变压器特性汇总

变压器特性汇总
变压器特性汇总

e2=E2m sin(ωt-90°)

a) 变比k:指变压器1、2次绕组的电势之比。

2.变比k等于匝数比。

X L' 为折算值

E2'=4.44 f N1Фm=E1

E2=4.44 f N2Фm

?阻抗折算要保持功率/损耗不变 (I2')2R2'=(I2)2R2 (I2')2X2σ'=(I2)2X2σ

(I2')2 R L'=(I2)2 R L

(I2')2X L'=(I2)2X L

(1) 折算后的方程 U1= -E1+I1(R1+jX1σ)

U2'= E2' - I2'(R2+jX2σ)

I1+I2'=I m≈I0

简化等效电路中,Z k=R k+jX k,R k与X k构成变压器的漏阻抗,也叫

?从一次侧看进去的阻抗是从二次侧看进去的阻抗的k2倍。位和大小关系。

最新常用变压器的种类与特点及电压等级电子教案

常用变压器的种类与特点 一、常用变压器的分类可归纳如下: (1)按相数分: 1)单相变压器:用于单相负荷和三相变压器组。 2)三相变压器:用于三相系统的升、降电压。 (2)按冷却方式分: 1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。 2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。 (3)按用途分: 1)电力变压器:用于输配电系统的升、降电压。 2)仪用变压器:如电压互感器、电流互感

器、用于测量仪表和继电保护装置。 3)试验变压器:能产生高压,对电气设备进行高压试验。 4)特种变压器:如电炉变压器、整流变压器、调整变压器等。 (4)按绕组形式分: 1)双绕组变压器:用于连接电力系统中的两个电压等级。 2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。 3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。 (5)按铁芯形式分: 1)芯式变压器:用于高压的电力变压器。 2)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。 变压器是变换交流电压、电流和阻抗的器

件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中 感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余 的绕组叫次级线圈。 二、电源变压器的特性参数 1、工作频率 变压器铁芯损耗与频率关系很大,故应根据使用频率来设计和使用,这种频率称工作频率。 2、额定功率 在规定的频率和电压下,变压器能长期工作,而不超过规定温升的输出功率。 3、额定电压 指在变压器的线圈上所允许施加的电压,工作时不得大于规定值。 4、电压比

变压器运行特性分析报告

课程设计名称:电机与拖动课程设计 题目:变压器运行特性分析计算 专业: 班级: 姓名: 学号:

课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

1 变压器结构及其组成部分 (1) 1.1变压器的基本结构 (1) 1.1.1铁芯 (1) 1.1.2绕组 (1) 1.1.3油箱和冷却装置 (2) 1.1.4绝缘套管 (2) 1.1.5其他构件 (2) 1.2变压器的额定值 (2) 2变压器的变换关系 (4) 2.1电压变换 (4) 2.2电流变换 (4) 2.3阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13)

变压器空载特性试验的目的及注意事项

变压器空载特性试验的目的及注意事项 变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示。 1、变压器空载试验的电源容量的选择:保证电源波形失真不超过5%,试品的空载容量应在电源容量的50以下;采用调压起加压,空载容量应小于调压器容量的50%;采用发电机组试验时,空载容量应小于发电机容量的25%。空载试验的试验电压是低压侧的额定电压,变压器空载试验主要测量空载损耗。空载损耗主要是铁损耗。铁损耗的大小可以认为与负载的大小无关,即空载时的损耗等于负载时的铁损耗,但这是指额定电压时的情况。如果电压偏离额定指,由于变压器铁芯中的磁感应强度处在磁化曲线的饱和段,空载损耗和空载电流都会急剧变化,因此,空载试验应在额定电压下进行。 注意:在测量大型变压器的空载或负载损耗时,因为功率因数很低,可达到cosφ小于和等于0.1。所以一定要求采用低功率因数的

瓦特表。 2、空载试验是测量额定电压下的空载损耗和空载电流,试验时高压侧开路,低压侧加压,试验电压是低压侧的额定电压,试验电压低,试验电流为额定电流百分之几或千分之几。 3、通过空载试验可以发现变压器以下缺陷:硅钢片间绝缘不良。铁芯极间、片间局部短路烧损,穿芯螺栓或绑扎钢带、压板、上轭铁等的绝缘部分损坏、形成短路,磁路中硅钢片松动、错位、气隙太大,铁芯多点接地,线圈有匝间、层间短路或并联支路匝数不等、安匝不平衡等,误用了高耗劣质硅钢片或设计计算有误。

