反应器内进行乙酸和乙醇的液固相和气固相反应,发现HZSM -5的活性最高。李红等以固体超强酸TiO 2/SO 42-沸石分子筛为催化剂合成了邻苯二甲酸二辛酯[15],反应时间3h ,反应温度为190℃~210℃,酯化率可达98%以上。徐景士等用固体超强酸/沸石分子筛催化合成了尼泊金酯[16]。赵瑞兰等则用β沸石作催化剂合成丙酸戊酯[17],并提出了无催化剂和用Fe -β沸石为催化剂时的酯化反应动力学模型。2.6 杂多酸固体酸

由不同种类的含氧酸根阴离子缩合形成的叫杂多阴离子(如WO 42-+PO 43-→PW 12O 403-),其酸叫杂多酸。

H 3PW 12O 40,就是经典的杂多酸12-磷钨酸。本世纪70年

代以来,由于它在工业上的成功应用[18-22],引起了世界各国学者的关注,许多学者对杂多酸在催化领域中的应用产生了极大兴趣。

1972年世界上第一个以HPA (杂多酸)为催化剂的大规模工业化生产项目-由丙烯直接水合制异丙醇在日本获得成功[21]。在我国,从80年代初开始,HPA 催化的基础和应用研究活跃起来。对酯化[22,23]、烷基化[24]、酯交换[25,26]及烯烃环氧化[27-30]等类型反应进行了系列研究,积累了大量的数据资料。

12-磷钨酸是经典的杂多酸。其三级结构示意图如下:H 3[PW 12O 40].nH 2O └ ┘一级结构└ ┘二级结构└ ┘三级结构

K eggin 结构的杂多化合物是最常用的杂多酸型催化剂,也是酸催化活性最好的杂多酸。据报道,在20多种杂多酸(盐)中,12-钨磷酸的活性最高[31]。

用作酯化反应催化剂的主要是12系列杂多酸,常用的有钨磷酸、钨硅酸、因杂多酸能与非水介质极性溶剂生成“假液相”体系[30],并具有较强的酸性,因而它能满足酯化反应的要求。杂多酸易与底物形成较稳定的底物—阴离子中间体,使活化能降低,有利于反应的进行。张晋芬[21]等以磷钨和硅钨两种系列杂多酸的一系列铯盐作为催化剂合成乙酸乙酯,选择性为100%。但是用杂多酸类催化剂进行均相催化酯化,在催化剂的回收方面并不理想。2.7 阳离子交换树脂

用离子交换树脂作酸、碱催化剂的研究早在20世纪40

年代已经开始,研究表明离子交换树脂是缩合反应、脱水反应的有效催化剂。阳离子交换树脂类催化剂反应条件温和,副产物少,并具有其他固体酸催化剂的优点,即产物后处理简单,催化剂易与产品分离,可循环使用,便于连续化生产,对设备不腐蚀等。鲁波[32]等以大孔磺酸型阳离子交换树脂为催化剂合成甲基丙烯酸甲酯,并进行了动力学研究。张灏以大孔阳离子交换树脂为催化剂合成水杨酸异戊酯[33]。张铁成等以磺酸型阳离子交换树脂催化合成了丙烯酸丁酯,反应6h,酯的转化率可达95.5%,且催化剂的性能稳定,可重复使用10次以上[34]。

可见,离子交换树脂作为酯化反应催化剂,具有活性高、选择性好(可达100%),易分离、可再利用、低腐蚀等优点。但由于使用允许温度较低(120℃以下)、价格较高而受到局限。

2.8 粘土矿

荣峻峰等采用高比表面积、高孔隙率的凹凸棒石粘土微球作为载体,制备了高效球形催化剂,并研究了其乙烯聚合反应,得到了比较好的结果[35]。

2.9 固体酸超强酸

SO42-/MxOy,型固体超强酸是一种经典的固体酸,它是以某些金属氧化物(MxOy)为载体,以SO42-为负载物的固体催化剂。自1979年日本的Hino等人首次获得SO42-/ MxOy型固体超强酸(SO42-/Fe2O3)以来[36],人们对SO42-/ MxOy型固体酸进行了广泛而深入的研究,至今己开发了一系列基于某些金属氧化物的SO42-/MxOy,型固体超强酸,其中包括SO42-基于Fe,Ti,Sn,Zr,Hf等氧化物固体超强酸的研究与应用己有广泛报道[37~40]。SO42-/MxOy型固体超强酸具有以下优点:①对水稳定性很好,如SO42-/ZrO2在空气中长时间放置后,只需加热1小时将表面吸附的水除去即可恢复活性。②其表面吸附的SO42-与载体表面结合很稳定,即使水洗也不易除去。③能在高温下使用。④其腐蚀性很小。

由于SO42-/M x O y型固体超强酸的上述优点,其在酯合成上的应用研究也是广泛而深入。蒋平平等[41]研制了SO42-/ZrO2固体超强酸催化剂,并催化合成了偏苯三酸三辛酯。王世涛[42]等研制了复合固体超强酸SO42-/TiO2-Al2O3,并以该催化剂合成了甲酸二辛酯(DOP)。该催化剂Ti:Al为1:2(mol)。硫酸浓度0.25mol?L-1,焙烧温度650℃~700℃,催化剂用量1.5%~2%,酸转化率超过99%。王存德[43]等研制SO42-/TiO2型超强酸催化剂合成丁乳酸正丁酯,克服了采用硫酸催化剂对设备腐蚀,合成的乳酸正丁酯无色透明。

3 展 望

目前在固体酸的理论和应用研究上还有大量的工作要做,在基础理论研究上要充分运用各种技术手段弄清超强酸性和催化活性产生的机理和规律,从理论上指导合成和制备各种高性能的固体酸催化剂,在应用研究上则根据工业化生产的要求提高使用寿命和拓展使用范围。另外,很多固体酸在实验过程中容易失活,因此制备一种稳定性能高的固体酸是催化剂的应有之义,也是固体酸催化剂工业化的要求。其次,某些固体酸并不具有普遍的酸催化效果,如果从催化剂的源头出发,研究其合成规律,并开发出一种具有普遍酸催化作用的催化剂将扩大固体酸催化剂的应用机会。同时很多研究中发现还存在一些问题有待解决,如催化剂的制备成本高,受制备条件影响大,固体酸的催化理论研究还需加强,对固体超强酸能催化的有机反应还要进一步探索,其工业应用研究还有待进一步深入,是否可制备出催化效果更好的改性固体酸等问题都有碍于固体酸的推广应用。如果能够圆满解决这些问题,那么固体超强酸将会具有广阔的应用前景,同时催化技术也将会有一个新的突破和飞跃。

参考文献

[1] 闵恩泽,傅军.绿色化工技术的进展[J].化工进展,1999,3∶5

-61

[2] 毛东森,卢冠忠,陈庆龄,等.固体酸代替液体酸催化剂的环境

友好新工艺[J]1石油化工,2001,30(2),152-1531

[3] Nakashima K.Acetate esters[P].J P,5718373.1982.

