消除应力热处理作业指导书

消除应力热处理作业指导书
消除应力热处理作业指导书

消除应力热处理作业指导书

1.范围

1.1 本守则规定了膨胀节产品的消除应力热处理基本程序和要求。

1.2 本守则适用于膨胀节压制简体和成形的膨胀节消除应力热处理工序。

2.规范性引用文件

下列文件中的条款,通过本标准的引用而成为本标准的条款,凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用本规程。 质技监局锅发[1999]154号《压力容器安全技术监察规程》

GBl50-1998《钢制压力容器》

JB/T4709-2000《钢制压力容器焊接工艺规程》

GBl6749《压力容器波形膨胀节》

3.工艺规范

3.1 工艺曲线

3.2 常用材料消除应力热处理温度及保温时间参见相关材料标准的推荐温度。

3.3 焊件进炉时炉内温度不得高于400℃。焊件出炉时,炉温不得高于400℃,出炉后应在静止的空气中冷却。

3.4 升温速度最大不得超过PWHT 5000

δ℃/h ,且不得超过200℃/h ,最小可为50℃/h 。降温速度最大不

得超过PWHT 6000

δ℃/h ,且不得超过260℃/h ,最小可为50℃/h 。

4.工艺操作

4.1 消除应力热处理应在焊接工作全部结束并检测合格后,于压制成形或在压力试验前进行。奥氏体不锈钢压制的波纹管、膨胀节一般不进行焊后消除应力热处理,工艺或客

户有特殊要求的按工艺处编制的热处理工艺卡执行。

4.2 消除应力热处理应尽可能采取整体热处理。

4.3 装炉时,工件距炉门不得小于****毫米,距炉墙不得小于****毫米,加热炉对炉温应能控制,对工件不得产生过度氧化和有害影响。

4.4 装炉时需要将工件垫平、垫稳。工件之间保持一定距离,不要靠紧。若需垛装时,上下工件之间要用垫板垫起。垫板厚度要大于*******毫米,上下垫板必须平行对正。

4.5 对于直径较大、壁厚较薄的筒体,内部没有支承圈或固定塔板时,应适当在内部支承,以防加热时变形。

4.6 产品焊接试板应随同工件同炉热处理,试板须放在能代表工件的适当位置。试板应有钢印标记,经核对并经检查员认可。

4.7 焊件升温期间,加热区内任意长度为*******毫米内的温差不得大于*****℃。焊件保温期间,加热区内最高与最低温度之差不宜大于*****℃。升温和保温期间应控制加热区气氛,防止焊件表面过度氧化。

5. 测温与记录

5.1 热处理炉应配有自动记录温度时间曲线的测温仪表。

5.2 热电偶应安装在能反映工件实际温度的适当位置。补偿导线的线径及长度要合适,并经常检查热电偶的老化情况。

5.3 测温仪表和热电偶必须定期检定,保证合格准确。

5.4 工件热处理曲线记录和检验记录应存档保管,且保存不得少于***年。

焊接热处理作业指导书

热处理作业指导书 一、工程概况 1.1本工程为江苏常州中天钢铁集团有限公司热电厂一台240吨纯燃高炉煤气锅炉安装工程及相应的汽水、消防、电气、热控等配套系统。锅炉设备由上海锅炉厂有限公司设计制造。 二、编制依据 2.1西北电力设计院设计图纸 2.2《施工组织总设计》 2.3《小型火力发电厂设计规范》“GB50049-94” 2.4“DL5000-2000”《火力发电厂设计技术规程》及《火力发电厂施工图设计手册设计》 2.5《汽水管路支吊架手册》1983年版 2.6《电力建设安全操作规程》(火力发电厂部分)2002年版 2.7《电力建设施工及验收技术规范》(锅炉机组篇)1996年版 2.8《电力建设施工及验收技术规范》(焊接篇) 1996年版 2.9 《电力建设施工及验收技术规范》(管道篇) 1996年版 2.10《电力建设施工及验收技术规范》(DL/T821-2002射线篇、DL/T5048-95超声波篇) 2.11《火力发电厂焊接技术规程》DL/T869-2004 三、作业条件 3.1 技术准备 3.1.1焊接工艺经过评定,符合工艺要求。 3.1.2作业指导书编制并审批完成,开工报告审批完成。

3.1.3工程所用的材料到位并验收合格。 3.1.4施工人员及工机具设备到位(特殊工种持证上岗)。 3.1.5施工场地清洁无杂物,具备施工的条件。 3.1.6人员组织机构建立并开始行使职责。 3.1.7 检查该项作业的上道工序应具备的技术条件。 3.1.8 施工技术交底和安全交底完成,且交底与被交底人员进行了双签字 3.2热处理前先决条件 3.2.1热处理操作工必须经过专业培训,并具有相应资质的考核委员会签发的资格证书。 3.2.2所使用的热处理设备运转正常。 3.2.3检测、计量器具已经检查和校验,且在检定的有效期内。 3.2.4施工交底工作已经完成,所有操作和检验人员必须熟悉热处理程序和相应的施工措施中的各项规定和要求。 3.2.5焊后热处理应在施焊工作结束并完成焊接自检和专检合格后进行。 四、作业人员及机具配置 4.1作业人员配置、人员资格及职责:

