和积法计算最大特征向量实例

和积法计算最大特征向量实例
和积法计算最大特征向量实例

已知66?判断矩阵11141

1/2112411/211/21531/21/41/41/5

11/31/3111/3311222311????????=??????????B ,利用和积法计算其最大特征向量。

1将判断矩阵的每一列元素作归一化处理得'B :

[]61 6.25 5.75 6.53207.33 3.83ij

i b ==∑1,2,,6j =

则:

'0.160.170.150.200.140.130.160.170.300.200.140.130.160.090.150.250.420.130.04

0.040.030.050.050.090.160.170.050.150.140.260.320.340.300.150.140.26????????=??????????

B 2将每一列经归一化处理后的判断矩阵按列相加得'w :

[]T 'T 0.95 1.10 1.200.300.93 1.51=w

61 5.99j j w

==∑

3对向量'w 作归一化处理得最大特征向量w :

[]T T 0.160.180.200.050.160.25=w

4计算判断矩阵最大特征根max λ:

[]T T ()=1.025 1.225 1.3050.309 1.066 1.64Bw max 111 1.025 1.225 1.3050.309 1.066 1.64==() 6.3560.160.180.20.050.160.25n i i BW n w λ=?+++++=∑ 5判断矩阵一致性指标C.I.(Consistency Index ):

max 6.356C.I.=0.07161

n

n λ--==-- 6随机一致性比率C.R.(Consistency Ratio ):

C.I.0.07C.R.=0.0560.10R.I. 1.24

==< 满足要求。

向量数量积的运算律

向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定能推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:|a |=3,|b |=1,|c |=3,< a ,b >=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),这是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=22||2||b b a a +?+; (2)(a +b )·(a -b )=22||||-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:

和积法计算最大特征向量实例

已知66?判断矩阵11141 1/2112411/211/21531/21/41/41/5 11/31/3111/3311222311????????=??????????B ,利用和积法计算其最大特征向量。 1将判断矩阵的每一列元素作归一化处理得'B : []61 6.25 5.75 6.53207.33 3.83ij i b ==∑1,2,,6j = 则: '0.160.170.150.200.140.130.160.170.300.200.140.130.160.090.150.250.420.130.04 0.040.030.050.050.090.160.170.050.150.140.260.320.340.300.150.140.26????????=?????????? B 2将每一列经归一化处理后的判断矩阵按列相加得'w : []T 'T 0.95 1.10 1.200.300.93 1.51=w 61 5.99j j w ==∑ 3对向量'w 作归一化处理得最大特征向量w : []T T 0.160.180.200.050.160.25=w 4计算判断矩阵最大特征根max λ: []T T ()=1.025 1.225 1.3050.309 1.066 1.64Bw max 111 1.025 1.225 1.3050.309 1.066 1.64==() 6.3560.160.180.20.050.160.25n i i BW n w λ=?+++++=∑ 5判断矩阵一致性指标C.I.(Consistency Index ):

max 6.356C.I.=0.07161 n n λ--==-- 6随机一致性比率C.R.(Consistency Ratio ): C.I.0.07C.R.=0.0560.10R.I. 1.24 ==< 满足要求。

向量公式大全

向量公式大全 『ps.加粗字母表示向量』1.向量加法 羈AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 罿AB-AC=CB 即“共同起点,指向被减”

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ

向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积

定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0

特征值与特征向量定义与计算

特征值与特征向量 特征值与特征向量的概念及其计算 定义1. 设A是数域P上的一个n阶矩阵,λ是一个未知量, 称为A的特征多项式,记?(λ)=| λE-A|,是一个P上的关于λ 的n次多项式,E是单位矩阵。 ?(λ)=| λE-A|=λn+α1λn-1+…+αn= 0是一个n次代数方程,称为A 的特征方程。特征方程?(λ)=| λE-A|=0的根(如:λ0) 称为A的特征根(或特征值)。n次代数方程在复数域有且仅有n 个根,而在实数域不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。 以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为 |λ0E-A|=0,(λ0E-A)X=θ必存在非零解X(0),X(0) 称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。