特种变压器的分类及特点

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/062814967.html,)特种变压器的分类及特点 特种变压器是指材质、作用、用途等有别于常规变压器的变压器。变压器除了作交流电压的变换外,还有其他各种用途,如变更电源的频率,整流设备的电源,电焊设备的电源,电炉电源或作电压互感器、电流互感器等。 一、特种变压器的分类 按材质分有:非晶干式变压器,环氧树脂浇注变压器等; 按作用分有:斯考特变压器、三相变单相变压器、移相变压器等; 按用途分有:UV机械变压器、火花变压器、染整机械变压器、整流变压器、节能设备用变压器等。 二、特种变压器的特点 1、安装、拆迁方便,占地面积少,可装于室内、外。 2、高效节能,只需消耗少量的电能,就可以在空气中吸收大量的热量,耗电量仅为加热器的1/3-1/4。 3、特种变压器环保无污染:无任何的燃烧物及排放物,是一种可持续发展的环保型产品。

4、特种变压器运行安全可靠:整个系统的运行无传统干燥器(燃油、燃气或电加热)中可能存在的易燃、易爆、中毒、短路等危险,是一种绝对安全可靠的全封闭干燥系统。 5、特种变压器使用寿命长,维护费用低,是在传统空调的技术基础上发展而来的,工艺技术成熟,性能稳定,运行安全可靠,全自动免人工操作,智能化控制。 6、舒适方便,自动化、智能化程度高:采用自动控恒温装置,24小时连续干燥作业。 三、特种变压器的使用环境 1.海拔不超过1000m; 2.周围环境温度不高于+40°C,不低于-20°C; 3.空气相对湿度不大于95%(+25°C时); 4.在有甲烷混合气体和煤尘,且有爆炸危险的场所; 5.无强烈颠簸、震动和与垂直面的倾斜度不超过15°的环境;

变压器运行特性分析

课程设计名称:电机与拖动课程设计 # 题目:变压器运行特性分析计算 专业: ( 班级: 姓名: 学号:

课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

、 1 变压器结构及其组成部分 (1) 变压器的基本结构 (1) 铁芯 (1) 绕组 (1) 油箱和冷却装置 (2) 绝缘套管 (2) 其他构件 (2) 变压器的额定值 (2) 2变压器的变换关系 (4) ' 电压变换 (4) 电流变换 (4) 阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13) |

变压器特性

第 6 章?? 变压器的基本理论 1.分析变压器内部的电磁过程。 2.分析电压、电流、磁势、磁通、感应电势、功率、损耗等物理量之间的关系。 3.建立变压器的等效电路模型和相量图。 4.利用等效电路计算分析变压器的各种性能。 6-1?? 变压器的空载运行 一.空载运行物理分析 一次侧接额定电压U1N,二次侧开路的运行状态称为空载运行(i2=0)。 空载时一次侧绕组中的电流i0为空载(或叫激磁)电流,磁势F0=I0N1叫励磁磁势。 F0产生的磁通分为两部分,大部分以铁心为磁路(主

磁路),同时与一次绕组N1和二次绕组N2匝链,并在两个绕 组中产生电势e1和e2,是传递能量的主要媒介,属于工作磁通,称为主磁通Ф。 另一部分磁通仅与原方绕组匝链,通过油或空气形成闭路,属于非工作磁通,称为原方的漏磁通Ф1σ。 铁心由高导磁硅钢片制成,导磁系数μ为空气的导磁系数的2000倍以上,所以大部分磁通都在铁心中流动,主 磁通约占总磁通的99%以上,而漏磁通占总磁通的1%以下。 问题6-1:主磁通和漏磁通的性质和作用是什么 规定正方向:电压U1与电流I0同方向,磁通Ф正方向与电流I0正方向符合右手螺旋定则。电势E与I0电流的正 方向相同。 由于磁通在交变,根据电磁感应定律: e1= -N1 dΦ/dt e2= -N2 dΦ/dt e1σ= -N1 dФ1σ/dt 二.电势公式及电势平衡方程式推导 空载时,主磁通Ф在一次侧产生感应电势E1,在二次侧产生感应电势E2,一次侧的漏磁通Ф1σ在一次侧漏抗电 势E1σ。 假设磁通为正弦波Ф=Фm sin ωt??? 则

e1= -N1 dΦ/dt=-N1 dФm sin ωt/dt = -N1Фmωcosωt=N1Фmωsin (ωt-90°) =E1m sin (ωt-90°) 电势在相位上永远滞后于它所匝链的磁通90o。?? 其最大值:E1m= ω N1Фm? = 2π f N1Фm 其有效值:E1=E1m/sqrt(2) = 2π f N1Фm/ = f N1Φm 这就是电机学最重要的“”公式。说明了感应电势E1与磁通Φm、频率f、绕组匝数N1成正比。 同样可以推出e2和e1σ的公式: e2=E2m sin(ωt-90°) E2m=N2Φmω E2= f N2 Φm e1σ=-N1dΦ1σ/dt =N1Φ1σmωsin(ωt-90°)? E1σm=ω N1Φ1σm E1σ= f N1Φ1σm 由于漏磁路的磁导率μo为常数,Φ1σm=L1σI I0,故E1σ= N12L1σI0=X1σI0,即E1σ可用漏抗压降的形式表示。 以上推导涉及到的电磁量均为正弦变化,可以用相量来表示。用相量时可同时表示有效值和相位。 E1σ=-jX1σI0