热处理应力及其影响

热处理应力及其影响热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状, ;尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时, ;便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 一、钢的热处理应力工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀, ;工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压

应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。实践证明,任何工件在热处理过程中, ;只要有相变,热应力和组织应力都会发生。 ;只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果, ;就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。 ;组织应力占主导地位时的作用结果是工件心部受压表面受拉。 二、热处理应力对淬火裂纹的影响存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内( ;尤其是在最大拉应力下)才会表现出来,;若在压应力场内并无促裂作用。淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑

热处理--消除焊接应力

1总则 1.1本守则适用于本公司碳素钢及低合金钢压力容器及受压元件的焊后热处理。 1.2本守则规定了钢制压力容器热处理通用工艺要求,具体实施应按图纸设计的要求和专业工艺文件的规定执行。 2要求 2.1人员及职责 2.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 2.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 2.1.3 热处理操作人员应严格按照焊后热处理工艺进行操作,并认真填写原始操作记录。 2.2 设备及装置 2.2.1能满足焊后热处理工艺要求; 2.2.2在焊后热处理过程中,对被加热件无有害的影响; 2.2.3 能保证被加热件加热部分均匀热透; 2.2.4能够准确地测量和控制温度; 2.2.5在整个热处理过程中应当连续记录; 2.2.6炉外加热时,热电偶的布置应满足工艺标准的要求; 2.2.7被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3焊后热处理方法 3.1炉内热处理 3.1.1 焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。3.1.2 被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 3.1.3为了防止拘束应力及变形,对薄壁大直径容器,内部应加支撑。卧式容器底部应放鞍式支座,支座间距不大于2米且底部应垫平。 3.1.4有密封面和有高精度螺孔的部位应加以保护,可用机油和石墨粉膏剂涂于被保护面,然后用石棉布包扎。

3.2分段热处理 焊后热处理允许在炉内分段进行。对于超出炉子长度需要分段热处理的大件,其重复加热长度应不小于1.5米;露在炉外靠近炉门处应采取合适的保温措施,保温长度不得小于1米。 3.3炉外热处理 产品整体炉外热处理热处理时,在满足2.2的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.4局部热处理 3.4.1 B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。 3.4.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不得小于钢材厚度δs的6倍。 3.4.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。 4热处理工艺规范 4.1工件装炉温度和出炉温度应低于400℃。但对厚度差较大、结构复杂、尺寸稳定性要求较高、残余应力值要求较低的被加热件,其入炉或出炉时的炉内温度一般不宜超过300℃。 4.2 焊件升温至400℃后,加热区升温速度不得超过(5000/δs)℃/h,且不得超过200℃/h,最小可为50℃/h。 4.3 升温时,加热区内任意5000mm长度内的温差不得大于120℃。 4.4 保温时,加热区内最高与最低温度之差不宜超过65℃。 4.5 升温保温期间,应控制加热区气氛,防止焊件表面过度氧化。 4.6 炉温高于400℃时,加热区降温速度不得超过(6500/δs)℃/h,且不得超过260℃/h,最小可为50℃/h. 4.7 焊件按出炉温度出炉后应在静止空气中继续冷却。 4.8 常用钢号推荐的焊后热处理保温温度和保温时间见表1

消除应力热处理作业指导书

消除应力热处理作业指导书 1.范围 1.1 本守则规定了膨胀节产品的消除应力热处理基本程序和要求。 1.2 本守则适用于膨胀节压制简体和成形的膨胀节消除应力热处理工序。 2.规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款,凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用本规程。 质技监局锅发[1999]154号《压力容器安全技术监察规程》 GBl50-1998《钢制压力容器》 JB/T4709-2000《钢制压力容器焊接工艺规程》 GBl6749《压力容器波形膨胀节》 3.工艺规范 3.1 工艺曲线 3.2 常用材料消除应力热处理温度及保温时间参见相关材料标准的推荐温度。 3.3 焊件进炉时炉内温度不得高于400℃。焊件出炉时,炉温不得高于400℃,出炉后应在静止的空气中冷却。 3.4 升温速度最大不得超过PWHT 5000 δ℃/h ,且不得超过200℃/h ,最小可为50℃/h 。降温速度最大不 得超过PWHT 6000 δ℃/h ,且不得超过260℃/h ,最小可为50℃/h 。 4.工艺操作 4.1 消除应力热处理应在焊接工作全部结束并检测合格后,于压制成形或在压力试验前进行。奥氏体不锈钢压制的波纹管、膨胀节一般不进行焊后消除应力热处理,工艺或客