[4] Knozinger H,Ratnassamy P.Catalytic aluminas:surface models

and characterization of surfaces sites.[J]Catal.Rev-Sci.Eng.

1978,17(1),31-69.

[5] Bratsch S G.Revised Mulliken electronegativities.I.Calculation

and conversion to Pauling units.[J]Journal of Chemical Educa2 tion.1988,65(1):34-41.

[6] W.S.Shedrick,M.Wachhold.Solventothermal synthesis of solid2

state chalcogenidometalates.[J]Angewandte Chemie,Interna2 tional Edition in English.1997,36(3):206-224.

[7] R.Sthler,B.Mosel,H.Eckert,W.Bensch.Solvothermal Synthe2

sis,Crystal Structure,Thermal Stability,and M?ssbauer Spec2 troscopic Investigation of the Mixed-Valent Thioantimonate(III, V)[Ni(dien)2]2Sb4S9.[J]Angewandte Chemie,International Edition in English.2002,41(23):4487-4489.

[8] 刘新河.硫酸铁水合物催化合成苯甲酸异戊醋.吉林化工学院

学报,2000,17(2):15-16.

[9] 邵作范,李明阳.硫酸铁水合物催化合成乙酸酯.辽宁化工,

1997,26(5):286-287.

[10]夏泽斌,闰建中,付旭峰,等.水合硫酸铁在丙烯酸醋化反应中

的催化作用.中南工业大学学报,1996,27(5):620-622. [11]邹新禧.固体超强酸AlCl3-Fe2(SO4)3的研究.化学通报,

1992,(12):23-26.

[12]VA Preeti S,Padmasri A H,Amita R,et al.Vapor phase esterifi2

cation of carboxylic acid with Primary and secondary alcohols over HB,HZSM-5,HY,DHY andγ-A1203:an eco2friendly route Stud[J]Surf.Sci.Catal.1998,(113):759-765.

[13]Mazzotti Marco,Nerjbernardo,G elosa Davino,et al.Dynamics of a

Chromatographic Reactor Esterification Catalyzed by Acidic Resins [J]Ind.Eng.Chem.Res.1997,36(8):3163-3172.

[14]Zhang H.B.Catalytic property of HZS-5in esterification reac2

tions[J]HuaXueXueBao.1998,16(2):156-161.

[15]李红,杨辉荣,黄承亚.固体超强酸TiO2/SO42-沸石分子筛催

化合成邻苯二甲酸二辛酯.石油化工,1998,27(9):399-401.

[16]徐景士,陈慧宗.固体超强酸/沸石分子筛催化合成了尼泊金

酯.化学世界,1999,21(12):641-644.

[17]赵瑞兰,赵振华,侯雁.用p沸石作催化剂合成丙酸戊酯的研

究.湖南师范大学自然科学学报,2002,25(4):50-54.

[18]王恩波,胡长文,许林.多酸化学导论.第三版1北京:化学工业

出版社,1998:4-100.

[19]郑汝骊,王恩波.钼磷的多酸化学.化学通报.1984,(9)12-16.

[20]胡长文,梁虹,王恩波.杂多酸的催化技术进展.现代化工,

1992,(14),36-40.

[21]张晋芬,邵海英,杨吉勇.杂多酸催化剂在羧酸酯化反应中的应

用.精细石油化工,1993,(1),51-54.

[22]王恩波,段颖波,张云峰,周延修.杂多酸催化剂连续法合成乙

酸乙酯.催化学报,1993,14(2):147-149.

[23]杜少斌,徐元植.杂多酸及其盐的催化研究新进展.石油化工,

1993,22(10):694-696.

[24]Wang En Bo,Lu Xin Hong,Zhao Shi Liang,Studies on redox

properties of heteropoly acids(salts)and their derivatives of K eg2 gin and Dawson structures[J]1Sciences in China,1990,33(9) 1032-1039.

[25]Hu Chang Wen,Hashimoto,Masato,Okukara,Toshio,Misono,

Makoto,Catalysis by heteropoly compounds XXII.Reactions of esters and esterification catalyzed by heteropolyacids in a homoge2 nous liquid phase-effect of the central atom of heteropoly anions having tungsten as the addenda atom[J].Journals of Catalyst.

1993,143(2),437-448.

[26]吴茂祥,罗军华,李定,等.杂多酸(盐)催化合成丙烯酸正丁酯

的研究.精细化工,1999,16(6):32-34.

[27]毛萱,殷元骐.杂多酸催化研究新进展.分子催化,2000,14(6):

483-489.

[28]温朗友,闵恩泽.固体杂多酸催化剂研究新进展.石油化工,

2000,29:49-55.

[29]王新平,叶兴凯,吴越.杂多酸固化催化酯化反应.精细石油化

工,1994,15(4):314-316.

[30]王恩波,赵世良,郑汝骊.杂多酸型催化剂.石油化工,1985,14

(10):615-625.

[31]Izumi,Yu suke,Hasebe,Ren,Urabe,K azuo,Catalysis by hetero2

geneous supported heteropoly acids[J].Journals of Catalyst.1983, 84(2):402-409.

[32]鲁波,沈庆扬,等.大孔磺酸型阳离子交换树脂催化合成甲基丙

烯酸甲酯.化学反应工程与工艺,1995,11(4):332-335. [33]张灏等.以大孔阳离子交换树脂为催化剂合成水杨酸异戊酯.

精细石油化工,1995,(3):32-34.

[34]张铁成,单国荣,黄志明等.阳离子交换树脂催化合成丙烯酸丁

酯.精细石油化工,2003,(1):25-28.

[35]Rong J unfeng;Jing Zhenhua;Hong Xiaoyu(Research Institute of

Petroleum Processing;Beijing;China);Study on Ethylene Poly2 merization Catalyst Prepared from Clay MineralsⅡ.Catalyst Pre2 pared by Supporting MgCl2/THF/TiCl4on Palygoskite.石油化工,2004,(1):32-35.

[36]Hino M.,Arata K.Reaction of Butane to Isobutane Catalyzed by

Iron Oxide Treated with Sulfate Ion Solid Superacid Catalyst[J].

Chemical Letters.1979:1259-1260.

[37]田部浩三.新固体超强酸和碱及其催化作用.郑禄彬译.北京:

化学工业出版社.1992:35-68.

[38]曾健青,罗庆云,王琴,等.SO42-/MnOm型固体超强酸催化剂

的研究进展.石油化工,1994,23(3):191-197.

[39]蒋文伟.超强酸催化剂的研究进展.精细化工,1997,14(I):

46-49.

[40]Arata K,Hino M.Synthesis of the Solid Superacid Catalysit of

Tinoxide Treated with Sulfate Ion.[J]Appl.Catal.1990,59: 205-212.

[41]蒋平平.SO42-/ZrO2:超强酸催化活性的研究.化学世界,

1994,35(8):411-413.

[42]王世涛.SO42-/TiO2-Al2O3催化酷化反应的研究.精细化工,

1996,13(6):46-48.

[43]王存德.固体超强酸对合成丁乳酸正丁醋的催化活性.化学世

界,193(7):311-314.

