南通神经生物学膜片钳技术原理

南通神经生物学膜片钳技术原理

南通神经生物学膜片钳技术原理

南通神经生物学膜片钳技术是一种应用于神经生物学研究的技术,它可以准确、快速、实时地采集分析神经细胞膜片上的信号。它的基本原理是利用膜片上的电流信号来预测和判断信号变化,从而提供有效的研究工具。

膜片钳技术的基本原理是:通过在膜片上分别安装电极来测量膜片上的电位,通过不同的电位,可以观察不同的神经细胞功能变化。当神经元在不同时间段内启动或抑制时,膜片上的电位会发生变化,从而能够追踪神经元的活动状态,进而了解其功能。

膜片钳技术的实现需要一些特殊的设备,如分析室、计算机、实验设备等。膜片钳由电气设备和软件组成,电气设备用于采集膜片上的电流信号,软件则用于处理膜片信号,提取有效信号,确定神经细胞功能,最后分析得出结论。

膜片钳技术在神经生物学研究中有着重要作用,它可以实时反映神经元的激活情况,以及神经细胞之间的相互作用,为神经生物学研究奠定基础。

- 1 -

膜片钳技术SOP

膜片钳技术SOP 关键词:膜片钳 目的: 研究膜片上几个甚至一个离子通道的电流,对单个离子通道在各种电位状态及每种电位状态下对产生电流的离子作出定性、定量的分析,来反映细胞膜上离子通道活动,为研究离子通道结构与功能关系提供关于生物电特性的新资料。基本原理: 膜片钳制技术(patch clamp technique)是对一块单独的细胞膜片(或整个细胞)的电位进行钳制的一项电生理技术。 通过对膜电位的钳制可以观察通过离子通道的电流,膜片钳放大器正是通过维持电压的恒定而测出这种电流。运用膜片钳技术记到的最小电流可达到pA级(10-12 A)。膜片钳的本质属于电压钳范畴,其基本工作原理是:采用经典的负反馈放大技术作电压固定,但改用细胞外微吸管作电极,将微电极管尖端与细胞膜表面接触,经负压抽吸,形成具极高阻抗的紧密封接,其电阻值高达10-100千欧(即GΩ=109Ω)。只有在这种封接存在时,通过膜电极引导记录的电流才是通过该膜的离子通道电流。 膜片钳技术原理示意图 Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压降而被检测出。

药品和试剂: 根据不同的实验设计选择不同的药品和试剂。 主要仪器设备与材料: ①屏蔽防震实验台(TMC 63-544) ②数字式超级恒渐浴槽(HSS-1 CHENDU INSTRUMENT China) ③微管电极拉制器(PP-83 NARISHIGE Japan) ④微管电极抛光仪(ME-83 NAEISHIFE Japan) ⑤电子刺激器(SEN-2030, NIHON KOHDEN, Japan) ⑥膜片钳放大器(AXOPATCH 200B Axon Instruments U.S.A) ⑦倒置相差显微镜(AXIOVERT 135 ZEISS Germany) ⑧计算机(PⅢ 800) ⑨A/D、D/A转换器(DIGIDATA-1200 Axon Instruments U.S.A) ⑩pClamp软件(10.0)Axon Instruments U.S.A ) 实验对象: 兔、大鼠、猪、和人的组织细胞(直径小于30μm的细胞),都可用于膜片钳实验。动物由泸州医学院(许可证号:SYXK(川)2008-063)提供;人体组织来源于临床手术丢弃物。本SOP以猪冠状动脉平滑肌细胞为例,选取体重约120~150 Kg的猪,雌雄不拘,猪心脏购自泸州市屠宰场。 实验环境: 常温(22o C)下进行, 湿度(70-80%) 操作步骤: 1.液体配制 主要根据研究通道的不同,所用细胞的不同,配制相应的液体,可参考相应的文献进行调整。包括:电极液;细胞外液等。基本原则是保持2个平衡,渗透压平衡和酸碱平衡。另外,所有液体在使用前必须过滤,以保持液体洁净。(详见细胞的分离与培养SOP:L Y-XJD-SYJS-014/015) 2.标本制备 膜片钳实验一般是在单个细胞上进行。实验用单细胞主要来自培养细胞或急性酶分离的细胞,也可来自脑片细胞中的原位细胞。常用的酶是胶原酶和蛋白酶,