户有特殊要求的按工艺处编制的热处理工艺卡执行。 4.2 消除应力热处理应尽可能采取整体热处理。 4.3 装炉时,工件距炉门不得小于****毫米,距炉墙不得小于****毫米,加热炉对炉温应能控制,对工件不得产生过度氧化和有害影响。 4.4 装炉时需要将工件垫平、垫稳。工件之间保持一定距离,不要靠紧。若需垛装时,上下工件之间要用垫板垫起。垫板厚度要大于*******毫米,上下垫板必须平行对正。 4.5 对于直径较大、壁厚较薄的筒体,内部没有支承圈或固定塔板时,应适当在内部支承,以防加热时变形。 4.6 产品焊接试板应随同工件同炉热处理,试板须放在能代表工件的适当位置。试板应有钢印标记,经核对并经检查员认可。 4.7 焊件升温期间,加热区内任意长度为*******毫米内的温差不得大于*****℃。焊件保温期间,加热区内最高与最低温度之差不宜大于*****℃。升温和保温期间应控制加热区气氛,防止焊件表面过度氧化。 5. 测温与记录 5.1 热处理炉应配有自动记录温度时间曲线的测温仪表。 5.2 热电偶应安装在能反映工件实际温度的适当位置。补偿导线的线径及长度要合适,并经常检查热电偶的老化情况。 5.3 测温仪表和热电偶必须定期检定,保证合格准确。 5.4 工件热处理曲线记录和检验记录应存档保管,且保存不得少于***年。

焊后热处理(PWHT)和焊后消除应力热处理的区别

焊后热处理(PWHT)和焊后消除应力热处理的区别 内容来源网络,由深圳机械展收集整理! 后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。 焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。 焊后热处理 1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。 消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热

处理对焊缝金属冲击韧性的影响随钢种不同而不同。 2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 3、焊后热处理的加热方法⑴感应加热。钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。现在工程上多采用设备简单的工频感应加热。 ⑵辐射加热。辐射加热由热源把热量辐射到金属表面,再由金属表面把热量向其他方向传导。所以,辐射加热时金属内外壁温度差别大,其加热效果较感应加热为差。辐射加热常用火焰加热法、电阻炉加热法、红外线加热法。 焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。另外还有爆炸消除应力。

热处理设备的使用与维护保养

1.目的: 使设备有效性的能力维持在最佳状态,从而达到设备寿命周期最大经济化。2.范围: 包括公司所有直接或间接用于热处理的设备。 3.职责: 3.1车间生产人员负责设备的日常点检、运行维护保养。 3.2机电人员负责设备的维护保养的指导、定期检查、大/中修等工作。 3.3热处理技术员负责设备的定期检查.和校验。 3.4实验员负责产品硬度的校验,对实验数据进行记录,并出具产品实验报告。 4.流程:无 5.作业内容: 5.1设备操作 a.开机前,必须熟悉热处理炉传动系统和结构,各开关的功用。 b.升温前首先由机电工对电器.热电偶进行检查,确认正常后,操作工对照《设备日常点检卡》中规定的项目(包括各项报警项目)进行点检,正常后进行操作。c.先开淬火槽循环和水冷却,然后按照升温工艺进行升温。 d.淬火炉温度升到300℃时开启网带传动。 e.当淬火炉升温到600℃,开启回火炉进行升温;当回火炉温度升到设定温度后才开启网带传动(先开网带传送,然后拧涨紧螺杆)。 f. 温度设定:通过温度仪表的上下按键对温度设定值进行调节。 g. 网带速度设定:通过变频器的旋转钮左右旋转对网速进行调节。 5.2 设备运行 a.设备运行过程中操作工应每30分钟巡视一次设备,若发现异常应当即通知机电工进行排异。 b. 设备运行过程中遇设备故障或其它紧急情况,请按照《热处理通用规定》执行。 c. 淬火槽温度接近70℃时开启油冷却对油进行降温,油温接近50℃时关闭油冷却。 5.3 设备停止 a.炉内产品走完后关闭加热电源,(淬火加热炉的网带传动.淬火槽循环.回火炉风扇.水冷却必须开,其它可关。回火炉开始降温后必须停网带,并把涨紧螺杆松开,防止网带拉长变形)。 b. 停炉后必须继续通入甲醇,等淬火炉炉温低于700℃后方可关闭甲醇。 c. 淬火加热炉温低于300℃后才能停网带传动,低于200℃后关闭淬火槽循环泵。回火炉温度低于200℃后可停风扇。 d. 炉温冷却后关闭冷却水。 5.4 日常维护保养