一.特征值与特征向量的求法 对于矩阵A,由AX=λ0X,λ0EX=AX,得: [λ0E-A]X=θ即齐次线性方程组 有非零解的充分必要条件是: 即说明特征根是特征多项式|λ0E-A| =0的根,由代数基本定理 有n个复根λ1, λ2,…, λn,为A的n个特征根。

当特征根λi (I=1,2,…,n)求出后,(λi E-A)X=θ是齐次方程,λi均会使|λi E-A|=0,(λi E-A)X=θ必存在非零解,且有无穷个解向量,(λi E-A)X=θ的基础解系以及基础解系的线性组合都是A的特征向量。 例1. 求矩阵的特征值与特征向量。 解:由特征方程 解得A有2重特征值λ1=λ2=-2,有单特征值λ3=4 对于特征值λ1=λ2=-2,解方程组(-2E-A)x=θ 得同解方程组x1-x2+x3=0 解为x1=x2-x3 (x2,x3为自由未知量)

平面向量数量积及运算基础练习题

精品 平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a) ·b=λ·(a b)=a · (λb), (2)|a ·b|= | a |·| b |, (3)(a ·b)· c= a · (b ·c), (4)(a+b) · c = a ·c+b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a+b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b)和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若2AB BC AB 0?+=,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b, d =λa -b ,若c ⊥d,则实数λ的值为( ) A . 74 B .75 C .47 D .5 7 8、设 a,b,c 是平面内任意的非零向量且相互不共线,则其中真命题是 ( ) ① (a ·b)·c -(c ·a)·b=0 ② | a | -| b |< | a -b | ③ (b ·c)·a -(c ·a)·b 不与c 垂直 ④ (3a+2b) ·(3a -2b)= 9| a | 2-4| b | 2 A .①② B .②③ C .③④ D .②④ 9.(陕西)已知非零向量AB 与AC 满足0AB AC BC AB AC ?? ?+?= ???且12AB AC AB AC ?=, 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10(全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?,则点O 是ABC △的 .A 三个内角的角平分线的交点 .B 三条边的垂直平分线的交点 .C 三条中线的交点 .D 三条高的交点 11.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b ,若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( ). A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

平面向量的数量积运算

考点71 平面向量的数量积运算 1.(13天津T12)在平行四边形ABCD 中, AD = 1, 60BAD ?∠=, E 为CD 的中点. 若1AC BE = , 则AB 的长为 . 【测量目标】向量的线性运算,平面向量的数量积运算. 【难易程度】简单 【参考答案】 12 【试题解析】用,AB AD 表示AC 与BE ,然后进行向量的数量积运算. 由已知得AC =AD AB + ,12 BE BC CE AD AB =+=- , ∴AC BE =221122 AD AB AD AB AD AB -+- 211122AB AD AB =+- 2111cos 60122AB AD AB ? =+-= ,(步骤1) ∴1 2 AB = .(步骤2) jxq59 2.(13新课标Ⅰ T13)已知两个单位向量,a b 的夹角为60 ,c =t a +(1-t )b 若b c =0,则t =__________. 【测量目标】平面向量的数量积. 【难易程度】容易 【参考答案】2t = 【试题解析】∵c =t a +(1-t )b ,∴b c =t a b +(1-t )|b |2.(步骤1) 又∵|a |=|b |=1,且a 与b 夹角为60 ,b ⊥c ,∴0=t |a | |b |cos 60 +(1-t ), 0= 1 2 t +1-t .∴t =2.(步骤2) 3.(13江西T12)设1e ,2e 为单位向量.且1e ,2e 的夹角为π 3 ,若123=+a e e ,12=b e ,则向量a 在b 方向上的射影为 ___________. 【测量目标】平面向量的数量积运算. 【难易程度】容易 【参考答案】 52

权重确定方法归纳解读

权重确定方法归纳 多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。 按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。下面就对当前应用较多的评价方法进行阐述。 一、变异系数法 (一)变异系数法简介 变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。是一种客观赋权的方法。此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。 由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。各项指标的变异系数公式如下:

和积法具体计算步骤

和积法具体计算步骤 1将判断矩阵的每一列元素作归一化处理: '1 ij ij n ij i b b b == ∑ ,1,2,,i j n =K 2将每一列经归一化处理后的判断矩阵按列相加: ' '1n i ij j w b ==∑ 1,2,,i n =K 3对向量''''T 12(,,,)n W w w w =K 作归一化处理: ' '1 i i n i i w w w == ∑ 1,2,,i n =K 得到T 12(,,,)n W w w w =K 即为所求特征向量的近似解。 4计算判断矩阵最大特征根max λ: max 11=n i i BW n w λ=∑ 5判断矩阵一致性指标C.I.(Consistency Index ): max C.I.= 1 n n λ-- 6随机一致性比率C.R.(Consistency Ratio ): C.I. C.R.= R.I. 对于多阶判断矩阵,引入平均随机一致性指标R.I.(Random Index ),下表给出了1-15阶正互反矩阵计算1000次得到的平均随机一致性指标,当C.R.0.10时,便认为判断矩阵具有可以接受的一 致性。

方根法具体计算步骤 1将判断矩阵的每一行元素相乘: 1n i ij j m b ==∏ 1,2,,i n =K 2计算i m 的n 次方根'i w : 'i w = 1,2,,i n =K 3对向量''''T 12(,,,)n W w w w =K 作归一化处理: ' '1 i i n i i w w w == ∑ 1,2,,i n =K 得到T 12(,,,)n W w w w =K 即为所求特征向量的近似解。

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

向量的数量积经典例题(含详细答案)

向量的数量积经典例题(含详细答案) 1.已知3,4a b ==r r ,,a b r r 的夹角为120o . 求(1)a b r r g ,()() 22a b a b +?-r r r r ;(2)23a b +r r 2.已知向量a r 、b r 的夹角为2,||1,||23 a b π==r r . (1)求a r ·b r 的值 (2)若2a b -r r 和ta b +r r 垂直,求实数t 的值. 3.已知平面向量()()1,2,2,a b m =-=r r (1)若a b ⊥r r ,求2a b +r r ; (2)若0m =,求a b +r r 与a b -r r 夹角的余弦值. 4.已知向量(2,1),(3,2),(3,4)a b c =-=-=r r r , (1)求()a b c ?+r r r ; (2)若()a b c λ+r r r ∥,求实数λ的值.

5.已知||2a =r ,||b =r (23)()2a b a b -+=r r r r . (1)求a b ?r r 的值; (2)求a r 与b r 所成角的大小. 6.已知()1,2a =r ,()3,4b =-r (1)若ka b +r r 与2a b -r r 共线,求k ; (2)若ka b +r r 与2a b -r r 垂直,求k . 7.已知2,3a b ==r r ,a r 与b r 的夹角为60?,53c a b =+r r r ,3d a kb =+r r r , (1)当c d v P v 时,求实数k 的值; (2)当c d ⊥r u r 时,求实数k 的值.

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

向量公式大全83635

向量公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b

向量数量积定义和运算律(学习资料)

课时作业21向量数量积的物理背景与定义 向量数量积的运算律 时间:45分钟满分:100分 一、选择题(每小题6分,共计36分) 1.若|a|=3,|b|=4,a,b的夹角为135°,则a·b=() A.-3 2 B.-6 2 C.6 2 D.12 解析:∵a·b=|a||b|cos135°=3×4×(- 2 2)=-6 2. 答案:B 2.若非零向量a,b满足|a|=|b|,(2a+b)·b=0,则a与b的夹角为() A.30°B.60° C.120°D.150° 解析:本题考查向量的夹角公式. 由(2a+b)·b=0得2a·b+b2=0,从而a·b=-b2 2, 所以cos〈a,b〉=a·b |a||b|= - b2 2 |a|·|b|=- 1 2,〈a,b〉=120°. 答案:C 3.设向量a,b,c满足a+b+c=0,a⊥b,|a|=1,|b|=2,则|c|2等于()

