超声波测距完整版

超声波测距完整版
超声波测距完整版

西安航空职业技术学院

超声波测距仪课程

课程设计说明书

设计题目:超声波测距仪

专业:电子信息工程技术

班级学号:1002101

姓名:余新旺

指导教师:洪云飞

2011 年 11 月 23 日

教务处印制

西安航空职业技术学院

课程设计任务书

课题名称:超声波测距仪

设计内容:根据超声波测距原理,设计超声波测距器的硬件结构电路。

技术条件或要求:(1).了解超声波测距原理。

(2).制作实物

指导教师(签名):教研室主任(签名):

开题日期: 2011 年月日完

摘要本设计采用STC89C52单片机为核心,阐述了超声波测距的硬件和软件设计方法,制作出低成本、高精度、微型化带数字显示的超声波测距电路。整个电路采用模块化设计,由STC89C52单片机控制电路、超声波发射电路、接收电路、DS18B20温度补偿电路及LCD1602显示电路五部分组成。软件主程序由定时中断子程序、外部中断子程序两大部分组成。信号经单片机综合分析处理,实现超声波测距仪的各种功能。经实验证明,这个电路软硬件具有设计合理、抗干扰能力强、实时性良好,精确度高等特点,测量距离最大为 1.9m。可以有效地解决物体的短距离测量和避障。

关键词:超声波;STC89C52;DS18B20温度补偿

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

超声波测距仪毕业论文

第一章绪论 1.1课题设计目的及意义 1.1.1设计的目的 随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目 前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。 1.1.2设计的意义 超声波测距系统主要应用于汽车的倒车雷达、机器人自动避障行走、建筑施工工地以及一些工业现场例如:液位、井深、管道长度等场合。因此研究超声波测距系统的原理有着很大的现实意义。对本课题的研究与设计,还能进一步提高自己的电路设计水平,深入对单片机的理解和应用。 1.2超声波测距仪的设计思路 1.2.1超声波测距原理 发射器发出的超声波以速度υ在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v与温度有关,下表列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。

超声波测距电路图

超声波测距电路图 超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振 来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。 < 三、超声波测距系统的电路设计 图2 超声波测距电路原理图

超声波测距技术综述

文献综述 题目超声波测距技术综述学生姓名 专业班级 学号 院(系)电气信息工程学院指导教师 完成时间2014 年06月01日

超声波测距技术综述 摘要 我们把频率高于20000赫兹的声波称为“超声波”。超声波具有指向性强,能量消耗缓慢,在介质中传播的距离较远等特点,同时它是一种非接触式的检测方式,不受光线、被测对象颜色等影响,因此经常被用于距离的测量。超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。因此,深入研究超声波测距的理论和方法具有重要的实践意义。 关键词超声波超声波测距车辆导航物位测量

1 引言 1.1 超声波简介 一般认为,关于超声的研究最初起始于1876年F1Galton的气哨实验。当时Galton 在空气中产生的频率达300K Hz,这是人类首次有效产生的高频声。而科学技术的发展往往与一些偶然的历史事件相联系。对超声的研究起到极大推动作用的是,1912年豪华客轮Titanic号在首航中碰撞冰山后的沉没,这个当时震惊世界的悲剧促使科学家们提出用声学方法来预测冰山,在随后的第一次世界大战中,对超声的研究得以进一步的促进。 近些年来,随着超声技术研究的不断深入,我们把频率高于20000赫兹的声波称为“超声波”。再加上其具有的高精度、无损、非接触等优点,超声的应用变得越来越普及。目前已经广泛的应用在机械制造、电子冶金、航海、航空、宇航、石油化工、交通等工业领域。此外在材料科学、医学、生物科学等领域中也占据重要地位。 而我国,关于超声波的大规模研究始于1956年。迄今,在超声的各个领域都开展了研究和应用,其中有少数项目已接近或达到了国际水平。 1.2 超声波测距简介 超声测距指的是利用超声波的反射特性进行距离测量,是一种非接触式的检测方式。与其它方法相比,如电磁的或光学的方法,它不受光线、被测对象颜色等影响。对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。特别是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很容易检测出来,具有很高的分辨力,因而其准确度也较其它方法为高。超声波测距仪,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控和移动机器人的研制上,也可在潮湿高温,多尘等恶劣环境下工作。例如:液位、厚度、管道长度等场合。 超声波测距作为一种典型的非接触测量方法,在很多场合,诸如工业自动控制,建筑工程测量,机器人视觉识别,倒车防撞雷达,海洋测量,物体识别等方面得到广泛的应用。超声波具有指向性强、能量消耗缓慢且在介质中传播的距离较远的优点。与激光测距、红外线测距相比,超声波对外界光线、色彩和电磁场不敏感,更适于黑暗、