(上接第13页) 由清华大学开发技术,并已建0.5万t/a 装置已投产,副产氢气使化肥成本降低2%,发酵废液生产沼气,作炉用燃料,节省煤0.3万t/a。吉林燃料乙醇有限公司从英国Davy工程公司引进乙醇脱氢技术,于2007年10月29日已生产出合格乙酸乙酯。该法疏程短、对乙醇范围要求较宽,副产合理利用,成本低廉。

3 结 语

(1)生产乙酸乙酯法有酯化法、乙醛缩合法、乙烯一步法、乙醇脱氢法。各种方法都有工业化生产价值,其规模大小各地各单位应从原料供应(中国2007年生产醋酸250万t/a,又扬子石化合资企业50万t/a于2008年投产,且还有数套20万t/a乙酸装置即将上马,由此中国今后乙酸可全自给而不进口。乙醇方面大力于生物纯学方面获得,前景乐观,技术水平、产品销售、经济性等综合而可选择。

(2)传统H2SO4酯化法因副产多、腐蚀性强、环保处理上较麻烦。而近来开发的复合固体酸催化剂酯化法的选择性、酯化率,成品收率都达到100%,是绿色环保友好酯化催化剂,值得工业上大力推广应用。乙酸乙酯/乙酸丁酯联产法可依市场需求生产乙酯及丁酯,相对投资可少。乙烯一步法、乙醇脱氢法都已大工业化,很有发展前景。乙醛缩合法的经济竞争力方面,比乙烯一步法,乙醇脱氢法差些。然也要看各单位具体条件而定,都可工业化生产。

(3)乙酸乙酯为绿色环保溶剂,它可替代毒性芳香烃溶剂苯、甲苯等,又是多用途产品,今后用途及用量继在扩大,值得大力扩大生产以满足国内外市场需求。

参考文献

[1] 程能林.溶剂手册[M].第2版.北京:化学工业出版社,1994,

538-539.

[2] 于伟民.乙酸乙酯的精制方法[J].化学与粘合,2005(2):108-

111.

[3] Saski T,Myanari T,K oyanaci M,et al.Method for purification

of ethyl acetate[P].J P05,186,391.1993.7.29.

[4] 于会中,李天一,村长海.催化精馏酯化法回收稀醋酸[J].化学

工程师,2007,(1):146.

[5] 梁国强,屈东林,姚平经.从废酯液中回收酯及乙酯的分离技

术.现代化工[J],2007,(3)44-46.

[6] Xu Z P,Artin A,K arl T.C.Removal of Acetic Acid from water

by catalytic Distillation[J].The Cunudian Journal of Chemicul En2 gineering,1999,77:676-687.

[7] 王大林,姜浩锡,张敏华.乙醇一步法制备已酸乙酯反应机理的

研究1石油化工[J],2007,(10):1025-1027.

[8] Bonilla H N.Fierro J L G,et al1New supportod pb catalysts for

the Direct trancsformatcion of ethanol to Ethyl Acetute under ned2 imc pressure Conditions catal Today,2005,107-108(Ⅰ):431-

435.

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

固体酸催化剂

固体酸催化剂 酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 中文名固体酸催化剂 功能来源催化活性的酸性部位特点一类重要催化剂 性质酸中心、酸强度和酸度 与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。 ①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: 红外光谱研究表明,800℃焙烧过的γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。 SiO2-Al2O3的酸中心模型 (见图)有多种模式。 ②酸强度,可用哈梅特酸强度函数 0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。 2应用 在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO2-Al2O3、 B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为0≤3.3, 0≤1.5,0≤-3,-3< 0<+1.5。在同类型的催化剂上进行同一反应时, 催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,

固体酸催化剂的分类以及研究近况

固体酸催化剂的分类以及研究近况 刘庆辉,詹宏昌,汤敏擘 (广东省安全科学技术研究所评价中心,广州510620) 摘 要:固体酸作为一种新型绿色环保型催化剂引起了人们的广泛关注。到目前为止,已经开发出固载化液体酸、简单氧化物、硫化物、金属盐、沸石固体酸、杂多酸固体酸、阳离子交换树脂、粘土矿、固体超强酸等九类固体酸。笔者在综合国内外的研究近况的基础上,提出了对固体酸催化剂研究的展望。 关键词:固体酸;催化剂;近况 Classif ication and R esearch Development of Solid Acid C atalyst L IU Qi ng2hui,ZHA N Hong2chang,TA N G M i ng2bo (Safety Assessment Center,Guangdong Institute of Safety Science&Technology,Guangzhou510620,China) Abstract:Recently,solid acids as new green catalysts have attracted considerable attention.By far,nine kinds of solid acids,such as solid2supported liquid acid,ordinary oxid,sulfide,salt,zeolite solid acid,cation ex2 change resin,clunch and solid superacid had been developed.The prospects for solid acids were proposed on the base of colligating recent domestic and abroad researching. K ey w ords:solid acids;catalyst;research development 固体酸是近年来研究与开发的一种新型酸催化剂,也是具有广泛的工业应用前景的环境友好的催化剂之一,因而对固体酸的研究具有十分重要的意义,成为当前催化研究的热点之一[1]。根据固体酸催化剂的特点进行分类,讨论了各种固体酸的研究近况,并在此基础上提出了对固体酸催化剂研究展望。1 固体酸催化剂的分类 1979年日本科学家Hino等人首次合成出SO42-/Fe2O3固体酸,引起了人们的广泛重视,人们便对固体酸进行了大量研究,并合成了一系列SO42-/WxOy固体酸体系催化剂。到目前为止,开发出的固体酸大致可分为九类[2],见表1。 表1 固体酸的分类 序号酸类型实例 1固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 2氧化物简单:Al2O3,SiO2,B2O3,Nb2O5 复合:Al2O3-SiO2,Al2O3/B2O3 3硫化物CdS,ZnS 4金属盐磷酸盐:AlPO4,BPO4 硫酸盐:Fe2(SO4)3,Al2(SO4)3,CuSO4 5沸石分子筛ZSM-5沸石,X沸石,Y沸石,B沸石 丝光沸石,非沸石分子筛:AlPO SAPO系列 6杂多酸H3PW12O40,H4SiW12O40,H3PMo12O40 7阳离子交换树脂苯乙烯-二乙烯基苯共聚物Nafion-H 8天然粘土矿高岭土,膨润土,蒙脱土 9固体超强酸SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3/ZrO2 作者简介:刘庆辉,男,湖南人,硕士研究生,2006年毕业于华南理工大学化工学院,师从博士生导师,彭峰教授,同年5月进入广东省安全科学技术研究所工作,主要从事于化工企业管理,安全评价,危险化学品从业单位安全标准化考评等工作。目前发表或接收的论文4篇,其中1篇被SCI(网络版)收录。