A .1 B .2 C .4 D .5 解析:|c |2=|a +b |2=|a |2+|b |2+2a ·b =5. 答案:D 4.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2 D .0 解析:∵a ⊥c ,∴a ·c =0.∵a ∥b ,∴b ⊥c .∴b ·c =0. ∴c ·(a +2b )=c ·a +2b ·c =0. 答案:D 5.如图,在菱形ABCD 中,下列关系式不正确的是( ) A.AB →∥CD → B .(AB →+B C →)⊥(BC →+C D →) C .(AB →-A D →)·(BA →-BC →)=0 D.AB →·AD →=BC →·CD → 解析:A 显然正确; B :AB →+B C →=AC →,BC →+C D →=BD →,∵菱形对角线互相垂直, ∴AC →⊥BD →.∴B 正确. C :AB →-A D →=DB →,BA →-BC →=CA →,同B 一样,正确.

平面向量的数量积及运算练习题

周周清13平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a ) ·b =λ·(a b )=a · (λb ), (2)|a ·b |= | a |·| b |, (3)(a ·b )· c = a · (b ·c ), (4)(a +b ) · c = a ·c +b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=u u u v u u u v u u u v u u u v ,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a +b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b )和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若 2AB BC AB 0?+=u u u v u u u v u u u v ,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b , d =λa -b ,若c ⊥d ,则实数λ的值为( ) A . 7 4 B . 7 5 C . 4 7 D . 5 7 8、设 a ,b ,c 是平面内任意的非零向量且相互不共线,则 ( ) ① (a ·b )·c -(c ·a )·b =0 ② | a | -| b |< | a -b | ③ (b ·c )·a -(c ·a )·b 不与c 垂直 ④ (3a +2b ) ·(3a -2b )= 9| a | 2 -4| b | 2 其中真命题是 ( ) A .①② B .②③ C .③④ D .②④ 9.(06陕西)已知非零向量AB u u u r 与AC u u u r 满足0AB AC BC AB AC ?? ?+?= ??? u u u r u u u r u u u r u u u r u u u r 且12 AB AC AB AC ?=u u u r u u u r u u u r u u u r , 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10.(05全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?u u u r u u u r u u u r u u u r u u u r u u u r ,则点O 是

权重确定和计算

3.3评价因素权重确定的基本理论 权重是一个相对的概念,在评价因素体系中每个因素对实现评价目标和功能的相对重要程度就是该因素的权重。权重是综合评价的重要信息,一组评价指标体系相对应的权重组成权重体系。一组权重体系{i w |i=1,2,…,n } 必须满足下 述两个条件: (1)0 < wi ≤1,i=1,2,…,n。 (3-1) (2)11=∑=n i i w (3-2) 其中n 是权重指标的个数 一级指标和二级指标权重的确定: 设某一评价的一级指标体系为{i v |i=1,2,…,n } 其对应权重体系为{i w |i=1,2,…,n } 则有: (1)0 < w i ≤1,i=1,2,…,n。 (3-3) (2)11=∑=n i i w (3-4) 如果该评价的二级指标体系为{ij v |i=1,2,…,n;j=1,2,…,m },则其对应的权重体系为{ij w |i=1,2,…,n;j=1,2,…,m }应满足: (1)0< w i ≤1,i=1,2,…,n。 (3-5) (2)11=∑=n i i w (3-6) (3)∑∑==n i m j ij i w w 11 = 1 (3-7) 对于三级、四级指标可以以此类推。权重体系是相对指标体系来确定的。首先必须有指标体系,然后才有相应权重系数。指标权重的选择实际也是对系统评价指标进行排序的过程,而且权重值的构成应符合以上的条件。