膜片钳技术的原理

膜片钳技术的原理及应用(综述) Intro: 细胞是构成生物体的基本单位。细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。1976年,德国的两位细胞生物学家埃尔温. 内尔(Er win Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。这一技术使对细胞电活动的研究精度提高到1pA的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。 一. 膜片钳技术的基本原理 膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaoh m seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行检测记录。(如图1) 图1 膜片钳技术原理图 Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal是封接阻抗。Rs通常为1-5MΩ,若Rseal高达1 0GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。实际上这时场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场管效应运算放大器(A2)时被减掉。 用场效应管运算放大器(图1-A1)构成的I-V转换器[converter,即膜片钳放大器的前级探头(Head stage)]是整个测量回路的核心部分。在场效应运算放大器的正负输入端子为等电位。向正输入端子施加指令电位(Command Voltage,V CMD)时,由于短路负端子和膜片都可等电位地达到钳制的目的,当膜片微电极尖端与膜片之间形成10 GΩ以上封接时,其间的分流电流达到最小,横跨膜片的电流(I)可全部作为来自膜片电极的记录电流(Ip)而被测量出来。(如图1) 二. 膜片钳技术的各种模式 图2是表示膜片钳技术各种模式(mode)的示意图。首先建立的单通道记录法(Singl e Channel Recording)是细胞吸附模式(Cell-attached Mode),其后又建立了膜内面向外(Inside-out)和膜外面向外(Outside-out)的模式。后来又建立了开放的细胞吸附式膜内面向外(Open cell-attached inside-out mode)和穿孔囊泡膜外面向外(Perforated vesicle out side-out mode)模式。全细胞记录法是在常规方法的基础上附加穿孔膜片(perforated patc h mode)的模式。 图2 膜片钳技术的各种模式 1. 单通道记录法-细胞吸附模式(Cell-attached Mode)

膜片钳技术

膜片钳技术 1、膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。此密封不仅电学上近乎绝缘,在机械上也是较牢固的。又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。

膜片钳技术的原理图[51] Rs是与膜片抗阻串联的局部串联电阻(或称入路阻抗),Rseal是封接阻抗。RS通常为1~5MΩ,如果Rseal高达10GΩ以上是成为Ip/I=Rseal/(Rs+Rseal)-1。此Ip可作为I~V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压下降而被检测出。实际上这是场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场效应管运算放大器(A2)时被减掉。 本实验采用的是全细胞记录模式。全细胞记录构型(whole-cell recording)高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。它既可记录膜电位又可记录膜电流。全细胞记录模式是向膜片电极施加正压同时使电极尖端接近细胞表面。此时,将电位固定在0mV,连续给与强度为1mV,间期为10~20ms的去极化或超极化脉冲波,并对此时的电流变化进行监视。当电极尖端接近细胞表面时,可以看到应答脉冲波的电流减小。这是将电极内压从正压转变为弱的负压,从而使电流进一步减小,即在电极尖端和细胞膜之间形成了阻抗高的封接。如将固定电位像负电压侧移动,则可以促进封接的形成。当将固定电位调到细胞的静息膜电位近傍时,如果流动的电流大致上成为零时,脉冲波波幅增大,把电流测定增益提高就可测定封接电阻。密闭封接形成之后,封接电阻可达10GΩ以上,这时观测到的电流是单一离子通道电流,他是判断电极阻塞或者已形成很好的密闭封接的良好指标。与脉冲波向上或向下浮动时,可测定出一过性电流[52]。 2、全细胞记录的程序 (1)玻璃微电极的拉制 拉制微电极用的玻璃毛胚外径在1.5mm,内径在0.86mm,用PB-7电极拉制器分两步进行拉制而成。第一步热力为13.5时可使玻璃软化,并拉开一个距离,形成一个细管,第二步用热力为9.4拉断电极细管部,成为两个基本相同的玻璃微电极,此步控制电极的尖部。由于玻璃电极尖端易于粘附灰尘,因此要求现用现拉制。 (2)玻璃微电极的充灌 充灌前,电极内液必须用微孔滤膜(0.2um)进行过滤,目的是除去妨碍巨阻抗封接形成的灰尘。用1ml注射器在玻璃微电极尾部充灌电极内液,

膜片钳技术在各学科研究中的应用

膜片钳技术在各学科研究中的应用 在神经科学领域,膜片钳技术被广泛应用于研究神经元和突触的电生理特性。通过使用膜片钳技术,科学家可以记录神经元膜通道的电流,研究神经信号的传递和调节机制。例如,陈教授和他的研究团队利用膜片钳技术发现了一种新的神经调节机制,他们发现了一种离子通道蛋白,可以调节神经元的兴奋性,从而对神经信号的传递产生影响1。在细胞生物学领域,膜片钳技术被用于研究细胞的跨膜运输和信号转导机制。科学家可以记录细胞膜通道的开放和关闭,研究物质进出细胞的方式和调控机制。例如,张教授和他的研究团队利用膜片钳技术发现了新的钙离子通道,并研究了其在对细胞生长和凋亡的调控中的作用2。 在代谢疾病领域,膜片钳技术也被用于研究代谢过程中细胞膜通道的变化。例如,糖尿病患者的肾小管上皮细胞钠通道存在异常,导致钠重吸收增加,从而影响血糖的排泄和代谢。李教授和他的研究团队利用膜片钳技术发现了这一现象,为糖尿病的治疗提供了新的思路3。膜片钳技术在各学科研究中都具有广泛的应用前景。然而,随着科学技术的发展,膜片钳技术仍然面临着一些挑战,例如通道蛋白多样性和复杂性的问题,以及实验数据的分析和解读问题。未来,随着膜片