固体酸催化剂的研究进展

炭基固体酸催化剂的研究进展 摘要 酸催化反应在化工工业生产中广泛应用,目前工业上硫酸、盐酸等液体酸催化剂使用较普遍,液体酸存在一次性消耗大、对设备腐蚀严重、后处理困难,对环境污染较大等缺点。固体酸催化剂作为一种新型的环保材料,在化工生产中的应用变得越来越广泛,主要用于缩酮缩醛反应、水解反应、烷基化反应、酯化反应等。其中,炭基固体酸催化剂是近年来较为热门的研究课题,以葡萄糖、淀粉、蔗糖、纤维素作为原料在一定条件下制备新型固体酸催化剂。炭基固体酸催化剂酸量高、催化活性和选择性好、易回收再生使用和对设备腐蚀性小等优点。本文简单介绍生物质炭基固体酸催化剂的制备原料、分类及制备方法,分析其作为催化剂的作用机理,简述炭基固体酸催化剂的现状并展望其发展前景及方向。 (正文部分) 碳基固体磺酸作为一种新型的固体酸催化剂,具有催化活性高、酸密度大、后处理简单、价格低廉等优点。目前碳材料种类繁多且存储量巨大,其中木纤维原料作为碳材料的一种,是可再生能源,在环境、能源状况日渐恶化的今天具有重要利用价值。炭基固体酸催化剂指的是以炭材料为载体,在其表面上负载一些酸性基团或者固体酸,使其具备液体的B 酸及L 酸活性中心。由于炭材料具有疏水性的特点,使得反应后的分离操作变得简单且催化剂易于回收,其巨大的比表面积能够提高其催化活性,近年来,有关炭基固体酸的研究在国内外均有报道。 1.炭基固体酸分类 以炭基固体酸载体的不同可将其分为两类:一类为以碳材料为载体,在其表面键合上 -SO3H 基团的磺化碳固体酸;另一类为以活性炭为载体,在其表面负载上杂多阴离子的活性炭载杂多酸催化剂。 根据结构不同可以将磺化碳基固体酸分为普通碳基固体酸、多孔碳基固体酸和有序中孔碳基固体酸三种。普通碳基固体酸的孔道结构为大孔,比表面积一般小于5 m2/g,这种材料以无定型炭的形式存在,孔道无序排列;多孔碳基固体酸的孔道大部分都为中孔,比表面积可达到1000m2/g以上,孔道无序排列,孔径分布和比表面积的大小由制备方法决定;有序中孔碳基固体酸的孔道为中孔,比表面积一般高于400 m2/g,这些孔道以一定的形状有序排列,孔道形状、孔径大小和比表面积由模板剂类型和制备方法决定。 2.炭基固体酸原料及制备方法 2.1炭基固体酸催化剂的原料 炭基固体酸催化剂的原料与其他固体酸催化剂相比,成本较低、原料来源广泛。杂多酸

固体催化剂制备原理与技术

1.催化剂的发展离不开催化新材料的开发,例如非晶态材料、纳米材料和介孔分子筛的合成和大量的应用实践。同时,催化科学还有催化剂表征技术的发展。 2.非晶态材料:非晶态材料也叫无定形或玻璃态材料, 这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数。 普通玻璃是固体吗?你一定会说,当然是固体。其实,它不是处于固态(结晶态)。对这一点,你一定会奇怪。 这是因为玻璃与晶体有不同的性质和内部结构。 你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。也就是说玻璃没有一个固定的熔点。此外,它的物理性质也“各向同性”。这些都与晶体不同。 经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。 除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。 纳米材料:纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 介孔分子筛:介孔材料是一种孔径介于微孔与大孔之间的具有巨大表面积和三维孔道结构的新型材料。介孔材料的研究和开发对于理论研究和实际生产都具有重要意义。 它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。它的诱人之处还在于其在催化,吸附,分离及光,电,磁等许多领域的潜在应用价值。 3.催化剂颗粒三重结构:crystal(晶体,可以使无孔或有规则孔道的)→grain(晶粒,若干晶体组成)→particle(颗粒) 4.固体催化剂的分类:所催化的反应物质一般是流体(液体或气体),与反应物不处于同一相中,因此为非均相催化剂。区别于均相催化剂(催化剂与反应物处于同一相) 第二章金属氧化物类 绝大多数固体催化剂都是通过溶液制备的。对溶液来说,溶质的结晶与温度和溶质的浓度有关。结晶→过饱和。 过饱和区中,沉淀成粒子分两步:成核、晶粒生长。 沉淀法,氢氧化物和碳酸盐是比较理想的沉淀物。因为1.过渡金属的这些盐类的溶解度很低,能达到很高的过饱和度,是沉淀获得的粒子比较细2.用加热的方法可以使之很容易分解得到对应高表面积氧化物而没有留下毒物(硫酸盐分解

固体碱催化剂的研究进展

固体碱催化剂的研究进展 摘要:介绍了固体碱催化剂的种类及其特点,综述了固体碱催化剂的一些应用,着重介绍了固体碱催化剂在利用油脂酯交换反应生产生物柴油过程中的应用,并对固体碱催化剂的发展及应用作了展望。 关键词:固体碱催化剂种类及其特点油脂酯交换反应应用 前言 催化科学在国民经济中具有十分重要的意义,每种新催化剂和新催化工艺的研制成功都会引起包括化工、石油加工等重大工业在内的生产工艺上的改革,生产成本可以大幅度降低,并为改变人类生活习惯提供一系列新产品和新材料,其中对固体碱的应用较为突出。固体碱催化剂作为环境友好型催化剂,除对酯交换反应有良好的催化活性,与均相碱相比,固体碱有后处理简单,产物、催化剂、溶荆的分离同收比较容易,环保经济等优点,因此,在石油化工领域引起了人们越来越多的重视。 1 固体碱的定义、分类及特点 按照Bronsted和Lewis的定义,固体碱是指能够接受质子或给出电子对的固体物质,作为催化剂其碱位中心应具有极强提供电子或接受电子能力。一般可理解为足能够化学吸附酸的固体,也可理解为能够使酸性指示剂改变颜色的固体物质【1】。固体碱主要包括碱金属、碱土金属氧化物、阴离子交换树脂、水滑石及类水滑石固体碱、负载型固体碱、有机固体碱等。 1.1 碱金属、碱土金属氧化物 金属氧化物碱位主要来源于表面吸附水后产生的羟基和带负电的晶格氧。碱土金属化合物的催化活性与它们的碱性强弱有关,碱性越强催化活性越高,但碱性并不是唯一决定其催化活性的因素,作为非均相催化剂,它们在反应体系中的分散程度也对其催化活性有重要影响。碱土金属氧化物的比表面积较低;机 械强度较差;且易吸收H 2O和CO 2 ;催化剂均为粉状易使反应混和物形成淤浆, 不易分离;必须在高温和高真空条件下预处理才能表现出高催化活性,其碱强度与煅烧温度的高低有很大的关系,一般煅烧温度越高,越有利于得到强的碱性位。但温度过高催化剂晶跫改变也会影响催化效果。 1.2阴离子交换树脂 离子交换树脂是固体催化剂研究的一个重要分支。阴、阳离子交换树脂均可作为制备生物柴油的催化剂。在固体强碱性阴离子交换树脂为催化剂进行油脂的酯交换的过程中,催化剂具有易分离回收、可重复利用、不污染最终产品和反应条件温和等优点。使用强碱性阴离子交换树脂作催化荆虽然有诸多优点,但仍存在许多不足之处,如阴离子交换树脂为催化剂,反应一段时间后,树脂容易失活,这是因为阴离子交换树脂必须具有S(OH-)才具有活性,它的前处理过程需要用酸碱反复浸泡以使其活化;作为催化剂,树脂用量较难定,这主要与树脂碱性有关;树脂的再生步骤还有待改进;阴离子树脂只能在低温(60℃以下)