常用变压器的种类及特点

常用变压器的种类及特点 (1)按相数分: (1)单相变压器:用于单相负荷和三相变压器组。 (2)三相变压器:用于三相系统的升、降电压。 (2)按冷却方式分: (1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。 (2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。 (3)按用途分: (1)电力变压器:用于输配电系统的升、降电压。 (2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。 (3)试验变压器:能产生高压,对电气设备进行高压试验。 (4)特种变压器:如电炉变压器、整流变压器、调整变压器等。 (4)按绕组形式分: (1)双绕组变压器:用于连接电力系统中的两个电压等级。 (2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。 (3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。 (5)按铁芯形式分:

(1)芯式变压器:用于高压的电力变压器。 (2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前节能效果较理想的配电变压器,特别适用于农村电网和发展中地区等负载率较低的地方。 (3)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。 电力变压器的日常维护及故障的预防方法 发布时间:09-12-24关注次数:363 简介:本文介绍电力变压器的日常维护及故障的预防方法:当前的世界范围内,不间断的电力供应已成为工业生产、国防军事、科技发展及人民生活中至关重要的因素。人们对能源不间断供应的依赖性常常是直到厂房里的生产设备突然停止工作时才意识到各种断路器、布线及变压器的重要性。 变压器故障通常是伴随着电弧和放电以及剧烈燃烧而发生,随后电力设备即发生短路或其他故障,轻则可能仅仅是机器停转,照明完全熄灭,严重时会发生重大火灾乃至造成人身伤亡事故。因此如何确保变压器的安全运行受到了世界各国的广泛关注。 一、变压器故障的统计资料 (一)、各类型变压器的故障 根据相关部门对变压器类型显示的变压器故障统计数据人们可以看出,电力变压器故障始终占据主导位置。 (二)、不同用户的变压器故障 变压器使用在不同的部门,故障率是不同的。为了分析变压器发生故障

变压器实验报告

专业:电子信息工程: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验

实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N 以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏

如何正确全面的理解变压器

变压器

变压器bian ya qi 英文名称:Transformer 变压器的简介 变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁芯形状一般有E型和C型铁芯。 变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。 一般指连接交流电源的线圈称之为「一次线圈」(Primary coil);而跨于此线圈的电压称之为「一次电压.」。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈问的「匝数比」所决定的。因此,变压器区分为升压与降压变压器两种。 大部份的变压器均有固定的铁芯,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部份磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,吾人可以如是说,倘无变压器,则现代工业实无法达到目前发展的现况。 电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供60Hz电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。 各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。「阻抗」其中之一项重要概念,亦即电子学特性之一,其乃预设一种设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间即使用到一种设备-变压器。 对于电子装置而言,重量和空间通常是一项努力追求之目标,至于效率、安全性与可靠性,更是重要的考虑因素。变压器除了能够在一个系统里占有显著百分比的重量和空间外,另一方面在可靠性方面,它亦是衡量因子中之一要项。因为上述与其它应用方面的差别,使得电力变压器并不适合应用于电子电路上. 变压器技术参数

变压器效率特性

变压器运行特性分析与效率曲线 二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 ''22 k Fe Cu Fe R mI p p p P +=+=∑ 式中,电阻。为归算到二次侧的短路为相数;'' R k m 变压器的输入有功功率为1P ,输出功率为2P ,总损耗功率为P ∑,所以效率为 P P P P P ∑+==2212η 由于电力变压器的效率很高,用直接负载法测量1P 和2P 在算出效率,很难得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2222221cos 11***+++-=∑-=?η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器的运行特征