钳技术的不断改进和新技术的应用,我们相信这些问题会逐渐得到解决。 微光学器件在光通信、生物医学、军事等领域的应用越来越广泛。传统的微光学器件制造技术如光刻、干法刻蚀等存在加工成本高、设备复杂等问题,难以满足某些特定场景下的制造需求。因此,研究一种新型的微光学器件制造技术具有重要的现实意义。气动膜片式微滴喷射制造技术作为一种具有潜力实现微光学器件高效、低成本制造的技术,逐渐受到研究者的。 气动膜片式微滴喷射制造技术基于气动学原理,通过控制气体和液体的流速、压力等参数,实现液滴的精确喷射。该技术具有以下优点:可实现高效、低成本的制造,有望替代传统微光学器件制造技术; 可通过计算机控制系统实现精确控制,提高制造精度; 适用范围广,可用于各种形状和材料的光学器件制造。 本文采用理论分析和实验研究相结合的方法,对气动膜片式微滴喷射制造技术进行研究。首先建立数学模型,分析液滴的形成、运动和撞击等过程,然后进行实验验证,探索工艺参数对液滴喷射效果的影响。

膜片钳技术及其在神经科学研究中的应用

膜片钳技术及其在神经科学研究中的应用 膜片钳技术是一种在神经科学研究中广泛应用的技术,它可以用来记录和操纵神经元的电活动,为研究神经系统的功能和疾病提供重要的工具。本文将介绍膜片钳技术的原理和应用,并探讨其在神经科学研究中的重要性。 膜片钳技术是一种通过在神经元的细胞膜上形成一个微小的孔洞,并利用微电极记录神经元内外的电位差的方法。这种技术可以精确地记录神经元的动作电位,从而了解神经元的兴奋性和抑制性。膜片钳技术的原理基于电生理学的基本原理,即神经元的电活动是由离子通道的开关控制的。通过在神经元膜上形成一个微小的孔洞,可以通过微电极记录到神经元内外的电位差,从而了解离子通道的开关状态和神经元的电活动。 膜片钳技术在神经科学研究中有广泛的应用。首先,它可以用来研究神经元的膜电位和动作电位。研究人员可以通过在神经元膜上形成一个微小的孔洞,并利用膜片钳记录到神经元内外的电位差,从而了解神经元的电活动。这对于研究神经元的兴奋性和抑制性非常重要,有助于理解神经元的工作原理和信息传递过程。 膜片钳技术还可以用来研究离子通道的功能。离子通道是神经元膜上的蛋白质通道,它们控制着离子在神经元膜上的通透性,从而调节神经元的电活动。通过利用膜片钳技术,研究人员可以记录到离

子通道的电流,并分析离子通道的开关状态和功能特性。这对于研究离子通道的结构和功能非常重要,有助于揭示离子通道与神经系统功能和疾病之间的关系。 膜片钳技术还可以用来研究突触传递和突触可塑性。突触是神经元之间的连接点,通过突触传递神经信号。膜片钳技术可以用来记录到突触传递的电位变化,并研究突触的功能特性和可塑性。这对于理解神经系统的信息传递和学习记忆等高级功能非常重要。 在神经科学研究中,膜片钳技术的应用还包括单细胞蛋白质表达、药物筛选和基因编辑等方面。通过将膜片钳技术与其他技术结合,研究人员可以进一步探索神经系统的功能和疾病机制,为神经科学研究提供更加全面和深入的理解。 膜片钳技术是一种在神经科学研究中非常重要的技术,它可以记录和操纵神经元的电活动,为研究神经系统的功能和疾病提供重要的工具。通过膜片钳技术,研究人员可以了解神经元的膜电位和动作电位,研究离子通道的功能,研究突触传递和突触可塑性等。膜片钳技术的应用还包括单细胞蛋白质表达、药物筛选和基因编辑等方面。膜片钳技术的发展和应用将进一步推动神经科学的研究和应用,为我们揭示神经系统的奥秘提供更多的线索。