固体酸催化剂

辽宁石油化工大学设计(论文) 题目固体酸催化剂的研究进展 学院化学化工与环境学部 专业班级研2016 姓名张健 学号01201608170432 2016 年11 月6日

摘要 固体酸催化剂具有对多种化学反应有较高活性与选择性、回收重复利用和效率较高等优点,作为绿色环境友好型催化材料备受人们关注。以往单纯追求眼前效益、不顾对环境所造成的危害的做法近年来越来越受到人们的批判。随着环保意识的增强,以及“绿色化学”的提出,越来越多的学者致力于开发效益兼顾环境、促使化学工业转向开发可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化剂领域中得到了广泛的研究及应用。相比液体酸催化剂而言,固体酸催化剂具有广泛的工业应用前景,是一种无毒、不易腐蚀设备、可循环使用、环境友好型新型催化剂。本文着重介绍固体酸催化剂以及发展前景。 关键词:固体酸催化剂;活性;选择性;环保

1 绪论 1.1固体酸催化剂 固体酸催化剂是一种性能独特的酸性催化剂,它的出现使酸催化反应迈入了新的时代。首先固体酸催化剂的使用在一定程度上缓解和避免了均相反应所带来的不利因素的出现,其次由于其使用温度范围广,适用于700~800 K 进行的反应,这就将研究对象扩大到热力学上可进行的反应范围内。基于此,从19 世纪40年代开始,化学工作者们从未间断过对固体酸的研究。目前,已有大量应用于酸催化反应的固体酸[1-2],见表1。 1.2 几类重要的固体酸催化剂 1.2.1 负载型催化剂 负载试剂于无机载体中即成负载试剂催化剂亦称负载型催化剂。1989 年负载试剂催化剂就已经实现了工业化,取得了良好的经济和环境效益,引领催化研究进入了崭新的阶段。采用一定的方法(如下表2)将活性物质固定在载体上即制成了负载型催化剂,按照负载物质的性质不同,可将其分为负载碱型催化剂、负载酸型催化剂和负载氧化物型催化剂。在负载型催化剂中,催化活性高于载体活性和试剂活性的简单组合,可以理解为,在负载过程中活性物质与载体的共同作用强化了催化作用,进而表现出高的催化活性与环境友好性。 1.2.2 蒙脱土负载试剂固体酸催化剂 蒙脱土又称微晶高岭石,是由两层Si—O 四面体和一层Al-O八面体,组成的层状硅酸盐晶体,有一定的微孔结构。蒙脱土很早就应用在有机反应中,但是涉及其对负载Lewis

固体酸催化剂研究近况综述

试卷( A 卷) 专业: 课程代码: 19060071 学号: 姓名: 作文题(任选一题,写一篇综述论文,每题 100 分) 自拟题目,写一篇关于工业上绿色环保催化剂进展的综述论文 [能力层次: 综合运用和创见 ];[难易度: 较难 ] 要求: 1、查阅文献至少在20篇以上,并且外文文献引用2篇以上; 2、论文字数3000字以上; 3、论文格式严格按照综述论文要求书写; 绿色固体酸催化剂研究近况综述 摘 要:催化剂的研究和发展是现代化学工业的核心问题之一,现代化学工业的巨大成就是同使用催化剂联系在一起的。目前90%以上的化工产品,是借助催化剂生产出来的。工业催化的发展是紧随化学工业的演变而发展的。 催化剂和催化技术的研究与应用,对国名经济的许多重要部门是至关重要的。但就化工工艺过程来说,催化剂的应用可以具体概括为以下几个方面:更新原料路线,采用更廉价的原料;革新工艺流程,促进工艺过程的开发;缓和工艺操作条件,达到节能降耗的目的;开发新产品,提高产品收率,改善产品的质量;消除环境污染或开发从原来到产品的整个化工品过程,对资源的有效利用以及污染控制的环境友好的“绿色催化工艺”等。 引言:固体酸催化剂因其具有对多种化学反应有较高活性与选择性、回收重复利用效率较高等优点,已作为绿色环境友好型催化材料备受人们关注。本文主要综述了近年来国内外对各类型固体超强酸、杂多酸固体酸、离子交换树脂的研究近况,并提出了对今后固体酸催化剂发展的展望。 关键词:固体酸;催化剂 【正文】以往单纯追求眼前效益、罔顾环境所造成的危害近年来逐渐得到人们的重视。随着环保意识的增强,以及绿色化学的提出,越来越多的学者致力于开发效益兼顾环境、使化学工业促可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化领域中得到了广

固体催化剂的制备

固体催化剂的制备 姓名:筵丽娜 班级:化工101 学号:04

固体催化剂的组成:固体催化剂主要有活性组分、助剂和载体三部分组成。 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 制备合格的固体催化剂,通常要经过制备(使之具有所需的化学组分)、成型(使其几何尺寸和外形满足要求)和活化(使其化学形态和物理结构满足活泼态催化剂的要求)等步骤。 一制备方法: 1、浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。 浸渍方法有: ①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用; ②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作; ③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附; ④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备; ⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 2、沉淀法 用沉淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。 沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀

固体超强碱催化剂研究进展论文

毕业设计(论文)任务书 系(院)化学与化工系专业应用化工技术班级1班 学生姓名李刚学号1023100520 指导教师王芳职称讲师 论文题目固体超强碱催化剂研究进展 起止时间自2012年9月18日起至2013年5月14日 一、毕业设计(论文)题目来源: 学生自拟题目 二、毕业设计(论文)的基本要求: 高度重视毕业设计(论文)工作,并明确其目的及意义。在毕业设计(论文)工作过程中,要尊重教师、团结互助、虚心学习、勤于思考、勇于创新,按照指导教师的要求,按时并保质保量地完成毕业设计(论文)任务。毕业设计(论文)期间,要严格遵守学校、系(院)、实验室的各项规章制度,在校外进行毕业设计(论文)工作的要遵守所在单位的有关规章制度。要严格按照《毕业设计(论文)手册》的要求,认真填写《毕业设计(论文)手册》所规定的内容。 在完成毕业设计(论文)的同时,要完成5000汉字以上的专业读书报告 三、毕业设计(论文)的主要内容: 环氧树脂室温快速固化体系,以其优异性能广泛应用于国民经济和军事等各个领域。本文主要讲述了以下主要内容: 一、环氧树脂的概述、类型、性质与特性指标、应用领域以及环氧树脂固化物的性能特点。 二、环氧树脂的反应、几种固化剂的详细情况以及促进剂。 三、环氧树脂的合成原理和工艺。 四、现如今国内外环氧树脂固化剂的发展现状以及前景展望。