超声波测距电子电路设计详解

超声波测距电子电路设计详解 在自主行走机器人系统中,机器人要实现在未知和不确定环境下行走,必须实时采集环境信息,以实现避障和导航,这必须依靠能实现感知环境信息的传感器系统来实现。视觉、红外、激光、超声波等传感器都在行走机器人中得到广泛应用。由于超声波测距方法设备简单、价格便宜、体积小、设计简单、易于做到实时控制,并且在测量距离、测量精度等方面能达到工业实用的要求,因此得到了广泛的应用。本文所介绍的机器人采用三方超声波测距系统,该系统可为机器人识别其运动的前方、左方和右方环境而提供关于运动距离的信息。 超声波测距原理 超声波发生器内部由两个压电片和一个共振板组成。当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两极间未加外电压,当共振板接收到超声波时,就成为超声波接收器。超声波测距一般有两种方法:①取输出脉冲的平均电压值,该电压与距离成正比,测量电压即可测量距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,根据被测距离s=vt?2来得到测

量距离,由于超声波速度v与温度有关,所以如果温度变化比较大,应通过温度补偿的方法加以校正。 本测量系统采用第二种方法,由于测量精度要求不是特别高,所以可以认为温度基本不变。本系统以PIC16F877单片机为核心,通过软件编程实现其对外围电路的实时控制,并提供给外围电路所需的信号,包括频率振动信号、数据处理信号等,从而简化了外围电路,且移植性好。系统硬件电路方框图见图1。 图1 系统硬件电路方框图 由于本系统只需要清楚机器人前方、左方、右方是否有障碍物,并不需要知道障碍物与机器人的具体距离,因此不需要显示电路,只需要设定一距离阀值,使障碍物与机器人的距离达到某一值时,单片机控制机器人电机停转,这可通过软件编程实现。

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图 本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。电路原理图如图2所示。其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。

超声波测距器课程设计

《微机原理及应用》课程设计 超声波测距器的设计 学生姓名郝强 学号20110611113 学院名称机电工程学院 专业名称机械电子工程 指导教师王前 2013年12月27日

摘要 随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。 关键词:超声波;传感器;测量距离;控制

目录 摘要 (2) 目录 (3) 1.设计目的 (4) 2.总体方案 (4) 3.硬件设计 (5) 3.1 超声波测距器硬件电路设计 (5) 3.2.1单片机芯片的选择 (6) 3.2.2AT89C51定时计数应用电路 (6) 3.3超声波发射电路设计 (6) 3.3.1选择超声波发生器类型 (6) 3.3.2 超声波发射电路设计 (7) 3.4超声波接收电路设计 (8) 3.5超声波显示电路设计 (9) 4.软件设计 (9) 4.1波测距器的算法设计 (10) 4.2系统的主控制程序设计 (11) 4.3发生子程序设计 (12) 4.4接收中断程序设计 (13) 4.5显示程序设计 (14) 4.6距离计算程序 (15) 5.结论 (17) 参考文献 (18)

