集合中的求参数的取值范围

集合中的求参数的取值范围
集合中的求参数的取值范围

集合中的求参数的取值范围

题组一 子集中的求参数取值范围 1. 已知集合{

}

01032

≤--=x x x A .

(1)若{}121,-≤≤+=?m x m x B A B ,求实数m 的取值范围;(3≤m ) (2)若{}126,-≤≤-==m x m x B A B ,求实数m 的取值范围;(43≤≤m )

2. 已知集合{}12<≤-=x x A ,{},m x x B >=若B A ?,求m 的取值范围.(2-

3. 已知{}{}01|,023|2

=+==+-=ax x B x x x A ,满足B B A = ,求a

4. 已知{}{}03|,023|22=+-==+-=a x x x B x x x A ,满足B B A = ,求a

5. 已知{}{}02|,023|22=-+==+-=x ax x B x x x A ,满足B B A = ,求a

6. 已知集合{

}02

=++=q px x x A ,集合{

}

0232

=+-=x x x B ,且B B A = ,求q p ,的值

或其关系式.(q p 42

<或1,2=-=q p 或4,4=-=q p 或2,3=-=q p )

题组二 方程或不等式有解问题中的求参数取值范围

1. 方程()01452=---x x a 有实数根,求实数a 的取值范围.(1≥a )

2. 若关于x 的不等式()()02112>+-+-x m x m 的解集为R ,求m 的取值范围.(91<≤m )

3. 若方程0)1(2

=-++k x x k 有且仅有一个实数根,求实数k 的取值范围.(1-=k 或2

1-

=k )

题组三 集合运算中的求参数取值范围

1. 已知两个集合{}

{}32,022

+<<=≤--=a x a x B x x x A ,且满足φ=B A ,求实数a 的

取值范围.(4-≤a 或1≥a )

2. 对于实数集{

}

03422

=-+-=a ax x x A 和{}

022222=+++-=a a ax x x B ,是否存在实数a ,使φ=B A ?若不存在,请说明理由;若存在,求出a 的取值范围.(21<

3. 已知集合{

}0192

2=-+-=a ax x x A ,{

}

0652

=+-=x x x B ,

{

}

0822

=-+=x x x C ,且φφ=≠C A B A ,,求实数a 的值.(2-=a )

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围一?已知函数单调性,求参数的取值范围类型1 ?参数放在函数表达式上 例1. 设函数f(x) 2x33(a 1)x2 6ax 8其中a R ? ⑴若f (x)在x 3处得极值,求常数a的值. ⑵若f(x)在(,0)上为增函数,求a的取值范围 二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上 2 例3.已知f (x) x3 ax2 bx c在x —与x 1时都取得极值 3 (1 )求a、b的值及函数f (x)的单调区间. (2)若对x [ 1,2],不等式f (x) c—恒成立,求c的取值范围. 2 3. 已知函数f (x) x3— 2x 5,若对任意x [ 1,21都有f (x) m则实数m的取值范围是2 类型2.参数放在区间上 例4 .已知三次函数f(x) ax3 5x2 cx d图象上点(1,8)处的切线经过点(3,0),并且f(x)在x=3处有极值. (1 )求f (x)的解析式.(2)当x (0, m)时,f (x) >0恒成立,求实数m的取值范围. 分析:(1) f (x) x3 5x2 3x 9 ' 2 (2).f (x) 3x 10x 3 (3x 1)(x 3) 由f (x) 0 得x1 i,x2 3 当x (0,1)时f'(x) 0, f(x)单调递增,所以f (x) f (0) 9 3 3 当x (】,3)时f '(x) 0, f (x)单调递减,所以f (x) f(3) 0 3 所以当m 3时f(x) 0在(0,m)内不恒成立,当且仅当m (0,3]时f (x) 0在(0,m)内恒成立 所以m的取值范围为(0,3] 基础训练: 4. 若不等式x4 4x3 _________________________________________ 2 a对任意实数x都成立,则实数a的取值范围是________________________________________________________ .