四、进度安排: 2012.9.18-9.20 学生选题 9.21-9.24 指导教师填写任务书 9.25-11.20 查阅相关文献开题 11.21-12.27 认真研读文献拟定论文提纲 12.28-12.31 中期检查 2013.1.1-5.20 撰写论文 5.21-5.28 提交论文 5.29- 6.4 论文评阅论文答辩 五、主要参考文献资料: [1] 王亚红曲小姝祝波刘立业崔昌亿.新型固体超强碱催化剂的制备及其结 构表征[J].化学世界,2004,(11):563-565. [2]Suzukamo G, Fukao M, Minobe M, Sakamoto A. EP 0211 448. 1990. [3]丁无生罗志带王浔韩笑言.[J].精细石油化工,2004,21(1):31. [4]魏彤王谋华等.固体碱催化剂[J].化学通报,:. . 指导教师(签字): 教研室主任(签字):

固体超强酸制备

探究思路:两个要求:“保证活性高作为前提,以使用次数作为重要比较指标” 其实,一个固定酯化反应采用不同的固体超强酸(均以该酯化反应作为探究优化制备条件)作为催化剂,所得到的酯化效率差别不会大,只要肯花功夫、时间探究便可达到,所以探究重点摆在对比固体超强酸的稳定性上即提高其使用寿命,而使用寿命以催化活性高作为前提(不同催化剂间催化效用相差不大下,尽管催化效率较差点,但使用次数好,这也算是好催化剂),但在催化效用有一定情况下,探究使用寿命才有意义,随意首先需要探究出优化的固体超强酸的制备条件和酯化条件。 借助微波酯化反应探究最佳活性的催化剂制备条件,然后以活性最佳的催化剂探究微波酯化反应条件。 微波辐射酯化反应——“微波辐射催化合成乙酸正丁酯”: 用微波辐射技术以乙酸和正丁醇为原料,S2O2-8/M X O Y型固体超强酸为催化剂的酯化反应,最佳的微波合成条件为:催化剂用量2。0 g,酸醇物质的量的比为1。0∶2。0,微波功率为595 W,微波辐射时间为30 min,产率84。1%。 主要试剂和仪器:冰醋酸(CP),正丁醇(AR),微波炉,阿贝折光仪(或红外光谱波峰测试)实验过程: 在100 mL圆底烧瓶中加入5。7 mL(0。1 mol·L-1)的冰醋酸和9。1 mL(0。1 mol·L-1)的正丁醇(最适宜的酸醇比为1。0∶2。0),加入2。0 g催化剂,然后将圆底烧瓶装好回流冷凝管和搅拌装置,置于微波炉内。在搅拌下先以65 W的功率加热1 min,再以最适宜的微波功率是595 W,一定反应时间加热回流时间30 min。反应完毕取出圆底烧瓶,待反应物稍冷,过滤出催化剂,粗产品经提纯、干燥、蒸馏,收集124~126℃的馏分。称重,计算产率。 在合成反应中,有些反应是可逆反应生成水,为了提高转化率,常用带水剂把水从反应体系中分离出来。可作带水剂的物质必须要与水水作用产生共沸物使得水更易被蒸出,且在水中的溶解度很小.它可以是反应物或者产物,例如如:环已烯合成是利用产物与水形成共沸物;乙酸异戊酯合成中,反应初期利用原料异戊醇与水形成二元共沸物或原料,产物和水形成三元共沸物,并用分水器分水,同时将原料送回反应体系,随着反应的进行,原料减少,则利用产物乙酸异戊酯与水形成 二元共沸物. 带水剂也可以是外加的。反应物及产物沸点比水高但反应又产生水的,外加第三组分,但第三组分必需是对反应物和产物不起反应的物质,通常加入的第三组分有石油醚,苯甲苯,环已烷,氯仿,四氯化碳等。 在250mL单口平底烧瓶中加入10mL正丁醇、6mL乙酸,再加入适量的三氯化铁作催化剂,放入微波炉内,装上回流冷凝管及分水器,在一定功率微波连续辐射后停止反应。冷却至室温,用饱和食盐水洗涤,分出有机层,水洗至中性,用无水硫酸镁干燥,蒸馏,收集124℃~126℃的馏分,

固体酸催化剂的发展及应用文献综述

工业催化文献综述 固体酸催化剂的发展及应用 专业:化学工程与工艺 班级: 学生学号: 学生姓名: 完成时间: 1

一、引言 催化剂(catalyst):是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。:随着环境意识的加强以及环境保护要求的日益严格,,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。关键词:固体酸催化剂 摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题 1固体酸催化剂的定义及分类 1.1定义 一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。 固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 1.2固体酸的分类 (1)固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 (2)氧化物简单Al2O3,SiO2,B2O3,Nb2O5 复合Al2O3-SiO2,Al2O3/B2O3 (3)硫化物CdS ZnS 2 (4)金属磷酸盐AlPO4,BPO 硫酸盐Fe2(SO4)3,Al2(SO4)3,CuSO4

固体催化剂制备方法及计算化学在催化剂研究中的应用

固体催化剂制备方法及计算化学在催化剂研究中的应用 摘要:固体催化剂制备技术是催化剂研发的一个重要方向。综述了近年来几种固体催化剂常规制备方法,包括溶胶-凝胶法、微波法、微乳液法、等离子体技术、超临界流体法、生物还原法等方法。在文中还介绍了计算化学在催化剂研究中的相关应用。 关键词:固体催化剂制备方法计算化学进展 催化剂曾称触媒,是一类改变化学反应速度而在反应中自身并不消耗的物质。催化剂在现代化学工业、石油化工、能源、制药和环境保护中起着非常重要的作用,从大规模的石油化工生产到精细的高分子化工、制药过程,绝大部分的化学反应过程都需要催化剂的参与,因此,催化科学技术与国家经济发展、环境保护和人民生活改善紧密相关。 一、固体催化剂制备方法介绍 催化科学技术领域的研究包括了新催化过程和新催化剂的开发、催化剂性能的改进、催化剂制备方法的改进和开发、催化剂表征技术的开发等众多方向。固体催化剂制备方法的研究开发作为催化剂制备技术研究中重要的方向之一,一直以来都备受国内外科研人员的重视,近年来不断有新的研究成果问世。本文通过对近年来国内外相关文献的查阅和归纳总结,对溶胶-凝胶法、微波法、微乳液法、等离子体技术、超临界流体法等几种关注度较高的固体催化剂常规制备方法的研究进展进行了概述。 1、溶胶-凝胶法 溶胶-凝胶法又称胶体化学法,是指金属化合物( 无机或有机) 经过溶液、溶胶和凝胶而固化,再经过热处理而形成氧化物或其他固体化合物的方法。采用溶胶凝胶法可以使无定形或介态的氧化物达到分子级混合,活性组分( 金属或金属氧化物) 能够有效地嵌入网状结构,不易受到外界影响而聚合长大,有利于提高催化剂的稳定性和分散性。 图1 溶胶凝胶法制备催化剂的工艺流程简图 目前,溶胶-凝胶法已经在催化剂制备领域获得了大量的研究和应用,但也仍存在制备成本较高、工艺过程较长、凝胶后处理条件对制品影响较大以及一些工艺原料可能对人体及