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

毕业设计开题报告—超声波测距

毕业设计(论文)开题报告学生姓名:学号: 所在学院: 专业:通信工程 设计(论文)题目:基于STM32的超声波测距仪 指导教师: 2014年2月25日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 一、课题研究背景、目的和意义 传感器技术是现代信息技术的主要内容之一,信息技术主要包括计算机技术、通信技术和传感器技术,计算机技术相当于人的大脑,通信相当于人的神经,而传感器就相当于人的感官。比如温度传感器、光电传感器、湿度传感器、超声波传感器、红外线传感器、压力传感器等等,其中超声波传感器在测量方面有着广泛、普遍的应用。利用单片机控制超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且测量精度较高。 超声波测距是一种典型的非接触测量方式。超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。且超声波测距系统结构简单、电路易实现、成本低、速度快,所以在工业自动控制、建筑工程测量和机器人视觉识别等领域应用非常广泛。 超声波作为一种特殊的声波,同样具有声波传输的基本物理特性、反射、折射、干涉、衍射、散射与物理紧密联系,应用灵活。它是一种指向性强,能量消耗慢的波。它在介质中传播的距离较远,因而超声波经常用于距离的测量,可解决超长度的测量。二、超声波测距仪的整体设计思路 超声波测距一般采用渡越时间法。超声波测距的实质是时间的测量,即:用超声脉冲激励超声探头向外发射超声波,同时接收从被测物体反射回来的超声波(简称回波),通过精确测量从发射超声波至接收回波所经历的射程时间t(渡越时间),按下式计算超声波探头与被测物体之间的距离S,即 S=12ct 其中,c 为空气介质中声波的传播速度。在常温下,超声波的传播速度为340 m/s,

超声波测距系统的应用设计

目录 前言............................................................................. V 1. 超声波测距仪 (1) 1.1检测技术 (1) 1.1.1 检测系统的组成 (1) 1.2传感器 (2) 1.2.1 传感器的定义 (2) 1.2.2 传感器的基本组成部分 (2) 1.2.3 传感器的分类 (3) 1.2.4 传感器的性能参数及要求 (3) 1.3国内外超声波测距仪的现状 (4)

1.3.1 国外测距仪的现状 (4) 1.3.2 国内测距仪的现状 (4) 2. 超声波测距仪测距原理及总体设计 (6) 2.1超声波测距仪测距原理 (6) 2.1.1 测距原理 (6) 2.1.2 超声波测距仪的理论分析 (8) 2.2超声波传感器工作原理 (10) 2.2.1 超声波传感器基本结构及工作原理 (10) 2.2.2 超声波传感器的工作方式 (11) 2.3超声波测距仪的总体设计 (12) 2.3.1 总体设计思想 (12) 2.3.2 工作过程 (14) 3. 系统结构及硬件设计 (15) 3.1超声波测距仪的硬件设计思想 (15) 3.28051单片机系统 (16) 3.3复位电路设计 (17) 3.4电源电路原理图 (18) 3.5超声波发射电路设计 (19)

3.5.1 超声波发射电路功能 (19) 3.5.2 超声波发射电路原理图 (19) 3.5.3 超声波驱动电路原理图 (20) 3.6超声波接收电路 (23) 3.6.1 超声波接收电路功能 (23) 3.6.2 超声波接收电路原理图 (24) 3.7微弱信号换向选通电路原理图 (27) 3.874LS164静态显示电路原理图 (30) 4. 测温电路原理 (32) 4.1温度补偿目的 (32) 4.2测温电路设计原理及原理图 (32) 5. 软件设计 (34) 5.1软件设计总体框图 (34) 5.2软件程序设计 (37) 5.2.1 延时模块 (42) 5.2.2 数据处理模块 (43) 5.2.3 显示模块 (44) 5.2.4 测温模块 (44)