膜片钳技术及应用

膜片钳技术及应用 膜片钳技术及应用是一种常见的力学装置,由薄膜片、夹持手柄和支撑结构组成。膜片钳可用于夹持和固定物体,并且在广泛的领域中有着重要的应用。下面将对膜片钳的技术原理和应用领域进行详细介绍。 膜片钳的技术原理主要基于材料的力学性质。一般情况下,膜片钳采用弹性薄膜片作为夹持物体的夹持部分。当施加外力使薄膜片发生形变时,薄膜片会产生力与形变量成正比的特性,这种力被称为弹性力。通过调整薄膜片的形变程度和位置,可以达到对不同物体的夹持和固定的目的。 膜片钳的应用领域非常广泛。以下是一些常见的应用领域: 1. 医疗行业:膜片钳被广泛用于医疗器械的设计和制造。例如,在手术中,膜片钳可以用于夹持和固定组织、血管和器官,以便医生进行手术操作。膜片钳的特点是夹持力均匀,不会损伤组织和血管。 2. 实验室研究:膜片钳在实验室研究中也有广泛的应用。例如,在细胞学研究中,膜片钳可以用于夹持、拉伸和操纵细胞,以研究细胞的力学特性和细胞间的相互作用。此外,膜片钳还可以用于微流体实验中的液滴操纵和胶体粒子的固定。 3. 微机电系统(MEMS):膜片钳是制作微机电系统中常用的工具。在MEMS 器件制造过程中,需要对微米级物体进行精确操纵和固定。膜片钳结构简单,加

工工艺成熟,可以实现对微米级物体的夹持和固定。 4. 机械制造:膜片钳在机械制造过程中也有重要的应用。例如,在精密加工中,膜片钳可以用于夹持和固定零件,以确保加工精度。另外,膜片钳还可以用于装配过程中的夹持和定位。 总的来说,膜片钳技术及其应用在医疗、实验室研究、微机电系统和机械制造等领域起到了重要的作用。膜片钳具有结构简单、操作方便、夹持力均匀等特点,使其成为一种广泛使用的力学装置。随着科技的不断发展,膜片钳的应用领域还将不断扩大,为各个领域的科研和应用带来更多的便利和可能性。

细胞膜片钳实验

细胞膜片钳实验 实验技术: 一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。膜片钳技术是用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆以上的阻抗使之封接,使与电极尖开口处相接的细胞膜的小区域(膜片)与其周围在电学上分隔,在此基础上固定点位,对此膜片上的离子通道的离子电流(pA级)进行监测记录的方法。 实验技术原理: 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 实验操作流程: 1、标本制备:根据研究目的的不同,可采用不同的细胞组织,如心肌细胞、平滑肌细胞、肿瘤细胞等,现在几乎可对各种细胞进行膜片钳的研究。对所采用的细胞,必须满足实验要求,一般多采用酶解分离法,也可采用细胞培养法;另外,由于与分子生物学技术的结合,现在也运用分子克隆技术表达不同的离子通道,如利用非洲爪蟾卵母细胞表达外源性基因等。 2、电极制备:合格的膜片微电极是成功封接细胞膜的基本条件。要成功的封接细胞膜需要两方面的因素保证,一是设法造成干净的细胞膜表面,二是制成合格的电极。首先要选择适当的玻璃毛细管,其材料可使用软质玻璃(苏打玻璃、电石玻璃)或硬质玻璃(硼硅玻璃、铝硅玻璃、石英玻璃)。软玻璃电极常用于作全细胞记录,硬质玻璃因导电率低、噪声小而常用于离子单通道记录。 3、膜片钳实验系统:根据不同的电生理实验要求,可以组建不同的实验系统。 4、进行实验,记录和分析数据。[晶莱生物] 实验注意事项: 客户提供: 1、培养细胞:通过细胞计数取不少于2×106个细胞于EP管,加入0.5ml生理盐水或蛋白保护剂,混匀后保存于冰箱(-80℃,避免反复冻融); 2、实验信息:离子通道名称及亚型。 交付标准: 1、细胞膜电位的时程图 2、完整项目报告(材料、试剂、仪器、方法、数据分析、实验结果) 其他: 1、减少噪音,避免电极前端的污染,提高封接成功率, 2、记录模式,为记录特定离子电流 3、选择电极内、外液 4、选择阻断剂、激动剂 5、正确的数据采集 6、在形成高阻抗封接后,记录实验结果之前,通常要根据实验的要求进行参数补偿,以期获得符合实际的结果。 膜片钳使用的基本方法是,把经过加热抛光的玻璃微电极在液压推进器的操纵下,与清洁处理过的细胞膜形成高阻抗封接,导致电极内膜片与电极外的膜在电学上和化学上隔离起来,由于电性能隔离与微电极的相对低电阻(1~5MΩ),只要对微电极施以电压就能对膜片进