固体超强酸系列催化剂制备

1. 稀土固体超强酸S2O82- / Sb2O3 / La3+催化剂制备: 将8g SbC13溶于40mL乙醇和20mL苯的混合液中,搅拌充分溶解后得透明锑醇液,再向溶液中加入10mL异丙醇,使醇化反应进行得更彻底,然后加入少量阴离子表面活性剂,并滴加氨水,使之发生水解反应,得到胶状沉淀,低温化12h左右,多次洗涤至无Cl-检出。滤饼于110℃烘干后,研磨过100目筛。搅拌下将Sb2O3浸渍在一定浓度的(NH4)2S2O8溶液中lh,用量为每克Sb2O3用15mL(NH4)2S2O8溶液,抽滤,烘干,置于马弗炉中焙烧,得S2O82-/ Sb203催化剂。将Sb2O3浸渍在一定浓度的(NH4)2S2O8和一定浓度的La(NO3)3的混合液1h,抽滤、烘干置于马弗炉在不同的温度和时间下焙烧,得一系列S2O82-/ Sb2O3 / La3+固体超强酸催化剂,置于干燥器中备用。以代号表示不同制备条件下所得催化剂。 参考文献:稀土固体超强酸S2O82- / Sb2O3 / La3+的制备及催化性能研究 舒华1,连亨池2,闫鹏2,文胜2,郭海福2 (1.学院生化系,554300;2.学院化学化工学院,526061) 稀土,2008.12(29卷第6期) 2. 稀土固体超强酸SO42-/TiO2-La2O3制备: 将一定量La203溶于浓度为3.0 mol·L-1的稀盐酸中,配成La3+溶液,再按一定量比量取TiC14与La3+溶液混合,用NH4·H 0[ w(NH3)=12%]水解至溶液呈碱性,控制pH值在8~9,沉淀完全,静置24 h后进行抽滤,并用蒸馏水不断洗涤至沉淀无Cl-存在(用0.1 mol·L-1的AgNO3检验),于105℃烘干后研细.再将该粉末浸泡于浓度为0.8 mol·L-1的稀H2SO4中24 h,然后抽滤,放入干燥箱中在110℃烘干,于一定的温度下焙烧活化3 h,冷却后置于干燥器中备用。 参考文献:稀土改性固体超强酸催化剂SO42-/TiO2-La2 O3的制备及其催化性能 水金,黄永葵,白爱民,赘,聚堂

固体催化剂表面酸碱性测定讲解

固体催化剂表面酸碱性测定 --吸附指示剂滴定法 固体酸(碱)催化剂表面中心的酸(碱)性质会直接决定催化剂的催化性能,因此,在研究固体酸(碱)催化剂的作用原理、改进现有的固体酸(碱)催化剂、研制新型酸(碱)催化材料和研究催化剂酸(碱)位的性质、来源及结构等方面,都离不开对表面酸(碱)性的表征。科学工作者在固体催化剂表面酸碱性质表征领域做了大量系统研究,建立了许多测定方法,如吸附指示剂滴定法、程序升温热脱附法、红外光谱法、吸附微量热法、热分析方法和核磁共振谱等。其中,操作简便的吸附指示剂滴定法得到广泛应用。本文阐述吸附指示剂滴定法操作体系。 1固体酸表面酸性测定—吸附指示剂胺滴定法 早在50年代初,Walling提出利用吸附在固体酸表面的Hammett指示剂的变色的方法来测定固体表面酸的酸强度;Tamele用对二甲氨基偶氮苯为指示剂,以正丁胺滴定悬浮在苯溶剂中的固体酸来测定酸量。随后Benesi做了重大的改进,先让催化剂样品分别与不同滴定度的正丁胺达到吸附平衡,再采用一系列不同p K a 值的Hammett指示剂来确定等当点。这样就可以用比较短的时间测得酸强度分布,形成了一个测定固体表面酸酸强度分布的吸附指示剂正丁胺滴定法,又称非水溶液胺滴定法。由于操作比较简便,指示剂法广泛被采用。但是这个方法从理论依据到试验操作都有不少缺陷,如到达吸附平衡耗时长等;几十年来,这个方法有了一些改进,包括使用超声波振荡器加快吸附平衡的到达,选用硝基取代苯类具更弱碱性的化合物作为指示剂测超强固体酸酸性,针对不同的样品体系选用合适的滴定用有机胺和溶剂等。 1.1 基本原理 1.1.1 酸强度: 酸强度是指给出质子(B酸)或是接受电子对(L酸)的能力。不同的测定方法采用不同的物理化学参数来表征。指示剂法用Hammett酸度函数H o表示,H o有

固体超酸及其应用研究进展

固体超酸及其应用研究进展 摘要:目前已制备的超酸种类繁多, 它具有极强的酸性和高介电常数, 在化学合成工业中是一种良好的催化剂。本文对超强酸的定义、酸度的测定进行了简单介绍。固体超强酸是近年来发展的一种新型催化材料,进一步综述了固体超强酸的分类、制备方法,例举了一些学者制备的新的固体超强酸催化剂。重点是介绍固体超强酸催化剂在有机化学反应中的应用。指出了固体超强酸的优点和一些不足。最后指出了今后固体超强酸催化剂的发展方向。 关键词:超酸;固体超酸;催化剂;应用;发展 Abstract: The acid has been prepared over a wide range, it has a very strong acid and high dielectric constant, it is a good catalyst in the chemical synthesis industry.In this paper, the definition of super acid, acidity determination for a brief introduction. Solid superacid is a new type of catalytic material in recent years.the classification of solid superacids and preparation methods are described.New solid superacid catalysts are introduced. solid superacid catalysts are applied in organic reactions which is the key in the article.Pointing out the advantages of solid superacids and some shortcomings. Finally,development trends of solid superacid catalysts are put forward. Key words:Superacid; solid superacid; catalyst; application; development