超声波测速

12 =12×s=0.4s= =9×s=0.3s=vt -t+t v==17.9m/s. 超声波测速 超声波测速 适合作流动物质中含有较多杂质的流体的流速测量,超声多普勒法只是其中一种,还有频差法和时差法等等。 时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算(作为分母,公式不好写,我积分不够没法贴图),而声速收温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。 频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。 还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。 以上这些东东都是关于流体的流速的超声测量方法。对于移动物体的速度测量多采用超声多谱勒法。 根据声学多普勒效应,当向移动物体发射频率为F的连续超声波时,被移动物体反射的超声波频率为f,f 与F服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,F,c表达式得出物体移动速度v。 设超声波速度为V两次发出超声波的时间间隔为T第一次用时为T1第二次为T2则车速为V1=V×(T2-T1)/T(以上数据均可测出) 超声波测速仪测量车速,图B中P1、P2是测速仪发出的超声波信号,n1,n2... 如图所示,图A是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差测出被测物体的速度。图B中P1、P2是测速仪发出的超声波信号,N1、N2分别是P1、P2由汽车反射回来的信号。设测速仪匀速扫描,

超声波测距仪的工作原理2

超声波测距 (程序原理图安装图) 概述 超声波测距学习板,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量范围在0.27~4.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。 超声波测距原理 超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。本测量电路采用第二种方案。由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 CJ-3A超声波学习板采用AT89C51或AT89S51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用 74LS244,位码用8550驱动. 超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离,

超声波测距电路设计

目录 摘要 (3) 第一章绪论 (5) 1.1 课题背景 (5) 1.2 论文研究内容 (7) 第二章方案论证 (8) 第三章整机的工作原理 (11) 3.1 测量与控制方法 (11) 3.2 检测与驱动电路设计 (12) 3.3 逻辑符合表 (16) 3.4 AT24C02简介 (18) 3.5 超声波测距发射电路 (19) 3.6 超声波测距接收电路 (20) 3.7 温度检测电路 (21) 3.8 显示电路原理 (21) 第四章整机电路的运行与调试 (25) 4.1 超声波测距电路误差分析 (25) 4.2 声速对测量精度的影响分析 (26) 结论 (27) 致谢 (28) 参考文献 (29)

毕业设计任务书 一、毕业设计题目: 超声波测距电路设计 二、技术要求: 采用测距专用集成电路SB5227,设计出发送电路和接收电路以及温度检测电路,并能显示出测量值。 三、毕业设计完成的具体内容 1、实习、搜集资料; 2、选择设计方案,设计实体电路; 3、电路原理说明及元器件选择; 4、绘制电器原理框图; 5、绘制电路图(2#图) 6、列写元器件资料表; 7、编写毕业设计说明书(一万字左右) 包括:封面、毕业设计(论文)任务书、论文题目、目录、摘要、正文、结束语、致谢、参考文献、附录等。 四、参考文献: 《传感器与检测技术》陈杰,黄鸿高等教育出版社2002.1-5 《传感器及应用》王煜东,北京:机械工业出版社,2003.11 《实用声光及无线电遥控电路》赵健,北京:中国电力出版社,2005 《传感器及其应用电路》何希光,北京:电子工业出版社,2001 《红外线热释电与超声波遥控电路》肖景和等,人民邮电出版社,2003

超声波测距系统(论文)正文、结论、参考文献等(1)

1 绪论 1.1 超声波技术的广泛应用 超声的研究和发展,与媒质中超声的产生和接收的研究密切相关。1883年Galton 首次制成超声气哨,其原理是将压缩气体经过狭缝喷嘴形成气流,吹动圆形刀口振动形成共振腔,从而产生超声。此后又出现了各种形式的汽笛和液哨等机械型超声换能器。由于这类换能器成本低,所以经过不断改进,至今仍广泛地用于超声处理技术中。 20世纪初,电子学的发展使人们能利用某些材料的压电效应和磁致伸缩效应制成各种机电换能器。1917年,法国物理学家Paul Langevin用天然压电石英制成了夹心式超声换能器,并成功地应用于水下探测潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型等多种超声换能器。 材料科学的发展,使得应用广泛的压电换能器也由天然压电晶体发展到机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜(PVDF)[1]等。产生和检测超声波的频率,也由几十千赫提高到上千兆赫。产生和接收的波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。如频率为几十兆赫到上千兆赫的微型表面波都己成功地用于雷达、电子通信和成像技术等方面。 利用超声波作为定位技术是蝙蝠等一些无目视能力的生物作为防御及捕捉猎物生存的手段,也就是由生物体发射不被人们听到的超声波(20kHz以上的机械波),借助空气媒质传播由被待捕捉的猎物或障碍物反射回来的时间间隔长短与被反射的超声波的强弱判断猎物性质或障碍位置的方法。由于超声波的速度相对于光速要小的多,其传播时间就比较容易检测,并且易于定向发射,方向性好,强度好控制,因而人类采用仿真技能利用超声波测距。超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现非接触式距离测量的方法。它在很多距离探测应用中有很重要的用途,包括非损害测量、过程检测、机器人检测和定位、以及流体液面高度测量[2]等。 超声波方法在某些方面具有突出的优点: (1)超声波对色彩、光照度不敏感,可用于识别透明及漫反射性差的物体(如玻璃、抛光体); (2)对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强、有毒等恶劣环境中;