解析几何中求参数取值范围的5种常用方法

解析几何中求参数取值范围的5种常用方法 解析几何中求参数取值范围的5种常用方法及经典例题详细解析: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0) 求证:-a2-b2a ≤ x0 ≤ a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. (x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2), =-b2a2 ?x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得 x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a ∴ -a2-b2a ≤ x0 ≤ a2-b2a

例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是() A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0)由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0 ∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立 又∵ y02≥0 而 2+ y028 最小值为2 ∴a≤2 选( B ) 二、利用判别式构造不等式

(完整版)利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围 一.已知函数单调性,求参数的取值范围 类型1.参数放在函数表达式上 例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23. 的取值范围 求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(. ,3)()1(-∞= 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例3.已知时都取得极值与在13 2)(23=-=+++=x x c bx ax x x f (1)求a、b的值及函数)(x f 的单调区间. (2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32 3 的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--= 类型2.参数放在区间上 例4.已知三次函数d cx x ax x f ++-=2 35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值. (1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围. 分析:(1)935)(23++-=x x x x f ] 3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3 1(9)0()()(,0)()3 1,0(3,310)() 3)(13(3103)().2(''21‘2'的取值范围为所以内恒成立 在时当且仅当内不恒成立在时所以当所以单调递减时当所以单调递增时当得由m m x f m ,m x f m f x f x f x f x f x f ,x f x f x x x x f x x x x x f >∈>>=><∈=>>∈===--=+-= 基础训练: .___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-

求参数取值范围一般方法

求参数取值范围一般方法 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 例2、已知(],1x ∈-∞时,不等式()21240x x a a ++-?>恒成立,求a 的取值范围。 1.若不等式x 2+ax+1≥0,对于一切x ∈[0, 2 1]都成立,则a 的最小值是__ 2.设124()lg ,3 x x a f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。 3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例1、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 例2:若不等式02)1()1(2 >+-+-x m x m 的解集是R ,求m 的范围。 例3.关于x 的不等式0622<+++m m mx x 在[]20,上恒成立,求实数m 的取值范围. 变式:若函数m m mx x y 622+++=在[]20,上有最小值16,求实数m 的值. 1.已知752+->x x x a a 0(>a 且)1≠a ,求x 的取值范围. 2.求函数)(log 2x x y a -=的单调区间.

导数中的求参数取值范围问题

帮你归纳总结(五):导数中的求参数取值范围问题 一、常见基本题型: (1)已知函数单调性,求参数的取值范围,如已知函数()f x 增区间,则在此区间上 导函数()0f x '≥,如已知函数()f x 减区间,则在此区间上导函数()0f x '≤。 (2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。 例1.已知a ∈R ,函数2 ()()e x f x x ax -=-+.(x ∈R ,e 为自然对数的底数) (1)若函数()(1,1)f x -在内单调递减,求a 的取值范围; (2)函数()f x 是否为R 上的单调函数,若是,求出a 的取值范围;若不是,请说明 理由. 解: (1)2 -()()e x f x x ax =-+Q -2 -()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e x x a x a ??-++??. ()()f x 要使在-1,1上单调递减, 则()0f x '≤ 对(1,1)x ∈- 都成立, 2 (2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2 ()(2)g x x a x a =-++,则(1)0, (1)0. g g -≤?? ≤? 1(2)01(2)0 a a a a +++≤?∴?-++≤?, 3 2a ∴≤-. (2)①若函数()f x 在R 上单调递减,则()0f x '≤ 对x ∈R 都成立 即2-(2)e 0x x a x a ??-++≤?? 对x ∈R 都成立. 2e 0,(2)0x x a x a ->∴-++≤Q 对x ∈R 都成立 令2 ()(2)g x x a x a =-++, Q 图象开口向上 ∴不可能对x ∈R 都成立 ②若函数()f x 在R 上单调递减,则()0f x '≥ 对x ∈R 都成立, 即2-(2)e 0x x a x a ??-++≥?? 对x ∈R 都成立, e 0,x ->Q 2(2)0x a x a ∴-++≥ 对x ∈R 都成立. 22(2)440a a a ?=+-=+>Q 故函数()f x 不可能在R 上单调递增. 综上可知,函数()f x 不可能是R 上的单调函数 例2:已知函数()()ln 3f x a x ax a R =--∈, 若函数()y f x =的图像在点(2,(2))f 处的切

线性规划题型三线性规划中的求参数取值或取值范围问题

线性规划题型三线性规划中的求参数取值或取 值范围问题 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

线性规划题型三 线性规划中的求参数取值或取值范围问题 一.已知含参数约束条件,求约束条件中参数的取值范围。 例1、已知|2x -y +m|<3表示的平面区域包含 点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 例2.已知:不等式9)2(2<+-m y x 表示的平面区域包含点(0,0)和点(-1,1)则m 的取值范围是() A(-3,6)B.(0,6)C(0,3)D(-3,3) 二.已知含参约束条件及目标函数的最优解,求约束条件中的参数取值问题 2.12,则实数k 的值为. 二.值或范围.