一、变压器的运行特征 变压器的运行特征主要有外特征与效率特性,而表征变压器运行性能的主要指标则有电压变化率和效率。 1、电压变化率 1)外特性 变压器一次侧接上额定电压,二次侧开路时,二次侧空载电压就等于二次侧额定电压,外特性是指一次侧加额定电压,负载功率因数cosφ2一定时,二次侧端电压随负载电流变化的关系,即U2=f (I2)。变压器在纯电阻和感性负载时,外特性是下降的,而客性负载时可能是上翘的。 2)电压变化率 负载电流变化,变压器副边端电压将随着发生变化。电压调整率是变压器负载时副边端电压变化程度的一种程度。假定变压器原边接电源电压,副边开路时的端电压为额定值,当副边接入负载后,即使原来电压保持不变,副边端电压不再是额定值,原边电压保持为额定值,负载功率因数为常数,空载和负载的副边端电压之差与副边额定电压的比值,即电压变化的标么值称为电压变化率,用⊿U*表示 即 ⊿U*=(U20-U2)/U2N 式中U20—副边空载电压 U2—时的副边端电压 由于副边空载端电压U20等于副边额定电压U2N,经过折算后,公式1可写成 ⊿U*=(U20-U2)/U2N=(U'2N-U'2)/U'2N=(U10-U'2)/U1N 电压变化率是变压器的主要性能指标之一,负载电流变化时,副边端电压变化的原因,是变压器内部存在电阻和漏抗而引起内部电压降。副边电压的变化程度,即⊿U*的大小,不仅同变压器本身的阻抗有关,而且与负载的大小和性能有关。 综合上述,负载为感性时,φ2角为正值,故电压变化率为正值,即负载时的副边电压恒比空载电压低;负载为容性,φ2角为负值,故电压变化率有可能为负值,亦即负载时的副边电压可能高于空载电压。 为了保证供电电压的质量,尽可能保持副边电压的稳定,这就需要进行调压。在电力系统中调压的方法很多,例如调节发电机出口电压,用同步调相机,在负载端并联电容器等。但采用最多、最普遍的还是变压器调压。电力变压器的调压方式有两种:一种是无载调压,即在切断负载(或停电)后,用无励磁分接开关改变高压绕组分接头调压;另一种是有载分接开关调压,后者调压速度快,调压范围可达到额定电压的20%。中小型电力变压器一般三个 分接头,记作U N±2×2.5%或U N ±8×1.25%等。 2、效率 1)变压器的功率 变压器的额定容量是由额定电压和额定电流的乘积即视在功率表示的S=UI,所以变压器的整体尺寸决定视在功率,其中,额定电压决定于变压器铁芯磁通的多少,因而决定铁芯的截面。 变压器的输出功率P2=U2I2cosφ2是与φ2有关的,所以在同样的容许发热情况下,输出功率的大小取决于负载的性质(cosφ2),负载功率因数cosφ2愈高,输出功率愈大,如

变压器外特性与效率特性

一、变压器的外特性及电压变化率 变压器空载运行时,若一次绕组电压U 1不变,则二次绕组电压U 2 也是不变的。 变压器加上负载之后,随着负载电流I 2的增加,I 2 在二次绕组内部的阻抗压降也 会增加,使二次绕组输出的电压U 2 随之发生变化。另一方面,由于一次绕组电 流I 1随U 2 增加,因此I 2 增加时,使一次绕组漏阻抗上的压降也增加,一次绕组 电动势E 1和二次绕组电动势E 2 也会有所下降,这也会影响二次绕组的输出电压 U 2。变压器的外特性是用来描述输出电压U 2 随负载电流I 2 的变化而变化的情况。 当一次绕组电压U 1和负载的功率因数cosφ 2 一定时,二次绕组电压U 2 与负载电 流I 2 的关系,称为变压器的外特性。它可以通过实验求得。功率因数不同时的 几条外特性绘于图2—17中,可以看出,当cosφ 2=1时,U 2 随I 2 的增加而下降 得并不多;当cosφ 2降低时,即在感性负载时,U 2 随I 2 增加而下降的程度加大, 这是因为滞后的无功电流对变压器磁路中的主磁通的去磁作用更为显著,而使 E 1和E 2 有所下降的缘故;但当cosφ 2 为负值时,即在容性负载时,超前的无功 电流有助磁作用,主磁通会有所增加,E 1和E 2 亦相应加大,使得U 2 会随I 2 的增 加而提高。以上叙述表明,负载的功率因数对变压器外特性的影响是很大的。 图2-17 变压器外特性 在图2—17中,纵坐标用U 2/U 2N 之值表示,而横坐标用I 2 /I 2N 表示,使得在坐 标轴上的数值都在0~1之间,或稍大于1,这样做是为了便于不同容量和不同电压的变压器相互比较。 一般情况下,变压器的负载大多数是感性负载,因而当负载增加时,输出电压U 2 总是下降的,其下降的程度常用电压变化率来描述。当变压器从空载到额定负 载(I 2=I 2N )运行时,二次绕组输出电压的变化值ΔU与空载电压(额定电压) U 2N 之比的百分值就称为变压器的电压变化率,用ΔU%来表示。