具有实时语音播报的超声波测距测速仪

具有实时语音播报的超声波测距测速仪(C题) 摘要:本文研究内容为实时语音播报的测距测速仪,利用超声波进行距离测量,测量精度在厘米级别,适用于近距离测距。本系统以STC12C5A60S为微处理芯片, 其产生40kHz频率,再利用超声波换能器TCT40-16T产生超声波信号并发射 出去,由TCT40-16R接收超声波信号,并利用超声波专用芯片CX20106A检 波、处理超声波信号,最后发送给微处理器。微处理器通过计算得到与障碍 物的距离,并通过所得距离计算出物体的移动速度。微处理器通过串口控制 JQ6500语音模块。当微处理器计算得到障碍物的距离和物体移动速度时,微 处理器发送指定的命令,驱动语音模块播放保存在FLASH中的语音,实现实 时语音播报。 关键词:STC12C5A60S2;JQ6500;超声波。

1 系统方案设计 设计任务 根据命题要求,设计并制作一台具有实时语音播报的超声波测距测速仪。 A. 具有超声波测距功能,测量距离~,测距精度±1cm; B. 自动语音实时播报测量距离数值;实时播报时间间隔t≤10s;实时语音播报清晰明亮、无明显失真,在1米距离处人耳能准确分辨。 C. 实时显示测量的距离和速度,并且显示内容要与语音播报内容同步。 总体设计方案 具有实时语音播报的超声波测距测速仪由6部分组成:超声波发射模块、超声波接收模块、51单片机最小系统、LCD1602显示模块、JQ6500语音播报模块、按键模块组成。 图1-1 超声波测距测速仪组成图 声波测速测距原理 声波测距原理 超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到发射波就立即停止计时。假设超声波在空气中的传播速度为V,根据计时器记录的时间T,发射点距障碍物的距离S,如图1-2所示。