细胞电生理学基本原理与膜片钳技术

细胞电生理学基本原理与膜片钳技术 细胞电生理学是研究细胞内外电流、电压变化以及与生物学功能的关系的学科。而膜片钳技术则是细胞电生理学中最重要的实验技术之一,用于测量细胞膜上离子通道的电流。 细胞电生理学的基本原理是通过测量细胞膜上的电位变化来研究细胞内外离子的分布和运动。细胞膜是由脂质双层组成的,其中包含了各种离子通道和离子泵,这些离子通道和泵的开闭状态会导致细胞内外离子浓度的变化,从而产生电位的变化。 膜片钳技术是一种高精度的电生理记录技术,通过将玻璃微电极与细胞膜紧密接触,形成一个微小的隔离空间,从而可以测量细胞膜上的电位变化。膜片钳技术主要包括两种形式:全细胞膜片钳和单通道膜片钳。 全细胞膜片钳技术是将玻璃微电极与细胞膜上的一个小区域接触,通过控制微电极与细胞膜的紧密接触程度,形成一个微小的隔离空间,从而可以记录到整个细胞膜上的电位变化。全细胞膜片钳技术可以用来研究细胞内外离子浓度的变化、离子通道的活性以及细胞内外离子的转运等。 单通道膜片钳技术是将玻璃微电极与细胞膜上的某一个离子通道接触,通过控制微电极与细胞膜的紧密接触程度,形成一个微小的隔离空间,从而可以记录到单个离子通道的电流变化。单通道膜片钳

技术可以用来研究离子通道的电导率、选择性以及开闭状态等。 膜片钳技术的关键是保持微电极与细胞膜的紧密接触,这需要一定的技术和经验。在进行膜片钳实验时,需要注意控制微电极与细胞膜的距离、微电极的阻抗以及细胞膜的稳定性等因素,以确保记录到准确的电位变化或电流变化。 膜片钳技术的应用非常广泛。它可以用来研究离子通道的结构和功能,揭示离子通道与各种生物学功能的关系。比如,通过记录钠通道的电流变化,可以研究神经细胞的兴奋性和抑制性传递过程;通过记录钾通道的电流变化,可以研究细胞的稳定性和兴奋性调节等。膜片钳技术还可以用于药物筛选和药理学研究。通过记录离子通道的电流变化,可以评估不同药物对离子通道的影响,从而筛选出具有特定药理作用的药物。 细胞电生理学基本原理与膜片钳技术是研究细胞内外电流、电压变化以及与生物学功能的关系的重要工具。膜片钳技术通过高精度的电位和电流记录,能够揭示细胞膜上离子通道的电活性和离子通道与生物学功能的关系,对于理解细胞生理学和药理学具有重要意义。

膜片钳原理

膜片钳技术原理 可兴奋膜的电学模型 细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的;而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。 当改变跨膜电位时,膜电容和膜电导分别引发被动和主动电流:Im=Ii+CdV/dt,其中Im是流过膜的总电流,Ii是通道电流,CdV/dt是由膜电容介导的电容电流。为了考察通道电流就必须消除电容电流的影响,此时可以令dV/dt=0,即将膜电位钳制在一固定数值,使其不随时间变化,这就是电压钳技术的实质所在。 电压钳技术 离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术,基本原理如下: 电压钳技术的核心在于将膜电位固定在指令电压的水平,这样才能研究在给定膜电位下膜电流随时间的变化关系。在上图中,膜电位Vm由高输入阻抗的电压跟随器所测量。钳制放大器在比较了膜电位和指令电位E之后,通过电阻Ra将电流注入膜内以控制膜电位。钳制放大器的输出:Vo=A(E-Vm),因为这个输出由电阻Ra和膜所分压,所以输出电流:I=(Vo-Vm)/Ra。由这两个关系可推出:Vm=EA/(1+A)-RaI/(1+A)。因此若钳制放大器的增益A极大,膜电位Vm和指令电位E之间的差别就可以忽略,即实现了电压钳制。 Hodgkin、Huxley和Katz应用电压钳技术研究枪乌贼巨轴突,结合同位素示踪和胞内灌流等技术发现:动作电位的初期,细胞膜主要对钠离子的通透性发生改变,胞外的钠离子迅速内流,并产生所谓的“超射”现象(overshoot);随后对钠的通透性的急剧减少并且对钾离子的通透性增加。兴奋期的膜电位存在“超射”现象也是膜学说所不能解释的。 根据这些实验,Hodgkin、Huxley和Katz在其1949—1952年的一系列论文中提出了“离子学说”或“钠学说”。认为当膜的去极化超过一个临界值时,就会触发动作电位的产生。在此期间,钠电导迅速上升,钠离子大量内流,使得膜电位接近钠的平衡电位;随后钠电导迅速失活,钾电导逐渐增加,引起膜电位的复极化。 Hodgkin和Huxley通过对电压钳位实验数据的分析,给出了所谓的Hodgkin—Huxley方程。他们将膜电位钳制在不同的水平,观察钾电导或钠电导随时间的变化,然后用一个常微分方程去逼近所得到的实验曲线,而这些微分方程中的参数则假定跟离子通道上的“粒子”相关。根据H—H方程,能够推导出动作电位的阈值、形状、幅度等性质。并且在去除电压钳制的条件下,可以得到一个以电压和时间为变量的偏微分方程,由它可以给出和真实状况相符合的神经冲动的传导。 膜噪声和噪声分析 Katz等人在1970年代初期研究了蛙神经肌肉接头处肌纤维膜电位的波动。他们根据对这种膜电位“噪声”的分析,提出了量子释放的概念,认为神经递质是以囊泡的形式从突触前膜释放到突触间隙中。并且Katz等人借助这种新的“噪声分析”方法(fluctuation analysis),能从突触后膜电位的“噪声”中推测出单位事件的幅度和时程。Anderson、Stevens、Colquhoun和Sigworth等人进一步发展了“噪声分析”。 “噪声分析”的实质在于二项分布期望和方差之间的关系。假定通道只有开和关两个状态,并且各个通道的开关是独立的。若N是通道的总数,p是通道的开放概率,i是单通道电流,I是膜电流的期望值。则有:I=Npi,var(I)=Np(1-p)i2,即:var(I)=iI-I2/N。用var(I)对I作图,这显然是一个开口朝下的抛物线。微分这个二次方程得到曲线的斜率:dvar(I)/dI=i-2I/N,当I=0时的斜率就是单通道电流,根据钳制电位和反转电位之间的差就可以算出单通道电导;在抛物线的顶点即当:dvar(I)/dI=0时,I=Ni/2,由此可算出