例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? 使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 变式、已知x 、y 满足以下约束条件5503x y x y x +≥??-+≥??≤?使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 若使z=x+ay(a<0)若使z=x+ay 取得最小值的最优解有无数个,则例2.已知:x 、y 满足约束条件?? ? ??≤-≤+-≥+-0 1033032y y x y x (-3,0)处取得最大值,求实数a 的取值范围.直线ax+by+c=0(a>0) b>0直线的斜率小于零,直线由左至右呈上升趋势 b<0直线的斜率大于零,直线由左至右呈下降趋势 若直线ax+by+c=0(a>0)则在ax+by+c=0(a>0)使ax 0+by 0+c>0,左侧的点P(x 0,y 0),使ax 0+by 0+c<0 若直线ax+by+c=0(a<0)则在ax+by+c=0(a>0)使ax 0+by 0+c<0,左侧的点P(x 0,y 0),使ax 0+by 0+c>0

导数求参数取值范围

一、已知单调性求参数取值范围 1.已知3 2 ()39f x x x x =--在区间(,21)a a -上单调递减,求则a 的取值范围 小结:若函数()f x (不含参数)在区间是(,)a b (含参数)上单调递增(递减), 则可解出函数()f x 的单调区间是(,)c d ,则(,)(,)a b c d ? 2.已知3 21()53 f x x x ax = ++-, (1)若()f x 的单调递减区间是(3,1)-, 求a 的取值范围 (2)若()f x 在区间[1,)+∞上单调递增,求a 的取值范围 小结:一个重要结论:设函数()f x 在(,)a b 内可导.若函数()f x 在(,)a b 内单调递增(减),则有' ' ()0(()0)f x f x ≥≤. 方法1:运用分离参数法,如参数可分离,则分离参数→构造函数()g x (可将有意义的端点改为闭)→求()g x 的最值→得参数的范围。 3.函数c bx ax x x f +++=2 3 )(,过曲线)(x f y =上的点))1(,1(f P 的切线方程为 .13+=x y . (1)若)(x f y =在2=x 时有极值,求)(x f 的表达式; (2)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围. 4.(2015重庆)设函数()()23x x ax f x a R e +=∈ (I )若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点 ()()1,1f 处的切线方程; (II )若()f x 在[)3,+∞上为减函数,求a 的取值范围。 5.(2014江西)已知函数. (1) 当时,求的极值; (2) 若 在区间 上单调递增,求b 的取值范围. 方法2:如参数不方便分离,而' ()f x 是二次函数,用根的分布: ①若' ()0f x =的两根容易求,则求根,考虑根的位置

集合中的求参数的取值范围

集合中的求参数的取值范围 题组一 子集中的求参数取值范围 1. 已知集合{ } 01032 ≤--=x x x A . (1)若{}121,-≤≤+=?m x m x B A B ,求实数m 的取值范围;(3≤m ) (2)若{}126,-≤≤-==m x m x B A B ,求实数m 的取值范围;(43≤≤m ) 2. 已知集合{}12<≤-=x x A ,{},m x x B >=若B A ?,求m 的取值范围.(2-

题组二 方程或不等式有解问题中的求参数取值范围 1. 方程()01452=---x x a 有实数根,求实数a 的取值范围.(1≥a ) 2. 若关于x 的不等式()()02112>+-+-x m x m 的解集为R ,求m 的取值范围.(91<≤m ) 3. 若方程0)1(2 =-++k x x k 有且仅有一个实数根,求实数k 的取值范围.(1-=k 或2 1- =k ) 题组三 集合运算中的求参数取值范围 1. 已知两个集合{} {}32,022 +<<=≤--=a x a x B x x x A ,且满足φ=B A ,求实数a 的 取值范围.(4-≤a 或1≥a ) 2. 对于实数集{ } 03422 =-+-=a ax x x A 和{} 022222=+++-=a a ax x x B ,是否存在实数a ,使φ=B A ?若不存在,请说明理由;若存在,求出a 的取值范围.(21<