焊前预热与焊后热处理的重要性

焊前预热与焊后热处理的重要性 焊前预热 焊前预热及焊后热处理对于保证焊接质量非常重要。重要构件的焊接、合金钢的焊接及厚部件的焊接,都要求在焊前必须预热。焊前预热的主要作用如下:(1)预热能减缓焊后的冷却速度,有利于焊缝金属中扩散氢的逸出,避免产生氢致裂纹。同时也减少焊缝及热影响区的淬硬程度,提高了焊接接头的抗裂性。 (2)预热可降低焊接应力。均匀地局部预热或整体预热,可以减少焊接区域被焊工件之间的温度差(也称为温度梯度)。这样,一方面降低了焊接应力,另一方面,降低了焊接应变速率,有利于避免产生焊接裂纹。 (3)预热可以降低焊接结构的拘束度,对降低角接接头的拘束度尤为明显,随着预热温度的提高,裂纹发生率下降。 预热温度和层间温度的选择不仅与钢材和焊条的化学成分有关,还与焊接结构的刚性、焊接方法、环境温度等有关,应综合考虑这些因素后确定。另外,预热温度在钢材板厚方向的均匀性和在焊缝区域的均匀性,对降低焊接应力有着重要的影响。局部预热的宽度,应根据被焊工件的拘束度情况而定,一般应为焊缝区周围各三倍壁厚,且不得少于150-200毫米。如果预热不均匀,不但不减少焊接应力,反而会出现增大焊接应力的情况。 2焊后热处理 焊后热处理的目的有三个:消氢、消除焊接应力、改善焊缝组织和综合性能。

焊后消氢处理,是指在焊接完成以后,焊缝尚未冷却至100℃以下时,进行的低温热处理。一般规范为加热到200~350℃,保温2-6小时。焊后消氢处理的主要作用是加快焊缝及热影响区中氢的逸出,对于防止低合金钢焊接时产生焊接裂纹的效果极为显著。 在焊接过程中,由于加热和冷却的不均匀性,以及构件本身产生拘束或外加拘束,在焊接工作结束后,在构件中总会产生焊接应力。焊接应力在构件中的存在,会降低焊接接头区的实际承载能力,产生塑性变形,严重时,还会导致构件的破坏。 消应力热处理是使焊好的工件在高温状态下,其屈服强度下降,来达到松弛焊接应力的目的。常用的方法有两种:一是整体高温回火,即把焊件整体放入加热炉内,缓慢加热到一定温度,然后保温一段时间,最后在空气中或炉内冷却。用这种方法可以消除80%-90%的焊接应力。另一种方法是局部高温回火,即只对焊缝及其附近区域进行加热,然后缓慢冷却,降低焊接应力的峰值,使应力分布比较平缓,起到部分消除焊接应力的目的。 有些合金钢材料在焊接以后,其焊接接头会出现淬硬组织,使材料的机械性能变坏。此外,这种淬硬组织在焊接应力及氢的作用下,可能导致接头的破坏。如果经过热处理以后,接头的金相组织得到改善,提高了焊接接头的塑性、韧性,从而改善了焊接接头的综合机械性能。

铸钢件热处理作业指导书

热处理作业指导书 1.目的 保证热处理质量。 2.热处理方式 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。 3.热处理操作要求 .退火 退火是将铸钢件加热到Acs 以上20~30℃,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图1—1为几种退火处理工艺的加热规范示意图。表l—1为铸钢件常用退火工艺类型及其应用。表1-2铸钢件退火工艺及退火后的硬度。 图1—1为几种退火处理工艺的加热规范示意图

表l—1为铸钢件常用退火工艺类型及其应用

表1-2铸钢件退火工艺及退火后的硬度 .正火 正火是将铸钢件目口热到Ac。温度以上30~50o C 保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图1—2为碳钢的正火温度范围示意图。表1-3铸钢件正火工艺及退火后的硬度,表1-4常用低合金铸件正火或正火+回火工艺及硬度。正火的目的是细化钢的组织,使其具有所需的力学性能,也司作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。 图1—2为碳钢的正火温度范围示意图 正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。

热处理作业指导书

热处理作业指导书1.适用范围 本规定适用于指导热处理车间对碳素结构钢、合金结构钢的热处理。 2.本公司常用材料的临界温度和常规热处理工艺参数对照表(见附表一) 3.热处理准备阶段 3.1设备的选择 热处理生产前要根据工件的大小和形状选择合适的电炉,大型工件优先选用大型电炉,小型工件优先选用小型电炉,淬油工件优先选用离油槽较近的电炉。 3.2热处理的配炉 热处理配炉是保证热处理质量的重要环节,配炉不当将对热处理质量产生很大的影响,必须特别重视,通常应考虑以下几个因素: 3.2.1配炉时要考虑热处理的类别,根据工件的化学成分选择退火、正火、 淬火、回火,相同类型热处理可以配炉;不同类型热处理配炉时,必须分析全部材料的整个热处理过程,合理组织其操作顺序,看其是否可以配炉。 3.2.2配炉时要考虑到同炉热处理的材料,其淬火、正火的最高加热温度上 限相差应小于20℃,其回火温度应在统一的范围内,可以采用分批出炉的办法加以协调。 3.2.3配炉时要考虑热处理工件的尺寸不能相差太大,一般最大截面与最 小截面之比应控制在2~2.5之内,也可采取大小工件分批出炉的方式加以协调. 3.2.4同种类、同炉号的同一批产品尽量争取同炉热处理。对于有随时炉试 样的,其分割开得试样也要在同炉热处理。装炉时,试样要放在炉中