膜片钳全细胞记录方式

膜片钳全细胞记录方式 一、膜片钳技术简介 膜片钳技术(Patch Clamp)是一种用于研究细胞膜离子通道及其功能的高精度实验技术。它通过高电阻的玻璃微吸管(patch pipette)与细胞膜形成一个密封的腔室,从而实现对细胞膜上的离子通道进行实时、定量检测。全细胞记录方式(Whole-Cell Patch Clamp)是膜片钳技术中的一种记录方式,可以广泛应用于神经生物学、药理学、生理学等领域。 二、全细胞记录方式原理 全细胞记录方式的原理是将玻璃微吸管插入细胞膜上,通过微吸管内部的电流放大器记录细胞膜上的离子通道电流。在实验过程中,首先将微吸管内的溶液与细胞外溶液达到平衡,然后逐渐增加微吸管内溶液的电位,使得细胞膜上的离子通道打开,记录到电流信号。随着微吸管内溶液电位的改变,离子通道的状态也会发生相应变化,从而得到全细胞电流记录。 三、实验操作步骤 1.选择合适的细胞样本:根据研究目的,选择具有相应离子通道的细胞类型。 2.制备玻璃微吸管:利用特殊设备切割玻璃片,制作出直径约为1-2μm的微吸管。 3.填充微吸管:将内径较细的毛细管插入微吸管,填充电极内溶液(如KCl、EGP-TEA等)。 4.贴附细胞:将制备好的微吸管轻轻接触到细胞膜,形成一个密封的腔

室。 5.封接:通过轻微的吸允作用,使微吸管与细胞膜紧密贴合,形成全细胞记录模式。 6.记录电流:逐渐增加微吸管内溶液的电位,记录细胞膜上的离子通道电流。 7.数据分析:根据电流信号,分析离子通道的开放状态、电流幅度和电压依赖性等特征。 四、应用领域及意义 全细胞记录方式广泛应用于神经生物学、药理学、生理学等领域,有助于深入了解离子通道的结构和功能,为相关疾病的诊断和治疗提供理论依据。例如,在神经科学领域,全细胞记录技术可以用于研究神经元动作电位的产生和传导机制;在药理学领域,可通过全细胞记录研究药物作用于离子通道的机制,为新药研发提供参考。 五、注意事项及优化方法 1.选择合适的细胞样本:细胞状态良好、形态完整是获得可靠实验结果的前提。 2.微吸管制作:高质量的微吸管是实现高精度记录的关键。 3.贴附和封接:操作过程中要保持轻柔,避免对细胞膜造成损伤。 4.优化实验条件:如温度、溶液成分等,以提高记录的稳定性和准确性。 5.数据分析:运用专业软件对电流信号进行处理和分析,挖掘有价值的信息。 综上所述,全细胞记录方式作为一种高精度、高灵敏度的实验技术,在生

膜片钳技术的基本原理

(一)膜片钳技术的基本原理: 膜片钳技术是用尖端直径1~2μm的玻璃微电极吸管与经蛋白酶处理干净的细胞膜接触,通过20~30cm H2O的负压吸引造成电极尖端与细胞膜形成高阻封接(10~100GΩ),使电极尖端下的小块膜片与膜的其它部分在电学上绝缘,并在此基础上固定膜片电位,监测几个μm2膜片上1~3个离子通道活动的方法。 高阻封接的形成:高阻封接形成与否是记录细胞离子通道电流能否成功的前提,是进行膜片钳实验的关键一步。微电极尖端与细胞膜形成封接的过程,可以采用软件或刺激器发出一个脉冲电压作用于微电极,造成膜两侧电位差发生变化,产生电极电流,再通过示波器或显示屏,观察电极电流幅度的变化来确定封接程度。在电极未入溶液之前,在显示器或示波器上可见一直线。当电极入液后,软件或刺激器发出的电脉冲经记录微电极、浴液及参考电极形成回路,1mV的封接电压流径5MΩ的电极阻抗,则会产生0.2nA的电流浮动,随着微电极尖端接近、接触细胞膜,电极电阻则进一步增加,而电流幅度则随之减小,当在显示器或示波器上看到电流方波变为直线时,则形成低阻封接(50MΩ),然后经微电极给予负压(-10~-30cm H2O),即可形成高阻封接。再将电脉冲调为10mV,调节快、慢电容电流补偿,消除电容电流,就可进行细胞贴附式膜片钳实验,如果在此基础上再次给予负压或电脉冲,使微电极尖端下膜片破裂,则形成全细胞式。