导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题 含参数导数问题的分类讨论问题 1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★已知函数ax x a x x f 2)2(2 131)(23++-=(a>0),求函数的单调区间 )2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a x a x x f ln )2(2)(+-- =(a>0)求函数的单调区间 2 2 2) )(2(2)2()(x a x x x a x a x x f --=++-=' ★★★例3已知函数()()22 21 1 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()() 2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 ! 解:(Ⅰ)当1a =时,曲线()y f x =在点()() 2,2f 处的切线方程为032256=-+y x 。 (Ⅱ)由于0a ≠,所以()() 1 2)1(222+-+='x x a x f ,由 ()'0f x =,得121 ,x x a a =-=。这两个实根都在定 ()()()()()() 2 2 ' 2222 122122111a x a x a x x ax a a f x x x ? ?--+ ?+--+??==++义域R 内,但不知它们之间 的大小。因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。 (1)当0a >时,则12x x <。易得()f x 在区间1,a ? ? -∞- ??? ,(),a +∞内为减函数, 在区间1,a a ?? - ??? 为增函数。故函数()f x 在11x a =-处取得极小值 21f a a ?? -=- ??? ; 函数()f x 在2x a =处取得极大值()1f a =。 (1) 当0a <时,则12x x >。易得()f x 在区间),(a -∞,),1 (+∞-a 内为增函数,在区间 )1,(a a -为减函数。故函数()f x 在11 x a =-处取得极小值 21f a a ?? -=- ??? ;函数 ()f x 在 2x a =处取得极大值()1f a =。

导数中参数的取值范围问题

题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元); 第二种:分离变量求最值; 第三种:关于二次函数的不等式恒成立; 第四种:构造函数求最值;题型特征()()(x g x f >恒成立0)()()(>-=?x g x f x h 恒成立) ; 单参数放到不等式上 设函数1 ()(1)ln(1) f x x x = ++(1x ≠,且0x ≠) (1)求函数的单调区间; (2)求()f x 的取值范围; (3)已知11 (1)2 m x x +>+对任意(1,0)x ∈-恒成立,求实数m 的取值范围。 2.已知函数ln ()1a x b f x x x = ++在点(1,(1))f 处的切线方程为230x y +-= (1)求,a b 的值; (2)如果当0x >,且1x ≠时,ln ()1x k f x x x =+-,求k 的取值范围.

3.已知函数4 4 ()ln (0)f x a x b c x x x =+->在 0x >出取得极值3c -- ,其中 ,,a b c 为常数. (1)试确定,a b 的值; (2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2 ()2f x c ≥-恒成立,求c 的取值范围。 4.已知函数2 ()21f x ax x = ++,()a g x x = ,其中0,0a x >≠ (1)对任意的[1,2]x ∈,都有()()f x g x >恒成立,求实数a 的取值范围; (2)对任意的1 2 [1,2],[2,4]x x ∈∈,2 1 )()(f g x x >恒成立,求实数a 的取值范围 5.已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >.若对任意的[]12,1x x e ∈,(e 为 自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围

利用导数求参数取值范围的几种类型(1)

利用导数求参数取值范围的几种类型 学习目标:(1)学会利用导数的方法求参数的取值范围 (2)通过学习培养善于思考,善于总结的思维习惯 学习重点:学会利用函数的单调性求参数的取值范围;学会利用不等式求参数的取值范围 学习难点:在求参数的取值范围中构造关于x 的函数 学习过程: 类型1. 与函数单调性有关的类型 例1. 已知0a >,函数3()f x x ax =-在[)1,x ∈+∞是一个单调函数。 (1) 试问函数()f x 在[)1,+∞上是否为单调减函数?请说明理由; (2) 若函数()y f x =在[)1,+∞上是单调增函数,试求a 的取值范围。 解:(1)'2()3f x x a =-,若函数()f x 在区间[)1,+∞上单调递减,则'2()30f x x a =-≤在[)1,x ∈+∞上恒成立,即23x a ≤对[)1,x ∈+∞恒成立,这样的a 值不存在。所以函数()f x 在区间[)1,+∞上不是单调减函数。 (2)函数()y f x =在区间[)1,+∞上是单调增函数,则'2()3f x x a =-0≥,即23a x ≤在[)1,x ∈+∞上恒成立,在此区间上233y x =≥,从而得03a <≤ 规律小结:函数在区间(a ,b)上递增'()0f x ?≥,递减'()f x ?0≤在此基础上再 研究参数的取值范围(一般可用不等式恒成立理论求解)注意:解出的参数的值要是使'()f x 恒等于0,则参数的这个值应舍去,否则保留。 类型2. 与不等式有关的类型 例2. 设函数1()(01)ln f x x x x x =>≠且 (1) 求函数()f x 的单调区间; (2) 已知12a x x >对任意(0,1)x ∈成立,求实数a 的取值范围 解:(1)'22ln 1()x f x +=-,'1()0,f x x ==若则,列表如下:

极坐标与参数方程取值范围问题

极坐标与参数方程取值范围问题一.解答题(共12小题) 1.已知曲线C 1的极坐标方程为ρ2cos2θ=8,曲线C 2 的极坐标方程为,曲线C 1 、 C 2 相交于A、B两点.(p∈R) (Ⅰ)求A、B两点的极坐标; (Ⅱ)曲线C 1 与直线(t为参数)分别相交于M,N两点,求线段MN的长度.2.【坐标系与参数方程】设直线l的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=. (1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l与曲线C交于A、B两点,求|AB|. 3.(选修4﹣4:坐标系与参数方程)已知曲线C的参数方程是(φ为参数,a >0),直线l的参数方程是(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系. (Ⅰ)求曲线C普通方程; (Ⅱ)若点在曲线C上,求的值. 4.已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐 标系,圆锥曲线C的极坐标方程为,定点,F 1,F 2 是圆锥曲线C的左、右焦点.直 线经过点F 1且平行于直线AF 2 . (Ⅰ)求圆锥曲线C和直线的直角坐标方程; (Ⅱ)若直线与圆锥曲线C交于M,N两点,求|F 1M|?|F 1 N|. 5.在平面直角坐标系xoy中,曲线C 1 的参数方程为(a>b>0,?为参数),在 以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C 2 是圆心在极轴上,且经 过极点的圆.已知曲线C 1上的点对应的参数?=,射线θ=与曲线C 2 交于点. (Ⅰ)求曲线C 1,C 2 的方程; (Ⅱ)若点A(ρ 1,θ),在曲线C 1 上,求的值. 6.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,),半径r=,点P的极坐标为(2,π),过P

利用导数求参数的取值范围方法归纳(可编辑修改word版)

1 ' 利用导数求参数的取值范围 一.已知函数单调性,求参数的取值范围 类型 1.参数放在函数表达式上 例1. 设函数 f (x ) = 2x 3 - 3(a + 1)x 2 + 6ax + 8其中a ∈ R . (1) 若f (x )在x = 3处得极值, 求常数a 的值. (2) 若f (x )在(-∞,0)上为增函数, 求a 的取值范围 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例 3.已知 f (x ) = x 3 + ax 2 + bx + c 在x = - 2 与x = 1时都取得极值 3 (1) 求a、b的值及函数 f (x ) 的单调区间. (2) 若对 x ∈[-1,2],不等式f (x ) < c 2 恒成立,求c的取值范围. 3. 已知函数f (x ) = x 3 - x 2 - 2x + 5, 若对任意x ∈[-1,2]都有f (x ) > m 则实数m 的取值范围是 类型 2.参数放在区间上 例4.已知三次函数 f (x ) = ax 3 - 5x 2 + cx + d 图象上点(1,8)处的切线经过点(3,0),并且 f (x ) 在 x=3 处有极值. (1)求 f (x ) 的解析式.(2)当 x ∈ (0, m ) 时, 分析:(1) f (x ) = x 3 - 5x 2 + 3x + 9 (2). f ' (x ) = 3x 2 - 10x + 3 = (3x - 1)(x - 3) f (x ) >0 恒成立,求实数 m 的取值范围. 由f ‘ (x ) = 0得x = 1 , x 3 2 = 3当x ∈ (0, )时f (x ) > 0, f (x )单调递增, 所以f (x ) > 3 f (0) = 9 当x ∈ (1 ,3)时f ' (x ) < 0, f (x )单调递减, 所以f (x ) > 3 f (3) = 0 所以当m > 3时f (x ) > 0在(0, m )内不恒成立, 当且仅当m ∈ (0,3]时f (x ) > 0在(0, m )内恒成立 所以m 的取值范围为(0,3] 基础训练: 4. 若不等式x 4 - 4x 3 ≥ 2 - a 对任意实数x 都成立, 则实数a 的取值范围是 . 1 2