合适的位置。 4.生产操作 4.1 设备检查: 4.1.1 装炉钳要检查设备是否完好,炉体有无损坏。所有活动的零部件(炉门、台车等)运动是否正常。电器线路工作状态是否良好。台车面是否清理干净。 4.1.2 检查冷却介质是否充备,循环冷却系统工作是否正常。电器线路工作状态是否良好。台车面是否清理干净。 4.1.3 检查热电偶,测量记录仪表,控制系统是否良好。 4.1.4 检查工辅具是否完整。特别市起重设备、钢丝绳、吊具、夹具是否适应,有无损坏,是否安全。 4.1.5 检查热处理工件质量:核对材料、工件尺寸;检查工件表面有无缺陷、开裂和将引起热处理开裂的潜在缺陷。 4.2 装炉: 4.2.1 每炉装炉量应不超过电炉规定的最大装炉量。所有工件的尺寸应与电炉工作室的尺寸相适应。 4.2.2 工件装炉的位置应在电炉的加热区之内。上下前后左右与炉顶、炉墙和电阻丝保持一定距离,件与件之间应隔开30mm,以保证热气流的流通。 4.2.3 工件装炉的位置应根据配炉工件进行分析,对各种材料和尺寸的工件要满足按所考虑的操作先后顺序可以出炉为装炉原则。 4.2.4 装炉时,底层垫块应垫平,工件在台车上要均布,合理堆放,垫平装稳垫实,以避免炉内装料不均,造成各区域温度差异,防止台车移动时侧倾、倒垛、撞击炉墙。

热处理作业指导书

热处理作业指导书

一、范围 本技术条件规定了钢制零件热处理技术要求和检验方法。本技术条件适用于钢的正火与退火、淬火与回火、感应与火焰淬火和渗碳淬火等热处理件。本技术条件未规定的技术要求应在图样或专用技术革新文件中规定。 二、一般规定 适用于钢的正火与退火、钢的淬火与回火,钢表面淬火和钢的渗碳钢淬火件。 1.工件的工艺路线应正确,材料牌号与图样相符,代料要有代料单。 2.工件材料的化学成分应符合国家标准、部(行业)标准或工厂标准中相同牌号的规定。 3.淬火、表面淬火和渗碳淬火件热处理前表面不得有裂纹、飞刺、锈蚀、斑痕和油污等影响热处理质量的缺陷。 4.工件的最终热处理要求应在图样中标注或说明。 5.工件的机械化性能要求(硬度除外)应在图样中标注具体项目和数值要求。 6.工件热处理工艺简图应能反映出工件的轮廓尺寸、有效截面尺寸、表面淬火及渗碳淬火部位等。 7.热处理件的补焊检查按GB8539规定执行。 8.齿轮、齿轮轴的检验等级按GB8539规定分为ML级(常规检验)、MQ级(一般检验)和ME级(严格检验), 各级别的检验项目及指标均见附录A(提示的附录)。 9.对检验合格的热处理件应按规定标识;外协件应有出厂或进厂合格证明或报告单。 三、钢的正火和退火 1.钢的正火适用范围 a)适用于中碳钢、低碳钢和低合金钢的铸件、锻件消除应力、细化组织、降低硬度,改善切削性能;并为最终热 处理做好组织准备;作为某些零件的最终热处理。 b)适用于碳素钢、低合金钢件在重复淬火时消除应力、改善组织,以防止重新淬火时产生变形与裂纹。 2.钢的退火适用范围 a)钢的完全退火适用于中碳钢、中碳合金铸钢件、锻件、轧制件和重要焊接件的细化组织、降低硬度、改善切削 加工性能及充分消除内应力。 b)钢的不完全退火适用于晶粒未粗化的中、高碳钢和低合金钢、轧制件的降低硬度、改善切削加工性能及消除内 应力。 c)钢的等温退火适用于中碳合金钢、低碳合金渗碳钢和某些高合金钢大型铸锻件及冲压件,使其获得更为均匀的 组织和硬度。 d)钢的球化退火适用于共析钢和过共析钢的锻、轧件进一步改善切削性能;并为淬火做好组织准备。 e)去应力退火适用于机械加工件、焊接件消除残余应力。 3.技术要求 a)工件装炉必须放在确定的有效加热区中,装炉量、装炉方式应保证工件的均匀加热和冷却。 b)工件正火与退火的加热温度、加热速度、加热时间、冷却速度等应严格按工艺进行。 c)密封构件去应力退火前应钻有φ6以上的放气孔,防止密封腔内空气受热膨胀引起变形或爆裂。 d)作为预备热处理的正火和退火工艺,在图样上不用标注硬度要求。 e)正火或退火加回火作为最终热处理的重要啮合件(如有硬度差要求的软齿面齿轮副的齿轮)允许在图样上标注 HB要求的范围,45钢为HB 156~207。ZG340~640钢为HB 166~217。