3.4权重确定的方法 权重确定的方法很多,主要有主成分分析法、德尔菲法(Delphi )、层次分析法(AHP )。本文中主要运用层次分析法来确定评价因素的权重。 层次分析法通过分析复杂系统所包含的因素及相关关系,将系统分解为不同的要素,并将这些要素划规不同层次,从而客观上形成多层次的分析结构模型。将每一层次的各要素进行两两比较判断,按照一定的标度理论,得到其相对重要程度的比较标度,建立判断矩阵。通过计算判断矩阵的最大特征值极其相应的特征向量,得到各层次要素的重要性次序,从而建立权重向量5【】。 层次分析法确定权重的步骤: (1)建立树状层次结构模型。在本文中,该模型就是安全评价因素体系。 (2)确立思维判断定量化的标度。在两个因素相互比较时,需要有定量的标度,假设使用前面的标度方法,则其含义如表4-1所示, 按表4-1标度方法来确定标度。 表3-1层次分析法判断标度确定原则 标度 含义 1 表示两个因素相比具有等性 3 表示两个因素相比一个因素比另一个因素稍微重要 5 表示两个因素相比一个因素比另一个因素明显重要 7 表示两个因素相比一个因素比另一个因素强烈重要 9 表示两个因素相比一个因素比另一个因素极端重要 2、4、6、8 为上述相邻判断的中值 (3)构造判断矩阵。运用两两相比的方法,对各相关元素进行两两相比较评分,根据中间层若干指标,可得到若干两两比较判断矩阵。 (4)计算权重。这一步将解决n 个元素1A ,2A ,…n A 权重的计算问题,对于表4-2的两两比较的方法得到矩阵A ,解矩阵特征根,计算权重向量和特征根 m ax λ的方法有“和积法”、“方根法”、和“根法”。 本文选用了计算较为简便的“和积法”,其计算步骤如下: ①对A 按列规范化,即对判断矩阵A 每一列正规化: ∑== n i ij ij ij a a a 1 (i,j =1,2,…,n ) (3-8)

平面向量数量积运算的解题方法与策略

平面向量数量积运算的解题方法与策略 平面向量数量积运算一直是高考热点内容,它在处理线段长度、垂直等问题的方式方法上尤为有突出的表现,而正确理解数量积的定义和几何意义是求解的关键,同时平面向量数量积的运算结果是实数而不是向量,因此要注意数量积运算和实数运算律的差异,本文仅举数例谈谈求解向量数量积运算的方法和策略。 1.利用数量积运算公式求解 在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛,即(a +b ) 2 =a 2+2a 2b +b 2,(a -b )2=a 2-2a 2b +b 2 上述两公式以及(a +b )(a -b )=a 2 -b 2 这一类似于实数平方差的公式在解题过程中 可以直接应用. 例1 已知|a |=2,|b |=5,a 2b =-3,求|a +b |,|a -b |. 解析:∵|a +b |2=(a +b )2=a 2+2a 2b +b 2=22+23(-3)+52 =23 ∴|a +b |=23,∵(|a -b |)2 =(a -b )2 =a 2 -2a 2b +b 2 =22 -23(-3) 352 =35, ∴|a -b |=35. 例2 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°). 解析:∵(|a +b |)2=(a +b )2=a 2+2a 2b +b 2=|a |2 +2|a |2|b |co sθ+|b | 2 ∴162=82+238310cosθ+102 , ∴cosθ= 40 23 ,∴θ≈55° 例3 已知a =(3,4),b =(4,3),求x ,y 的值使(xa +yb )⊥a ,且|xa +yb |=1. 分析:这里两个条件互相制约,注意体现方程组思想. 解:由a =(3,4),b =(4,3),有xa +yb =(3x +4y ,4x +3y ) 又(xa +yb )⊥a ?(xa +yb )2a =0?3(3x +4y )+4(4x +3y )=0 即25x +24y =0 ① 又|xa +yb |=1?|xa +yb |2=1?(3x +4y )2+(4x +3y )2 =1 整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2 =1 ② 由①②有24xy +25y 2 =1 ③ 将①变形代入③可得:y =± 7 5 再代回①得:??? ????=-=???????-==7535 24753524y x y x 和