变压器常用材料介绍

一、变压器简介 各种电子装备常用到变压器,作用是提供各种电压确保系统正常工作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗等。变压器除了能够在一个系统里占有显着百分比的重量和空间外,另一方面在可靠性方面,它亦是衡量因子中的要项。对不同类型的变压器都有相应的技术要求,可用相应的技术参数表示。如电源变压器的主要技术参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、绝缘性能和防潮性能、频率特性、非线性失真、磁屏蔽和静电屏蔽、效率等。 1.变压器分类 按工作频率分类,可分为以下几种:工频变压器:工作频率为50或60Hz;中频变压器:工作频率为400~1000Hz;音频变压器:工作频率为20~20kHz;超音频变压器:工作频率为20~100kHz;高频变压器:工作频率为20~100kHz 以上。 2.电压比 当变压器两组线圈圈数分别为N1和N2时,且N1为初级,N2为次级,则在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势。当N2>N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2N2,V1>V2,该变压器为降压变压器。反之则 为升压变压器。 3.变压器的效率 在额定功率时,变压器的输出功率和输入功率比值叫做变压器的效率。当变压器的输出功率P2等于输入功率P1时,效率η等于100%(理想的情况),变压器将不产生任何损耗,但实际上变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损。铜损是指变压器线圈电阻所引起的损耗。当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。变压器的铁损包括两个方面,一是磁滞损耗,当交流电流通过变压器时,通过变压器磁心磁力线其方向和大小随之变化,使得磁心内部分子相互摩擦,放出热能,从而损耗了一部分电能。另一方面是涡流损耗,当变压器工作时铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量。变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高。反之,功率越小,效率也就越低。 4.电子变压器小型化 变压器小型化可从以下几方面着手:(1) 高频化 提高电源频率可大大缩小变压器的体积和重量。目前,开关电源变压器可高达10MHz, 在高频具有低损耗的非晶态合金和超微晶合金的问世为高频化开创了良好的条件。 (2) 提高绝缘耐热等级 提高变压器的绝缘耐热等级可大大缩小变压器的体积。H 级绝缘材料和导线已实用化生产为H 级 变压器的工业生产创造了良好条件。 (3) 采用新材料、新工艺、新结构 变压器常用材料介绍 67

变压器特性介绍

1、电力变压器的工作原理及工作特点 1.1 初始磁化曲线 当电流从0逐渐增加,线圈中的磁场强度H也随之增加,这样就可以测出若干组B,H值。以H为横坐标,B为纵坐标,画出B随H的变化曲线,这条曲线称为初始磁化曲线。当H增大到某一值后,B几乎不再变化,这时铁磁材料的磁化状态为磁饱和状态。此时的磁感应强度Bs叫做饱和磁感应强度。这种磁化曲线一般如下图中曲线所示: 1.2 磁滞回线 当铁磁质达到磁饱和状态后,如果减小磁化场H,介质的磁化强度M(或磁感应强度B)并不沿着起始磁化曲线减小,M(或B)的变化滞后于H的变化。这种现象叫磁滞。在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。如下图:

1.3 基本磁化曲线 铁磁体的磁滞回线的形状是与磁感应强度(或磁场强度)的最大值有关,在画磁滞回线时,如果对磁感应强度(或磁场强度)最大值取不同的数值,就得到一系列的磁滞回线,连接这些回线顶点的曲线叫基本磁化曲线。 如下图: B B m A B r R H e e H ' H -H m O H m R ' r B ' A '

1.4 变压器 1.4.1 定义:变压器(英语:Transformer)是应用法拉第电磁感应定律而升高或降低电压的装置。变压器通常包含两组或以上的线圈和铁心。主要用途是升降交流电的电压、改变阻抗及分隔电路。如下图: 1.4.2 基本原理:一个简单的单相变压器由两块导电体组成。当其中一块导电体有一些不定量的电流(如交流电或脉冲式的直流电) 通过,便会产生变动的磁场。根据电磁的互感原理,这变动的磁场会使第二块导电体产生电势差。假如第二块导电体是一条闭合电路的一部份,那么该闭合电路便会产生电流。电力于是得以传送。在通用的变压器中,有关的导电体是由(多数为铜质的) 电线组成线圈,因为线圈所产生的磁场要比一条笔直的电线大得多。变压器的原理是由