浅谈参数取值范围问题在函数习题中的求解思路

浅谈参数取值范围问题在函数习题中的求解思路 浅谈参数取值范围问题在函数习题中的求解思路 许多学生对函参数的不等式如何确定参数取值范围茫然不知所措。而且这类问题思维要求高,解法也较灵活,故学生难以掌握。但若我们能认真观察分析一下这类问题的特征,其实这类题目的规律性是较强的。下面就结合例子给出解决此类问题的几种方法: 一、分离参数法 所谓分离参数法也就是将参数与未知量分离于表达式的两边,然后根据未知量的取值范围情况决定参数的范围。这种方法可避免分类讨论的麻烦,使问题得到简单明快的解决。当参数与变量能分离且函数的最值易求出。利用这种方法可以顺利解决许多含参数不等式中的取值问题,还可以用来证明一些不等式。 例1 如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数求实数a的值范围。 解:抛物线f(x)=x2+2(a-1)x+2的对称轴直线x=1-a,因此它的单调减区间为(-∞,1-a],依题设,(-∞,4](-∞,1-a]∴1-a≥4即a≤-3。 二、主参换位法 某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度。即把变元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。 例2 若对于任意a∈(-1,1],函数f(x)=x2(a-4)x+4-2a的值恒大于0,求x的取值范围。 分析:此题若把它看成x的二次函数,由于a, x都要变,则函数的最小值很难求出,思路受阻。若视a为主元,则给解题带来转机。 解:设g(a)=(x-2)a+x2-4x+4,把它看成关于a的直线,由题意知,直线恒在横轴下方。所以g(1)>0,g(-1)≥0 解得:x<1或x=2 或 x≥3 例3 对于(0,3)上的一切实数x,不等式(x-2)m<2x-1恒成立,求实数m的取值范围。 分析:一般的思路是求x的表达式,利用条件求m的取值范围。但求x的表达式时,两边必须除以有关m的式子,涉及对m讨论,显得麻烦。 解:若设f(x)=(x-2)m-(2x-1)=(m-2)x+(1-2m),把它看成是关于x的直线,由题意知直线恒在x的轴的下方。所以 f(0)≤0 f(3)≤0 解得≤m≤5 三、构造函数法 当参数难以分离而不等式是有关某个变量的一次或二次函数时,可以通过构建函数来解决。我们知道,函数概念是高中数学的一个很重要的概念,其思想和方法已渗透到数学的各个分支。在某些数学问题中,通过数式类比,构造适当的函数模型,然后利用函数的有关性质结论解题,往往收到意想不到的效果。 例4 若对一切|p|≤2 ,不等式x2+px+1>2x+p恒成立,求实数x的取值范围。 解:原不等式变形为p(x-1)+x2-2x+1>0,现在考虑p的一次函数:f(p)=p(x -1)+x2-2x+1(|p|≤2) ∴f(p)>0在 p∈[-2,2]上恒成立

导数中求参数的取值范围

导数中求参数的取值范围 求参数取值范围的方法 1.分离参数,恒成立转化为最值问题 2.分离参数,结合零点和单调性解不等式 3.将参数分成若干个区间讨论是否满足题意 1已知函数 ()-x f x e ax =(a R ∈,e 为自然对数的底数). (Ⅰ)讨论函数() f x 的单调性; (Ⅱ)若1a =,函数()()()2x g x x m f x e x x =--++在()2,+∞上为增函数,求实数m 的取值范围. 解:(Ⅰ)函数() f x 的定义域为R ,()x f x e a '=-. 当0a ≤时, ()0f x '>,∴ () f x 在R 上为增函数; 当0a >时,由()0f x '=得ln x a =, 当(),ln x a ∈-∞时,()0f x '<,∴函数()f x 在(),ln a -∞上为减函数, 当 () ln ,x a ∈+∞时, ()0 f x '>,∴函数 () f x 在( ) ln ,a +∞上为增函数……4分 (Ⅱ)当1a =时, ()()()2x x g x x m e x e x x =---++, ∵ () g x 在()2,+∞上为增函数;∴()10x x g x xe me m '=-++≥在()2,+∞上恒成 立,即 1 1x x xe m e +≤-在()2,+∞上恒成立, …………………………6分 令 ()11x x xe h x e +=-,()2,x ∈+∞,则()()() 2 2 21x x x x e xe e h x e --'== -() () 2 21x x x e e x e ---, 令()2x L x e x =--, ()10 x L x e '=->在( ) 2,+∞上恒成立, 即 ()2 x L x e x =--在()2,+∞上为增函数,即()()2240L x L e >=->, ∴()0h x '>,即()11x x xe h x e +=-在()2,+∞上为增函数,∴ ()()22 21 21e h x h e +>=-, ∴2 2 211e m e +≤-,所以实数m 的取值范围是 2 221,1e e ??+-∞ ?-??. ………………12分