数学解题方法谈5:一些特殊数和式的求和积法

数学解题方法谈5: 一些特殊数和式的求和积法 (一)、倍数型求法: 解:设原式=S ,则2S=1+2+3+…+59=1770,∴原式=S=885. 3、计算: 1+22+23+24+…+22015 解: 记S=1+22+23+24+...+22015 (1) 则2S=2+22+23+24+...+22016 (2) ∴ (2)-(1) 可得:S=22016-1 4、20+21+22+23+…+22008 . 解:令W=20+21+22+3+...+22008 (1) 则2W=21+22+23+24+...+22009 (2) ∴原式=W=(2)-(1)=22009-1 (二)拆数型求法 1、31×2-52×3+73×4-94×5+115×6-…+199×10 . 解:原式=1+21×2-2+32×3+3+43×4-4+54×5+5+65×6-…+9+109×10 =1+12-12+13-13+14-14+…+110=1110 .

解:原式=(1-12+1)+(1-13+1+12)+(1-14+1+13)+…+(1-110+1+19) =1-12+1+1-13+1+12+1-14+1+13+…+1-110+1+19 =9×2-110+1=18910 3、11×2+12×3+13×4+…+199×100 . 解:原式=1-12+12-13+13+…+199-1100=1-1100=99100 4、1+11×2+52×3+113×4+…+899×10 . 解:原式=1+1-11×2+1-12×3+1-13×4+…+1-19×10=9+110=9110 5、31×2×3×4+32×3×4×5+33×4×5×6+…+38×9×10×11 . 解:原式= 11×2×3-12×3×4+12×3×4-13×4×5+…+18×9×10-19×10×11 =16-1990=164990=82495 =(1+2+3+…+9)-12( 1+2+3+…+8)+13( 1+2+3+…+7)-…-18(1+2)+19 =45-18+283-214+5-106+67-38+19=335504 7、14+128+170+1130+…+18554 . 解:原式=11×4+14×7+17×10+110×13+…+191×34

向量公式大全

向量公式 设a= (x, y), b=(x' , y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则 AB+BC=AC a+b=(x+x' ,y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y')则a-b=(x-x',y-y'). 4、数乘向量 实数入和向量a的乘积是一个向量,记作入a,且I入a l =1X1 ? I a l。 当入〉0时,入a与a同方向; 当XV 0时,入a与a反方向; 当入=0时,X a=0,方向任意。 当a=0时,对于任意实数X,都有X a=0。 注:按定义知,如果X a=0,那么X =0或a=0。 实数X叫做向量a的系数,乘数向量X a的几何意义就是将表示向量a的有向线段伸长或压缩。 当IXI> 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上伸长为原来的IXI倍; 当IXI V 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上缩 短为原来的IXI倍。 数与向量的乘法满足下面的运算律 结合律:(X a)?b= X (a ?b)=(a ?X b)。 向量对于数的分配律(第一分配律):(X +卩)a= X a+卩a. 数对于向量的分配律(第二分配律):X (a+b)= X a+X b. 数乘向量的消去律:① 如果实数入工0且X a=X b,那么a=b。②如果a^0 .且X a=(1 a,那么X =卩。 3、向量的的数量积

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

空间向量的数量积运算练习题

课时作业(十五) 一、选择题 1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( ) A .①② B .②③ C .③④ D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确. 【答案】 D 2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60° D .以上都不对 【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2 ,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14. 【答案】 D 3.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连结AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( ) 与BD → 与PB → 与AB → 与CD →

【解析】 用排除法,因为PA ⊥平面ABCD ,所以PA ⊥CD ,故PA →·CD →=0,排除D ;因为AD ⊥AB ,PA ⊥AD ,又PA ∩AB =A ,所 以AD ⊥平面PAB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C. 【答案】 A 4. 如图3-1-21,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( ) 图3-1-21 A .2BA →·AC → B .2AD →·DB → C .2FG →·AC → D .2EF →·CB → 【解析】 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错; 2EF →·CB →=-12a 2,故D 错;2FG →·AC →=AC →2=a 2,故只有C 正确. 【答案】 C 二、填空题 5.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |=________. 【解析】 |2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2 =4×|a |2+9×|b |2-12×|a |·|b |·cos 60°=61,

相关文档
最新文档