变压器基本原理及应用介绍

变压器基本原理及应用介绍 1.1基本要求 1.了解变压器的基本构造、工作原理、铭牌数据和外特性。 2.掌握变压器的三个变换功能及其用途。 3.理解阻抗匹配的意义。 1.2基本内容 1. 变压器主要由铁心、原绕组(一次绕组)和副绕组(二次绕组)组成。铁心构成磁路,原绕组 和副绕组(副边开路时仅原绕组)产生的磁通由磁路闭合而实现能量或信号的传递。 2.变压器的功能可由三个变换来表述: 电压变换──主要用途是电源升降压。原绕组电压与副绕组电压的比值近似为原绕组匝数与副绕 组匝数的比值称为变比,即:1 12 2 U N U N k = = 电流变换──主要用途是电流互感器。原绕组电流与副绕组电流的比值近似为变比的倒数,即: 122 1 1 I N I N k = = 阻抗变换──主要用途是电路耦合及阻抗匹配。副绕组的负载阻抗Z 折合到原绕组(电源)端 可表示为该阻抗与变比平方的乘积,即:2k Z Z '= 3.变压器铭牌数据通常包括: ①一次侧额定电压1N U 和二次侧额定电压N U 2 ②一次侧额定电流N I 1和二次侧额定电流N I 2 ③额定容量N S 变压器的额定容量之所以用视在功率N S 表示是因为变压器输出的有功功率与负载的功率因数有关。例如在额定电压和额定电流下,负载的功率因数为1时,kVA 100的变压器可输出kW 100的功率,而当负载的功率因数5.0时则只能输出kW 50的功率。 4.变压器阻抗变换的一个重要用途是实现阻抗匹配,即采用不同的匝数比将负载阻抗变换为所需要的、比较合适的数值,这通常可以使负载从信号源或电源获得最大的信号幅度或功率值。 1.3重点和难点 1. 变压器是按照电磁感应原理来实现电能转换的,当变压器的输入端接直流电源时,副边将无 法产生感应电势,因此变压器不能用于直流场合。 2. 变压器的额定容量和输出功率通常是分相等的,它们的表达式分别是: 22112222 ()cos N N N N N N N S U I U I V A P U I ?=≈= 2N 2P S cos ?= 即:式中2cos ?为负载的功率因数,上式表达的变压器的输出与负载的功率因数有关。

干式变压器与油浸式变压器的优缺点及其区别!

变压器在电力系统中举足轻重,那么干式变压器和油浸式变压器的优缺点都是什么呢? 价格上干变比油变贵。 容量上,大容量的油变比干变多。 在综合建筑内(地下室、楼层中、楼顶等)和人员密集场所需使用干变。油变采用在独立的变电场所。 箱变内变压器一般采用箱变。户外临时用电一般采用油变。 在建设时根据空间来选择干变和油变,空间较大时可以选择油变,空间较为拥挤时选择干变。 区域气候比较潮湿闷热地区,易使用油变。如果使用干变的情况下,必须配有强制风冷设备。 1、外观 封装形式不同,干式变压器能直接看到铁芯和线圈,而油式变压器只能看到变压器的外壳; 2、引线形式不同 干式变压器大多使用硅橡胶套管,而油式变压器大部分使用瓷套管; 3、容量及电压不同 干式变压器一般适用于配电用,容量大都在1600KVA以下,电压在10KV以下,也有个别做到35KV电压等级的;而油式变压器却可以从小到大做到全部容量,电压等级也做到了所有电压;我国正在建设的特高压1000KV试验线路,采用的一定是油式变压器。 4、绝缘和散热不一样 干式变压器一般用树脂绝缘,靠自然风冷,大容量靠风机冷却,而油式变压器靠绝缘油进行绝缘,靠绝缘油在变压器内部的循环将线圈产生的热带到变压器的散热器(片)上进行散热。 5、适用场所 干式变压器大多应用在需要“防火、防爆”的场所,一般大型建筑、高层建筑上易采用;而油式变压器由于“出事”后可能有油喷出或泄漏,造成火灾,大多应用在室外,且有场地挖设“事故油池”的场所。 6、对负荷的承受能力不同 一般干式变压器应在额定容量下运行,而油式变压器过载能力比较好。