焊后消除应力处理

焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。 另外还有爆炸消除应力。 2、局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。低合金高强钢,一般在焊缝两侧各100~200mm。 3、机械拉伸、水压试验、温差拉伸、振动法等这几种方法只能消除20~50%的残余应力,前两种方法在生产上广泛应用。 焊接后进行去应力处理,有自然时效处理(时间长,去应力不彻底,)、震动时效(效率高,费用低,只能去除焊接应力的70%左右)人工加热时效(时间短费用较高,能100%去除焊接应力,同时能进行去氢处理)。 采用大型燃油退火炉,进行焊后退火处理。采用多点加热、多点温度控制方式,温控采用热电偶自动控制仪表控制加热,使炉内各部温度均匀的控制在退火温度,保证工件的退火,同时能去除焊接过程中渗入焊缝中的H原子,消除了焊接件的氢脆。 在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。 传统的时效方法有:热时效、振动时效、自然时效、静态过载时效、热冲击时效等。后两种方法应用较少,这里不作介绍 自然时效(NSR)是将工件长时间露天放置(一般长达六个月至一年左右),利用环境温度的季节性变化和时间效应使残余应力释放,在温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。 热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。 振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。 振动时效艺具有耗能少、时间短、效果显著等特点。与热时效相比,它无需宠大的时效炉,可节省占地面积与昂贵的设备投资。因此,目前对长达几米至几十米和桥梁、船舶、化工器械的大型焊接件和重达几吨至几十吨的超重型铸件或加工精度要求较高的工件,较多地采用了振动时效。生产周期短。自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成,而振动时效一般只需振动数十分钟即可完成。使用方便。振动设备体积小、重量轻、便于携带。由于振动处理不受场地限制,振动装置又可携带至现场,所以这种工艺与热时效相比,使用简便,适应性较强。节约能源,降低成本。在工件共振频率下进行时效处理,耗能极少,能源消耗仅为热时效的3~5%,成本仅为热时效的8~10%。其他。振动时效操作简便,易于机械化自动化。可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷。是目前唯一能进行二次时效的方法

模拟热处理作业指导书

一、适用范围 该要求适用于制造核电设备紧固件用棒材。 二、引用文件 GB/T228-2002 金属材料室温拉伸试验方法 GB/T229-2007 金属材料夏比摆锤冲击试验方法 GB/T230.1-2004 金属洛氏硬度试验第一部分:试验方法(A、B、C、 D、E、F、G、H、K、N、T标尺) GB/T231.1-2002 金属布氏硬度试验第一部分:试验方法 GB/T4338-2006 金属材料高温拉伸试验方法 三、核电紧固件用棒材模拟热处理技术要求 核电紧固件用棒材在入厂化学成分复验后,紧固件生产之前需进行模拟热处理。涉及材料42CrMo4(42CrMoE)、42 CDV4(40CrMoV)、X12Cr13(12Cr13)、X6CrNiCu17-04(05Cr17Ni4Cu4Nb)、X6NiCrTiMoVB25-15-2(06Cr15Ni25Ti2MoAlVB)660、C45E/C45R(45)。 1、取样 每批(同一钢厂、同一炉罐号、同一规格直径)钢棒采购量的4%(至少2根),截取后送热处理车间进行模拟热处理。 一批钢棒数量不超过500支,作两组试验(直径φ≥16mm,截取540mm 样棒2根,直径φ<16mm,截取340mm样棒2根) 一批钢棒数量超过500支,做四组试验(直径φ≥16mm,截取540mm 样棒4根,直径φ<16mm,截取340mm样棒4根) 截取样棒时应随机抽取 2)模拟热处理

具体要求按下表1进行 3)车样(热处理后的样棒) 试样应按以下规定截取: 试样轴线应与棒材轴线平行,其轴线与表面的距离应为: φ≤25 mm 时,在棒材轴线处: 25 mm<φ≤50mm时,距表面12.5 mm处: φ>50mm时,位于d/2半径处。 试样上与试验有关的部位应与样棒端部保持一定距离,该距离不得小于钢棒直径。 4)试验项目 a、室温拉伸试验 b、高温拉伸试验 拉伸试样和高温拉伸试样采用GB/T228-2002中规定的d=10mm的圆形横截面比例试样 c、冲击试验 冲击试样采用GB/T229-2007中规定的标准夏比V型缺口冲击试样,冲击试样为三块一组,试样应并排截取,试样缺口轴线垂直于钢棒表面。对于奥氏体钢棒,试验温度为室温(20℃);对碳钢、低合金钢和马氏体不锈钢棒,试验温度为0℃。 若该批钢棒直径小于等于15mm,则不进行冲击试验。 d、硬度试验 硬度试验在每根试样的不同位置进行测定,为验证每批钢棒的均匀性,每根试样测六组数据,硬度最高的钢棒与最低的钢棒的布氏硬度值