有机合成中的固体酸催化剂及其催化作用机理

有机合成中的固体酸催化剂及其催化作用机理 甘贻迪 2008302037 安徽理工大学化学工程学院应化二班 摘要:在有机合成中硫酸等液态催化剂存在不能循环使用,后处理工序复杂,环境污染大等缺点。因而具有高活性、高选择性、绿色环保等优点的固体酸催化剂在有机合成中越来越受到人们的亲睐,成为有机合成中能够代替硫酸的良好催化剂[1]。本文将对固体酸催化剂作性质种类作简单介绍,并介绍其在酯的合成、酮的合成、O-酰化反应等具体应用的原理。 关键词:固体酸催化剂、有机合成、酯、醛(酮)、喹啉 1固体酸催化剂简述 1.1固体酸催化剂的定义及特点 一般而言,固体酸可以理解为凡能使碱性指示剂改变颜色的固体,或者凡能化学吸附碱性物质的固体[1] ,它们是酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位。固体酸催化剂多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。它与液体酸催化剂相比,固体酸催化剂具有容易处理和储存、对设备无腐蚀作用、易实现生产过程的连续化、稳定性高、可消除废酸的污染等优点。因此固体酸催化剂在实验室和工业上都得到了越来越广泛的应用。特别是随着人们环境保护意识的加强以及环境保护要求的严格,有关固体酸催化剂的研究更是得到了长足的发展。当然,固体酸催化剂除了具有许多优势的同时,也还存在一些急需解决的不足地方,诸如固体酸的活性还远不及硫酸等液体酸、固体酸的酸强度高低不一、不能适应不同反应需要、固体酸价格较贵、单位酸量相对较少,故其用量较大,生产成本较高等 1.2固体酸催化剂可以分类: 按作用机理分为:B酸和L酸和超强酸 Bromated酸:能够给出质子的物质称为Bromated酸。 Lewis酸:能够接受电子对的物质称为Lewis酸1。 固体超强酸:固态表面酸强度大于100%硫酸的固体酸。由于100%硫酸的酸强度Hammett酸函数Ho=-11.9,所以Ho<-11.9的固体酸是固体超强酸5。 按其组成不同可大致分为以下几类:无机酸盐(AlP04、BPO4、FeSO4等)、金属氧化物(简单:Al2O3、SiO2复合:AL2O3SIO2等)及其复合物、杂多酸(H3PW12O40等)、沸石分子筛、阳离子交换树脂(苯乙烯、二乙烯基苯共聚物)、负载金属氧化物、天然粘土矿负载化液体酸等[2]。 2固体酸催化剂在有机合成中的应用 自20世纪30年代法国胡德利首次研制与开发出第一个固体酸催化剂——硅酸铝以来,固体酸催化剂的研究已经历了大约一个世纪。固体酸催化剂在化学工业中的应用成了一个十分重要的领域,已广泛用于石油化工行业的催化裂化、加氢裂化、催化重整、齐聚和聚合、脱氢、异构化、烷基化、酰基化、烯烃水合、脱水反应、消除反应、酯化反应、缩合反应、水解反应、氧化.还原反应等。2.1固体酸催化下酯的合成 2.1.1固体酸催化合成乳酸丁酯 乳酸正丁酯是重要的a一羟基酯类化合物,主要用作合成香料和工业溶剂,

固体催化剂的研究方法第十三章程序升温分析技术上

讲 座 固体催化剂的研究方法 第十三章 程序升温分析技术(上) 杨 锡 尧 (北京大学 化学与分子工程学院,北京100871) [作者简介]杨锡尧(1937-),男,福建 省同安县人,教授,博士生导师,研究方向:石油化工和环保催化剂,发表论文60余篇,著有《物理化学的气相色谱研究法》(第一作者),电话010-********,电邮yangxy @https://www.360docs.net/doc/0217617853.html, 。 第一部分 理论篇 多相催化过程是一个极其复杂的表面物理化学过程,这个过程的主要参与者是催化剂和反应分子,所以要阐明某种催化过程,首先就要对催化剂的性质、结构及其与反应分子相互作用的机理进行深入研究。分子在催化剂表面发生催化反应要经历很多步骤,其中最主要的是吸附和表面反应两个步骤,因此要阐明一种催化过程中催化剂的作用本质及反应分子与其作用的机理,必须对催化剂的吸附性能(吸附中心的结构、能量状态分布、吸附分子在吸附中心上的吸附态等)和催化性能(催化剂活性中心的性质、结构和反应分子在其上的反应历程等)进行深入研究。最好是在反应进行过程中研究这些性质,这样才能捕捉到真正决定催化过程的信息,当然这是很难完全做到的。原位红外光谱法(含喇曼光谱法),动态分析技术(程序升温分析技术,瞬变应答技术等)及其它原位技术,可以在反应或接近反应条件下有效地研究催化过程。本章将介绍其中的程序升温分析技术(TPA T )。 TPA T 在研究催化剂表面上分子在升温时的脱附行为和各种反应行为的过程中,可以获得以下重要信息。 (1)表面吸附中心的类型、密度和能量分布;吸附分子和吸附中心的键合能和键合态。(2)催化剂活性中心的类型、密度和能量分布;反应分子的动力学行为和反应机理。 (3)活性组份和载体、活性组份和活性组份、活性组份和助催化剂、助催化剂和载体之间的相互作用。 (4)各种催化效应-协同效应、溢流效应、合金化效应、助催化效应、载体效应等。 (5)催化剂失活和再生。 TPA T 具体有以下技术:程序升温脱附(TPD )、程序升温还原(TPR )、程序升温氧化(TPO )、程序升温硫化(TPS )、程序升温表面反应(TPSR )等。 1 TPD 理论[1~6] TPA T 中以TPD 研究得最深入,应用得最广泛,理论也 比较成熟,因此本文将重点予以介绍。TPD 过程中,可能有以下现象发生:(1)分子从表面脱附,从气相再吸附到表面;(2)分子从表面扩散到次层(subsurface ),从次层扩散到表面;(3)分子在内孔的扩散。 催化剂表面的吸附中心性质是直接影响吸附分子脱附行为的重要因素,而吸附分子之间的相互作用也会对TPD 过程产生一些影响。111 均匀表面的TPD 理论 在讨论TPD 理论时,常常先从理想情况着手,即先讨论均匀表面上(全部表面在能量上是均匀的)的TPD 过程。 分子从表面脱附的动力学可用Polanyi -Wigner 方程来描述 d θd t =k a (1-θ )n c G -k d θn (1-1)k d =υexp (-E d R T )(1-2) 式中θ为表面覆盖度;k a 为吸附速率常数;k d 为脱附速率常数;c G 为气体浓度;E d 为脱附活化能;υ为指前因子;n 为脱附级数;T 为温度,K;R 为气体常数;t 为时间。 Polanyi -Wigner 方程忽略了分子从表面到次层的扩散和分子之间的相互作用。Polanyi -Wigner 动力学方程是恒温下的方程,在等速升温脱附条件下,因为 T =T 0+βt 即d t =d T β(1-3)β为升温速率,K/m 。Polanyi -Wigner 方程改写成 βd θd T =k a (1-θ)n c G -k d θn (1-4)Amenomiya [2]在方程(1-4)基础上进一步推导出实用的TPD 方程 βV S V M F C υ(1-θm ) n +1 n θn -1m ΔH a R T 2 m =exp (-ΔH a R T m )(1-5)其中υ=k exp ΔS R (其中ΔS 表示吸附熵变)。两边取对数得 2lg T m -lg β= ΔH a 21303R 1T m +lg V S V M ΔH a (1-θm ) n +1 F C R υn θn +1 m (1-6) 式(1-6)中,T m 为TPD 谱图高峰处的相应温度;ΔH a 为吸 附热焓(-ΔH a =Q a 即吸附热);V S 为吸附剂体积;V M 为单 ?259? 石 油 化 工 PETROCHEMICAL TECHNOLO GY 2001年第30卷第12期

相关文档
最新文档