7、造价不一样 对同容量变压器来说,干式变压器的采购价格比油式变压器价格要高许多。 干式变压器型号一般开头为SC(环氧树脂浇注包封式)、SCR(非环氧树脂浇注固体绝缘包封式)、SG(敞开式) 干式变压器与油浸式变压器的区别 “当然相同的是都是电力变压器,都会有作磁路的铁芯,作电路的绕组。而最大的区别是在“油式”与“干式”。也就是说两者的冷却介质不同,前者是以变压器油(当然还有其它油如β油)作为冷却及绝缘介质,后者是以空气或其它气体如SF6等作为冷却介质。油变是把由铁芯及绕组组成的器身置于一个盛满变压器油的油箱中。干变常把铁芯和绕组用环氧树脂浇注包封起来,也有一种现在用得多的是非包封式的,绕组用特殊的绝缘纸再浸渍专用绝缘漆等,起到防止绕组或铁芯受潮。(又因为两者因工艺、用途、结构方面的分类方法不同派生出不同的类别,所以我们从狭义的角度来说) 就产量和用量来说,目前干变电压等级只作到35kV,容量相对油变来说要小,约作到2500kVA.又由于干变制造工艺相对同电压等级同容量的油变来说要复杂,成本也高。所以目前从用量来说还是油变多。但因干变的环保性,阻燃、抗冲击等等优点,而常用于室内等高要求的供配电场所,如宾馆、办公楼、高层建筑等等。如果你只是变压器用户,了解这些应该够了” 各有各的优缺点,油变造价低、维护方便,但是可燃、可爆。干变由于具有良好的防火性,可安装在负荷中心区,以减少电压损失和电能损耗。但干变价格高,体积大,防潮防尘性差,而且噪音大。 油变琢渐退出,用干变,干变可以拆开运输放便,清洁,易维护,按装不需机座,没有渗油池.等优点 从外表上是比较好区分的; 油浸式变压器与干式变压器的最大区别就是有没有“油”,而由于油是液体,具有流动性,油浸式变压器就一定是有外壳的,外壳内部是变压器油,油中浸泡着变压器的线圈,从外面是看不到变压器的线圈的;而干式变压器没有油,就不用外壳了,能直接看到变压器的线圈;还有一个特性就是油浸式变压器上面有油枕,内部存放着变压器油,但现在新式油浸变压器也有不带油枕的变压器生产; 油浸式变压器为了散热方便,也就是为了内部绝缘油的流动散热方便,在外部设计了散热器,就象散热片一样,而干式变压器却没有这个散热器,散热靠变压器线圈下面的风机,该风机有点象家用空调的室内机; 油浸式变压器由于防火的需要,一般安装在单独的变压器室内或室外,而干式变压器肯定安

干式变压器和油浸式变压器的优缺点

干式变压器和油浸式变压器的优缺点 价格上干变比油变贵。 容量上,大容量的油变比干变多。 在综合建筑内(地下室、楼层中、楼顶等)和人员密集场所需使用干变。油变采用在独立的变电场所。 箱变内变压器一般采用箱变。户外临时用电一般采用油变。 在建设时根据空间来选择干变和油变,空间较大时可以选择油变,空间较为拥挤时选择干变。 区域气候比较潮湿闷热地区,易使用油变。如果使用干变的情况下,必须配有强制风冷设备。 1、外观 封装形式不同,干式变压器能直接看到铁芯和线圈,而油式变压器只能看到变压器的外壳; 2、引线形式不同 干式变压器大多使用硅橡胶套管,而油式变压器大部分使用瓷套管; 3、容量及电压不同 干式变压器一般适用于配电用,容量大都在1600KVA以下,电压在10KV以下,也有个别做到35KV电压等级的;而油式变压器却可以从小到大做到全部容量,电压等级也做到了所有电压;我国正在建设的特高压1000KV试验线路,采用的一定是油式变压器。

4、绝缘和散热不一样 干式变压器一般用树脂绝缘,靠自然风冷,大容量靠风机冷却,而油式变压器靠绝缘油进行绝缘,靠绝缘油在变压器内部的循环将线圈产生的热带到变压器的散热器(片)上进行散热。 5、适用场所 干式变压器大多应用在需要“防火、防爆”的场所,一般大型建筑、高层建筑上易采用;而油式变压器由于“出事”后可能有油喷出或泄漏,造成火灾,大多应用在室外,且有场地挖设“事故油池”的场所。 6、对负荷的承受能力不同 一般干式变压器应在额定容量下运行,而油式变压器过载能力比较好。 7、造价不一样 对同容量变压器来说,干式变压器的采购价格比油式变压器价格要高许多。 干式变压器型号一般开头为SC(环氧树脂浇注包封式)、SCR(非环氧树脂浇注固体绝缘包封式)、SG(敞开式) 干式变压器与变压器有什么区别? “当然相同的是都是电力变压器,都会有作磁路的铁芯,作电路的

变压器的运行特性习题(精)