导数求参数的取值范围习题

一. 已知函数单调性,求参数的取值范围 类型1.参数放在函数表达式上 例1.设函数R a ax x a x x f ∈+++-=其中86)1(32)(23. 的取值范围 求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(. ,3)()1(-∞= 解题方法总结:求)('x f 后,若能因式分解则先因式分解,讨论)('x f =0两根的大小 判断函数)(x f 的单调性,若不能因式分解可利用函数单调性的充要条件转化为恒成 立问题. 基础训练: .)().2(; )().1(1 ,1)1(32)(.123的极值讨论的单调区间求其中设函数x f x f a x a x x f ≥+--= 类型2.参数放在区间边界上 例2.已知函数)(,0)(23x f y x d cx bx ax x f ==+++=曲线处取得极值在过原点和点 p(-1,2),若曲线)(x f y =在点P 处的切线与直线 452的夹角为x y =且切线的倾斜角为 钝角. (1) 求)(x f 的表达式 (2) 若)(x f 在区间[2m-1,m+1]上递增,求m 的取值范围.

.,]1,[)(,73)(.223的取值范围求上单调递增在若已知函数a a a x f x x x f +-+= 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例3.已知时都取得极值与在13 2)(23=-=+++=x x c bx ax x x f (1) 求a、b的值及函数)(x f 的单调区间. (2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. 总结:区间给定情况下,转化为求函数在给定区间上的最值. 基础训练: __________)(]2,1[,522 )(.32 3的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--= 类型2.参数放在区间上 例4.已知三次函数d cx x ax x f ++-=235)(图象上点(1,8)处的切线经过点(3,0),并且 )(x f 在x=3处有极值. (1) 求)(x f 的解析式. (2) 当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围.

专题—求参数取值范围一般方法

专题——求参数取值范围一般方法 概念与用法 恒成立问题是数学中常见问题,也是历年高考的一个热点。题型特点大多以已知一个变量的取值范围,求另一个变量的取值范围的形式出现。这样的题型会出现于代数中的不等式里也会出现在几何里。就常考题型的一般题型以及解题方法,我在这里做了个小结。 题型以及解题方法 一,分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ?? ? 当2x =时,()max 2f x = 所以2a > 例2.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。 分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。 解:原不等式即:4sinx+cos2x<45-a -a+5 要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。 f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3, ∴45-a -a+5>3即45-a >a+2 上式等价于?? ???->-≥-≥-2)2(4504502a a a a 或???≥-<-0 4502a a ,解得≤54a<8. 说明:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若把sinx 换元成t,则可把原不等式转化成关于t 的二次函数类型。 二,变主换元 在给出的含有两个变量的不等式中,学生习惯把变量x 看成是主元(未知数),而把另

解析几何中求参数取值范围的方法

解析几何中求参数取值范围的方法近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-aa,-bb,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围 常见的策略和方法. 例1 已知椭圆 x2a2 + y2b2 = 1 (a0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0) 求证:-a2-b2a a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. 解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1x2)代入椭圆

方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得 x0=x1+x22 a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 -aa, -aa, x1x2 以及-ax1+x22 a -a2-b2a a2-b2a 例2 如图,已知△OFQ的面积为S,且OFFQ=1,若 12 2 ,求向量OF与FQ的夹角的取值范围. 分析:须通过题中条件建立夹角与变量S的关系,利用S的范围解题. 解: 依题意有 tan=2S ∵12 2 1 tan4 又∵0 4 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ||a|,则a的取值范围是 ( ) A a0 B a2 C 02 D 0 p 分析:直接设Q点坐标,利用题中不等式|PQ||a| 求解. 解: 设Q( y024 ,y0) 由|PQ| a 得y02+( y024 -a)2a2 即y02(y02+16-8a) 0

相关文档
最新文档