进行高阻封接时,需注意的是: ①在微电极未入液之前常施以正压,使电极内有液体从电极尖端流出,防止浴液表面灰尘或溶液中粒子附着于电极尖端,影响高阻封接。 ②如果微电极尖端与细胞膜接触后,仍不能形成高阻封接,则电极即不能再用,需重新换一根微电极继续封接。 ③电极尖端与细胞膜接触,稍加负压后电流波形变得平坦,此时,如使电极超极化,则有助于加速形成高阻封接。 ④电极入液后封接的成功率与入浴液后的时间呈反比,电极内液中的肽类或蛋白质成分也会有碍于封接形成。(入浴时间愈短,封接愈快)

神经生物学实验原理与技术

神经生物学实验原理与技术 神经生物学实验是研究神经系统结构和功能的重要手段,通过实验原理与技术的应用,可以深入探索神经生物学的奥秘。本文将从神经生物学实验的原理、常用技术和实验设计等方面进行介绍。 一、实验原理 神经生物学实验的原理是基于神经系统的生理学和生物化学特性,通过对神经元的功能和相互作用进行观察和测量,揭示神经系统的工作原理。实验原理包括以下几个方面: 1.1 神经元电活动的记录与分析 神经元产生的电活动是神经信号传递的基础,通过记录和分析神经元的电活动,可以研究神经元的兴奋性、抑制性和调控机制。常用的技术包括细胞外多通道记录、膜片钳技术和全细胞钳技术等。 1.2 突触传递的观察与研究 突触是神经元之间信息传递的关键结构,通过观察和研究突触的功能和调节机制,可以揭示神经元之间的相互作用和神经网络的形成与发展。常用的实验技术包括双电极记录、电压脉冲刺激和光遗传学等。 1.3 神经递质的测定与分析 神经递质是神经元之间信息传递的化学信号,通过测定和分析神经递质的含量和释放机制,可以揭示神经递质在神经系统中的作用和

调控。常用的技术包括高效液相色谱法、电化学检测和光学显微技术等。 二、常用技术 神经生物学实验中常用的技术包括以下几个方面: 2.1 细胞培养与维持 细胞培养是神经生物学实验的基础,通过培养神经元和神经细胞系,可以进行细胞生物学和分子生物学研究。常用的细胞培养技术包括原代细胞培养、细胞系培养和共培养等。 2.2 光遗传学技术 光遗传学技术是近年来发展起来的一种新型实验技术,通过利用光敏蛋白质和光源的激发,可以实现对神经元的精确激活或抑制,从而研究神经回路和行为功能。常用的光遗传学技术包括光遗传调控和光遗传成像等。 2.3 脑电图和脑成像技术 脑电图和脑成像技术可以非侵入性地观察和记录大脑的电活动和代谢活动,通过研究脑电波形和脑区的活动模式,可以了解大脑的功能状态和神经网络的连接方式。常用的脑电图和脑成像技术包括脑电图记录、功能磁共振成像和磁脑电图技术等。 三、实验设计