压力容器焊接应力的消除

压力容器焊接应力的消除 前言 压力容器是工业生产过程中必不可少的重要设备,它广泛应用于化工、炼油、机械、动力、核能以及运输等工业部门。随着工业不断发展, 压力容器的操作条件越来越苛刻,压力从高真空到几万个大气压,温度从超低温到几千度,尺寸也越来越大,某反应堆容器内径达6m多,结构也越采越复杂。同时,压力容器所处理的介质往往又是易燃易爆或有毒的,一旦发生事故,将给国家财产和人民生命带来不可估量的损失。所以加强压力容器的制造质量控制是非常必要的。 1、焊接应力产生的机理及危害 压力容器制造中,焊接和热处理是制造工艺中的关键工序。在焊接过程中,存在着三种附加的内应力,即焊接接头各部位受热及冷却速度不同产生的热应力;金相组织变化产生的组织应力和施焊时容器结构本身的约束产生的拘束应力.如果焊接工艺控制不当,这些应力过大将导致裂纹萌生。另外,由于材料的冷热加工成型工艺不当,将使受压部件韵成型尺寸超差,若 再采用强制组装焊接的方法,还将引起附加的强制组装应力。这些应力在一定条件下,影响着焊接结构的性能。同时,对于某些结构件,所采用的焊接方法、焊接位置和焊接工艺的不同,往往会引起焊接时产生轻微的空冷硬化现象.如效果。 据报导,美国1984年发生的一起单乙醇胺(MEA)吸收器容器焊接接头破坏事故,导致17人死亡,财产损失超过一亿美元。该容器为圆筒形,直径为,长度为16M,壁厚为,是按照美国机械工程师学会(ASME)

规程中的部分规定设计制造的,该容器主要充装丙烷和硫化氢,工作温度为'C,内压为10PMa。据198S年发表的研究报告中公布的结果,其中一个原因就是因为该容器焊后来经热处理(这是因为ASME规程中没有规定),结 果,焊接热影响区存在潜在的对裂缝敏感的冶金组织、硬度变化和残余应力,三种因素在不同化学介质和操作温度下,共同产生不同类型的、由使用诱发的裂缝。该报告的建议中提出必须对可能产生热影响区硬化的焊接接头进行预热和焊后热处理,使将来出现问题的几率减到最小。由此可见,焊后残余应力的消除是至关重要的。 长期以来,传统的消除残余应力方法是采取焊后热处理方法,因为它是改进焊接接头质量的重要方法之一,但并不是唯一的方法。下面对几种方祛加以介绍分析。 2、焊后热处理 焊后热处理,也称消除应力热处理或消除应力退火。这一方法早巳被用来作为提高焊接产品质量的手段,并在世界各国标准和技术规程里作了具体规定。然而对此使用的术语并不统一;以前一般称之为退火,近十年来,“焊后热处理的叫法巳在世界上得到确认。焊后热处理可分为整体焊后热处理和局部焊后热处理。 整体焊后热处理 整体焊后热处理分为整体炉内焊后热处理和整体炉外焊后热处理。 整体炉内焊后热处理 当条件许可时,可将整个容器放入加热炉内进行整体热处理。一般采说,整体炉内焊后热处理去应力效果比较好,特点是加热和保温均匀,温度控制

热处理应力及其影响

热处理应力及其影响 热处理残余力就是指工件经热处理后最终残存下来得应力,对工件得形状, ;尺寸与性能都有极为重要得影响。当它超过材料得屈服强度时, ;便引起工件得变形,超过材料得强度极限时就会使工件开裂,这就是它有害得一面,应当减少与消除。但在一定条件下控制应力使之合理分布,就可以提高零件得机械性能与使用寿命,变有害为有利。分析钢在热处理过程中应力得分布与变化规律,使之合理分布对提高产品质量有着深远得实际意义.例如关于表层残余压应力得合理分布对零件使用寿命得影响问题已经引起了人们得广泛重视。 一、钢得热处理应力 工件在加热与冷却过程中,由于表层与心部得冷却速度与时间得不一致,形成温差,就会导致体积膨胀与收缩不均而产生应力,即热应力。在热应力得作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力得作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分与热处理工艺等因素得影响。当冷却速度愈快,含碳量与合金成分愈高,冷却过程中在热应力作用下产生得不均匀塑性变形愈大,最后形成得残余应力就愈大。另一方面钢在热处理过程中由于组织得变化即奥氏体向马氏体转变时,因比容得增大会伴随工件体积得膨胀,;工件各部位先后相变,造成体积长大不一