超声波测距电路

超声波测距电路 摘要:随着单片机、DSP、FPGA、CPLD技术的不断成熟,各种智能测量系统不断涌现,测距电路可以用在工业生产、医疗技术、日常生活中各个方面,典型的应用如汽车倒车告警、机器人的自动避障行走、工业上的液位、井深、管道长度等场合,本文在介绍超声波测距原理的基础上总结并讨论现有的几种电路设计方法,并提出增大测量距离及改善系统性能的实现方法。 关键词:超声波;测距;FPGA实现 1超声波是一种在弹性介质中的机械振荡,它是由与介质相接触的振荡源所引起的,其频率在20KHz以上。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。超声波在介质中传播时在不同介面上具有反射的特性,由于它有指向性强、方向性好、传播能量大、传播距离较远等特点,常用于测量物体的距离、厚度、液位等。超声波的传播速度与介质的密度和弹性特性有关,它在空气中的传播速度为340m/s。发射一定频率的超声波,借助空气媒质传播,到达测量目标或障碍物后反射回来,其所经历的时间长短与超声波传播的路程的远近有关,测试传输时间可以得出距长。利用超声波特性、单片机控制、电子计数相结合可以实现非接触式测距。由于超声波检测迅速、方便、计算简单,且不受光线、电磁波、粉尘等的干扰,其测量精度较高。常用于桥梁、涵洞、隧道的距离检测中。 2使用超声波和使用激光测距的比较:基于以上介绍的超声波的特点不难区分它们的各自的适用场合,激光测距主要用于远程,如测月球到地球距离,或远距离无障碍测距,而且成本要比用超声波大,因为光速为3×10^8M/S,而一般市场上的单片机最高频率在十几至几十兆,(本人接触的ARM最大30M)如果测量的距离在十米左右,那么假设单片机别的都不做只是计数,出射光将在大约0.033us后返回,要求单片机CLK为1/0.033MHz,也就是说30M时钟频率的单片机刚发出出射激光的命令,光就已经在它的下个CLK脉冲来到了,更别提计数了,即使使用频率很高的单片机或其他器件如FPGA等在精度上将不能满足需要(通常在收发间隔中得到的计数脉冲越多精度越高)。但值得注意的是,超声波在空气中传播速度会随介质温度的升高而增大,气温每上升1℃,声波速度增加0.6mPs。所以在测量中要考虑温度变化的因素,进行温度补偿修正,减少测量误差。另外超声波在传输距离稍大时衰减很大,精度也随之降低。 3超声波发生/接收器:为了研究和利用超声波,人们研究了多种超声波发生器,常用的超声波发生器可以分为二大类,一是用电气方式产生超声波,如压电式、磁致伸缩式超声波发生器;二是用机械方式产生超声波,有加尔统笛、液哨和气流旋笛等。它们产生的超声波的频率、功率和声波特性各不相同。这里采用第一类的压电式超声波发生器,是利用压电晶体的电致伸缩现象,即压电效应。常用的压电材料有石英晶体、压电陶瓷等。在压电材料切片上施加一定频率的交变电压,当外加信号频率等于压电晶片的固有频率时,会产生电致伸缩振动,产生共振,并带动共振板振动,产生超声波。超声波的频率越高,方向性越好,但频率太高,衰减也大,传播的距离越短。考虑到实际工程测量要求,可以选用超声波的频率f=40kHz,波长λ=0.85cm。超声波的接收是利用超声波发生器的逆效应(逆压电效应)而进行工作的。当一定频率的超声波作用到压电晶体片上时,使晶体伸缩,在晶体的两端面产生交变电荷,把电荷转换成电压,再经放大输出,它的结构与发生器类似。发送和接收可以由一个超声换能器承担,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能,向外发送超声波;反之,当换能器处在接收状态时,它可将声能(机械能)转换为电能。超声波发生/接收器的外形和通常的驻极体话筒差不多,如果发生接收是分开的两个在安装过程中要注意它们之间的距离大概在6—8CM否则过于靠近易产生干扰。(可采用MA40LIS和MA40LIR) 4超声测距原理:最常用的超声测距方法是回声探测法。其工作原理是:使换能器向介质发射声脉冲,声波遇到被测物体(目标)后必有反射回来的声波(回波)作用于换能器上。若已知介质的声速为c,第一个回波到达的时刻与发射脉冲时刻的时间差为t,那么即可按式s=ct/2计算换能器与目标之间的距离。考虑到传感器的成本与安装的方便性,也可采用收发兼用型超声波探头,即实际距离d=s。声波的速度c与温度T有关。如果环境温度变化显著,则必须考虑温度 补偿问题。 5系统设计:

基于单片机超声波多普勒测速的设计

摘要 在速度测量领域,利用多普勒效应的设计不在少数。其中,多以激光多普勒测速设计或装置为主,激光以其高强度、频率单一、不易受到干扰等良好的性质受到众多多普勒测速设计者的青睐,以激光为波源做成的装置具有测速范围广(4×10~(-5)~10~4米/秒)、空间分辨率高、动态响应快等优点。但是,这种装置一般而言价格比较昂贵,在许多测量精度要求不那么严格的地方的应用受到了很大的限制。因此,我们设计了以超声波作为波源结合单片机用以数据处理的方案,再加上其他一些必要的电子电路,可以把整个装置集成到一块PCB板上,以电池供电。这样便解决了价格问题,提高了性价比,同时携带方便,测量精度亦在可以接受的范围内。 关键词:多普勒效应;超声波;单片机;混频放大;差频测量;模数转换;滤波整形 基于单片机的超声波多普勒测速设计 1前言 1.1多普勒效应 多普勒效应是指物体辐射的波长因为光源和观测者的相对运动而产生变化,在运动的波源前面,波被压缩,波长变得较短,频率变得较高,在运动的波源后面,产生相反的效应,波长变得较长,频率变得较低,波源的速度越高,所产生的效应越大,根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度,恒星光谱线的位移显示恒星循着观测方向运动的速度,这种现象称为多普勒效应。 测速的公式简介。多普勒效应是本设计的理论依据,深入的考虑,可基于超声波多普勒效应推导出移动物体的速度,具体公式如下:

(1)当波源静止,观察者运动时 f=[(u+Vr)/u]f0 ① (2)当波源运动,观察着静止时 f=[u/(u-Vs)]f0 ②(3)当两者同时运动时 f=[(u+Vr)/(u-Vs)]f0 ③由于超声波的发生器和接收器是集中在一起的,所以当运动物体反射超声波时,应该把运动物体当做波源,而把超声波接收器作为观察者。这样,就可以结合上述公式求出运动物体的速度与多普勒频移之间的关系,如下: (1)当波源静止,观察者运动时 Vr=[(f0-f’)/(f0+f’)]u ④(2)当波源运动,观察者静止时 Vs=[(f0-f’)/(f0+f’)]u ⑤(3)当两者相对运动时 Vr={[(f’-f0)u2-(f’+f0)Vs]/[(f’+f0)u+(f0-f’)Vs]}u ⑥其中第⑤式的情况在实际情况中不会出现,但是注意到两者相对运动时的第⑥式中出现了波源的运动速度Vs,这时就需要用第⑤式先求出波源的运动速度, 进而求出物体的运动速度。由上述推导公式可知,只要得到多普勒频移信号f-f0,即可求得物体的运动速度Vr。 1.2单片机 1.2.1单片机简介 单片机是一种集成在硅片上的电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

超声波测距原理

一、超声波测距原理 超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2 ① 这就是所谓的时间差测距法。 由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: V = 331.45 + 0.607T ② 声 速 确 定 后, 只 要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 二、系统硬件电路设计

图2 超声波测距仪系统框图 基于单片机的超声波测距仪框图如图2所示。该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 1 、超声波发射电路 超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远,可对振荡信号进行功率放大后再加在超声波传感器上。 图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声

基于51单片机控制的超声波测距程序

#include #define k1 P3_4 #define csbout P3_5//超声波发送 #define csbint P3_7//超声波接收 #define wendu P2_5;//温度控制通信端口 #define csbc=0.034 #define bg P3_3 unsigned char csbds,opto,digit,buffer[3],xm1,xm2,xm0,key,jpjs;//显示标识 unsigned char convert[10]={0x3F,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//0~9段码unsigned int s,t,i, xx,j,sj1,sj2,sj3,mqs,sx1; bit cl; void csbcj(); void delay(j);//延时函数 void scanLED();//显示函数 void timeToBuffer();//显示转换函数 void keyscan(); void k1cl(); void k2cl(); void k3cl(); void k4cl(); void offmsd(); void main()//主函数 { EA=1; //开中断 TMOD=0x11;//设定时器0为计数,设定时器1定时 ET0=1;//定时器0中断允许 ET1=1;//定时器1中断允许 TH0=0x00; TL0=0x00; TH1=0x9E; TL1=0x57; csbds=0; csbint=1; csbout=1; cl=0; opto=0xff; jpjs=0; sj1=45; sj2=200; sj3=400; k4cl(); TR1=1;

相关文档
最新文档