上海神经生物学脑定位膜片钳原理

上海神经生物学脑定位膜片钳原理 膜片钳技术是神经生物学研究中常用的一种电生理技术。它是通过在神经元膜上形成 一个极高电阻的小孔来测量神经元内膜电位变化的技术。上海神经生物学研究所通过研究 和发展,已经发展出了一种高效的脑定位膜片钳技术,可以在研究过程中定位到与特定行 为有关的神经元。 一、膜片钳技术的原理 神经元膜上存在着大量的离子通道,这些离子通道会使神经元膜的离子流动发生变化,进而产生微弱的电位变化。膜片钳技术正是利用这种微弱电位变化来测量神经元内膜电位 变化的。通过在神经元膜上形成一个与膜内环境相连的小孔,可以将玻璃电极的窄管放入 小孔内,形成一个电容,从而可以进行电位测量。 1. 针头更加精准:上海神经生物学研究所的研究团队精心设计了一种新型的玻璃针头,可以精准地进入脑组织中。这种新型针头的直径只有几微米,可以准确穿过神经元膜,将玻璃电极放入小孔中,从而实现对神经元膜电位变化的测量。 2. 仪器更加灵敏:上海神经生物学研究所的脑定位膜片钳技术仪器采用了高灵敏度 的电子元件,可以提高信号传输的精度和灵敏度,从而更加准确地测量神经元膜电位变 化。 3. 测量更加稳定:在进行膜片钳技术测量时,许多因素都可能对电位测量造成干扰,如细胞外离子浓度、温度和机械振动等。上海神经生物学研究所的脑定位膜片钳技术仪器 在设计时考虑了这些干扰因素,并加入了改善稳定性的技术手段,从而能够更加稳定地测 量神经元膜电位变化。 上海神经生物学研究所的脑定位膜片钳技术已经被广泛应用于神经生物学研究领域。 膜片钳技术结合了光遗传学技术,在对神经元进行定位的可以改变其内部电位或者激活或 抑制其兴奋性,从而探究神经元在不同条件下的活动模式。这项技术被用于研究神经元与 行为的相关性,同时也被用于研究神经元扰动与病理性神经功能障碍等方面的研究。 四、结语 上海神经生物学脑定位膜片钳技术具有高精度、高灵敏度和高稳定性的特点,并被广 泛应用于神经生物学研究领域。展望未来,这项技术将会成为神经精神疾病等领域的研究 热点,推动神经生物学的发展。五、上海神经生物学脑定位膜片钳技术在神经精神疾病研 究中的应用 神经精神疾病是一类涉及神经元功能异常的疾病,包括抑郁症、焦虑症、精神分裂症 和自闭症等。这些疾病的发病机制至今还没有完全清晰。

膜片钳记录和分析技术

九洲健康咨询台供 膜片钳记录和分析技术 细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科-电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。 早期的研究多使用双电极电压钳技术作细胞内电活动的记录。现代膜片钳技术是在电压钳技术的基础上发展起来的。 1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。以后由于吉欧姆阻抗封接(gigaohm seal, 109W)方法的确立和几种方法的创建。这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。 一、膜片钳技术发展历史 1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。 1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GW10-100G?的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。 1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1µm的空间分辨率和10µs的时间分辨率。 1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sakmann和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 二、膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见下图),由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。

神经生物学实验原理与技术

神经生物学实验原理与技术 一、神经元的电生理实验 神经元的电生理实验是研究神经元信号传导和电活动特性的重要方法之一、实验常用的技术包括膜片钳技术和全细胞钳技术。 1.膜片钳技术 膜片钳技术是通过在神经元膜上形成一个微小的玻璃电极负压,使其与神经元膜紧密接触,从而记录神经元的电位变化。膜片钳技术主要用于研究神经元的静息电位、动作电位等电生理特性。 2.全细胞钳技术 全细胞钳技术是通过在神经元内注入一种特殊的电解质溶液,形成电极与神经元内部的紧密接触,从而记录神经元内部的电活动和离子流动。全细胞钳技术常用于研究神经元的离子通道、突触传递等特性。 二、神经解剖实验 神经解剖实验是研究神经系统结构和功能的基本方法之一、通过解剖神经系统,可以了解其组织结构和神经元连接的方式。 1.脑切片技术 脑切片技术是将大脑等神经组织切成厚度在10-200微米的薄片,然后通过显微镜观察和研究。脑切片技术常用于研究神经元结构、突触形成和突触传递等。 2.神经示踪技术

神经示踪技术是通过标记和追踪神经纤维的方法,研究神经元之间的 连接方式和传递路径。常用的示踪技术包括逆行示踪和顺行示踪等。 三、分子生物学实验 分子生物学实验是研究神经系统基因表达和蛋白质功能的重要方法。 通过分子生物学技术,可以探索神经系统的发育和功能调控机制。 1.基因克隆技术 2.基因转染技术 基因转染技术是将外源基因导入到细胞中,并使之在细胞内表达的方法。常用的基因转染技术包括质粒转染、病毒介导转染等。 3.蛋白质分离与检测技术 蛋白质分离与检测技术是分析神经系统中蛋白质表达和功能的重要手段。常用的蛋白质分离与检测技术包括SDS-凝胶电泳、Western blotting、免疫组织化学方法等。 总结起来,神经生物学实验原理与技术主要包括神经元的电生理实验、神经解剖实验和分子生物学实验。通过这些实验,可以深入研究神经系统 的结构、功能和发育机制,为神经生物学领域的研究提供有力的手段。

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作(总7 页) -本页仅作为文档封面,使用时请直接删除即可- -内页可以根据需求调整合适字体及大小- 膜片钳技术原理与基本操作

1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique), 这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981年Hamill, Neher等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher和Sakmann获得1991年诺贝尔医学与生理学奖。—、膜片钳技术的基本原理 二、用一个尖端直径在〜um的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 三、基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高増益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 四、二、操作步骤 2.膜片钳微电极制作(1)玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多

相关文档
最新文档