第2章 变压器的运行原理 第4节 变压器的运行特性 一、填空题 1、引起变压器电压变化率变化的原因是 。 2、变压器电源电压一定,其二次端电压的大小决定于 、 和 。 3、变压器短路阻抗越大,电压变化率 ,稳态短路电流 ,突然短路电流 。 4、变压器在其他条件不变的情况下,电源频率下降,则0Φ ,0I ,Fe p ,σ1x , u ? 。 (填变化情况) 5、变压器原边额定电压U 1N =220V ,副边额定电压U 2N =330V ,当副边接负载后,实际的副边电压U 2=300V ,则电压变化率△U=_________。 6、变压器运行时的效率与 、 和 、 有关,当 变压器的效率最大。 7、变压器运行时基本铜耗可视为 ,基本铁耗可视为 。 8、变压器的空载损耗p 0=600W ,短路损耗p k =1920W ,则最大效率时的负载系数m β=_________。 二、单项选择题 1、一台变压器在( )时效率最高。 (A )1=β (B )常数=K p p /0 (C )Fe Cu p p = (D )N S S = 2、某三相电力变压器带阻感性负载运行,在负载电流相同的条件下2cos ?越高,则( )。 (A )U ?越大,效率越高; (B )U ?越大,效率越低; (C )U ?越小,效率越低; (D )U ?越小,效率越高。 3、变压器绕组和铁芯在运行中会发热,其发热的主要因素是( )。 (A )电流 (B )电压 (C )铁损和铜损 (D )电感 4、变压器一次侧为额定电压时,其二次侧电压( )。 (A )必然是额定值; (B )随着负载电流的大小和功率因数的高低而变化; (C )随着所带负载的性质而变化; (D )无变化规律。 5、变压器所带的负荷是电阻、电感性的,其外特性曲线呈现( )。 (A )上升形曲线;(B )下降形曲线;(C )近于一条直线;(D )无规律变化。 6、变压器负载呈容性,负载增加时,副边电压( )。 (A )呈上升趋势; (B )不变; (C )可能上升或下降。

变压器产品介绍

變壓器產品介紹 一.何為變壓器? 所謂變壓器就是以互感現象為基礎﹐隔離電阻﹑耦合電容為目的的一種電磁裝置。二.變壓器的分類﹕ 其類型主要有電源變壓器﹑間頻變壓器﹑中頻變壓器﹑高頻變壓器﹑低頻變壓器﹑音頻變壓器等。 中頻變壓器又稱中周﹐與電容器相互組成諧振﹐以改變線圈的電感量。 間頻變壓器主要作用是阻抗匹配﹐耦合﹑倒相等﹐可以推動放大級的輸出阻抗與放大功率。 三.變壓器的組成﹕ 由鐵芯﹑漆包線和絕緣材料三部分組成。 A.漆包線﹕本公司常用的漆包線的原材料﹐常用的規格Φ0.10 mm 0UEW Φ0.08 mm 0UEW Φ0.14 mm 0 UEW 其中﹕ 線的直徑表示油漆膜 B.鐵芯(即磁的裝置) 型號有﹕T型N型M型E型 常用到的鐵芯規格是36T0153-20P 36T0148-21P 35T0100-00P L82-4F/2H-1F1P L52-4F2H-1F/1P等。 涂膜材料與耐壓﹕ P------油漆膜耐壓1000Vrms Q------油漆膜耐壓1500Vrms G------環氣樹脂耐壓1000Vrms 材質﹕鐵芯常使用的材質是高導磁系數材料﹐優點是降低磁阻并可減少激磁電流。四.變壓器的作用﹕ 主要作用是隔離﹑耦合兩大作用。 五.變壓器的外形﹕ 以本公司生產產品為例﹐主要常見的外形系列有PT系列﹑ST系列﹑LAN-MATE系列﹐以及有待即將以后開發的PCM薄片等新品種。

V2=N2 d t 而互感值M12 N2 Φ12 M12= i1 可整理為﹕ d Φ12 d i1 V2=N2 (N2Φ12=M12i1)=M12 d t d t

其中M12為N1線圈時N2線圈的互感系數﹐也可稱為互感﹐若我們將線圈N2接上負載形成通路時﹐則感應動勢會產生感應電流i2﹐此為變壓器的基本原理。 當交流電壓正接上一次側線圈上﹐則有電流i1產生交變磁通﹐Φ在鐵芯周圍流動﹐因此在二次側線圈分別有感應電壓V1及V2。 d Φ d Φ V1=N1 (A-1) V2=N2 (B-1) d t d t 由(A-1)與(B-1)式之相除可得﹕ V1 N1 = = a V2 N2 (注﹕習慣上我們把接有電源的線圈稱為一次線圈或初級線圈﹐而將負載接的線圈稱為二次線圈或次級線圈。) 我們定義a為匝數比﹐即我們所講的圈比﹕ N1 a= N2 因此﹐理想變壓器的一次側與二次側電壓比等于線圈的匝數比。 理想情況下﹐輸入功率等于輸出功率﹐故﹕ V1*I1=V2*I2 V1 I2 N1 = = V2 I1 N2 也因而使得電流比為﹕

相关文档
最新文档