致而产生组织应力。组织应力变化得最终结果就是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力得大小与工件在马氏体相变区得冷却速度,形状,材料得化学成分等因素有关. 实践证明,任何工件在热处理过程中, ;只要有相变,热应力与组织应力都会发生. ;只不过热应力在组织转变以前就已经产生了,而组织应力则就是在组织转变过程中产生得,在整个冷却过 程中,热应力与组织应力综合作用得结果, ;就就是工件中实际存在得应力。这两种应力综合作用得结果就是十分复杂得,受着许多因素得影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力与组织应力,作用方向相反时二者 抵消,作用方向相同时二者相互迭加。不管就是相互抵消还就是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时得作用结果就是工件心部受拉,表面受压。;组织应力占主导地位时得作用结果就是工件心部受压表面受拉。 二、热处理应力对淬火裂纹得影响?存在于淬火件不同部位上能引起应力集中得因素(包括冶金缺陷在内),对淬火裂纹得产生都有促进作用,但只有在拉应力场内(;尤其就是在最大拉应力下)才会表现出来, ;若在压应力场内并无促裂作用。 淬火冷却速度就是一个能影响淬火质量并决定残余应力得重要 因素,也就是一个能对淬火裂纹赋于重要乃至决定性影响得因素。为了达到淬火得目得,通常必须加速零件在高温段内得冷却速度,并使之超过钢得临界淬火冷却速度才能得到马氏体组织。

消除焊接应力热处理工艺守则

消除焊接应力热处理工艺守则 (总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1总则 1.1本守则适用于本公司碳素钢及低合金钢压力容器及受压元件的焊后热处理。 1.2本守则规定了钢制压力容器热处理通用工艺要求,具体实施应按图纸设计的要求和专业工艺文件的规定执行。 2要求 2.1人员及职责 2.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 2.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 2.1.3 热处理操作人员应严格按照焊后热处理工艺进行操作,并认真填写原始操作记录。 2.2 设备及装置 2.2.1能满足焊后热处理工艺要求; 2.2.2在焊后热处理过程中,对被加热件无有害的影响; 2.2.3 能保证被加热件加热部分均匀热透; 2.2.4能够准确地测量和控制温度; 2.2.5在整个热处理过程中应当连续记录; 2.2.7被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3焊后热处理方法 3.1炉内热处理 3.1.1 焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。3.1.2 被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 3.1.3为了防止拘束应力及变形,对薄壁大直径容器,内部应加支撑。卧式容器底部应放鞍式支座,支座间距不大于2米且底部应垫平。

3.2分段热处理 焊后热处理允许在炉内分段进行。对于超出炉子长度需要分段热处理的大件,其重复加热长度应不小于1.5米;露在炉外靠近炉门处应采取合适的保温措施,保温长度不得小于1米。 3.3炉外热处理 产品整体炉外热处理热处理时,在满足2.2的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.4局部热处理 3.4.1 B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。 3.4.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不得小于钢材厚度δs的6倍。 3.4.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。 4热处理工艺规范 4.1工件装炉温度和出炉温度应低于400℃。但对厚度差较大、结构复杂、尺寸稳定性要求较高、残余应力值要求较低的被加热件,其入炉或出炉时的炉内温度一般不宜超过300℃。 4.2 焊件升温至400℃后,加热区升温速度不得超过(5000/δs)℃/h,且不得超过200℃/h,最小可为50℃/h。 4.3 升温时,加热区内任意5000mm长度内的温差不得大于120℃。 4.4 保温时,加热区内最高与最低温度之差不宜超过65℃。 4.5 升温保温期间,应控制加热区气氛,防止焊件表面过度氧化。 4.6 炉温高于400℃时,加热区降温速度不得超过(6500/δs)℃/h,且不得超过260℃/h,最小可为50℃/h. 4.7 焊件按出炉温度出炉后应在静止空气中继续冷却。 4.8 常用钢号推荐的焊后热处理保温温度和保温时间见表1

管道焊接及焊后热处理作业指导书

焊接及焊后热处理作业指导书 1 适用范围 本规程适用于工业管道或公用管道中材质为碳素钢、合金钢、低温钢、耐热钢、不锈钢和异种钢等压力管道的手工电弧焊、氩弧焊、二氧化碳气体保护焊及其焊后的热处理施工。 2 主要编制依据 2.1 GB50236-98《现场设备、工业管道焊接工程施工及验收规范》。 2.2 DL5007-92《电力建设施工及验收技术规范(火力发电厂焊接篇)》。 2.3 SH3501-2002《石油化工剧毒、可燃介质管道工程施工及验收规范》。 2.4 其他现行有关标准、规范、技术文件。 3 施工准备 3.1 技术准备 3.1.1 压力管道焊接施工前,应依据设计文件及其引用的标准、规范,并依据我公司焊接工艺评定报告编制出焊接工艺技术文件(焊接工艺卡或作业指导书)。如果属本公司首次焊接的钢种,则首先要制定焊接工艺评定指导书,然后对该种材料进行工艺评定试验,合格后做出焊接工艺评定报告。 3.1.2 编制的焊接工艺技术文件(焊接工艺卡或作业指导书)必须针对工程实际,详细写明管道的设计材质、选用的焊接方法、焊接材料、接头型式、具体的焊接施工工艺、焊缝的质量要求、检验要求及焊后热处理工艺(有要求时)等。 3.1.3 压力管道施焊前,根据焊接作业指导书应对焊工及相关人员进行技术交底,并做好技术交底记录。 3.1.4 对于高温、高压、剧毒、易燃、易爆的压力管道,在焊接施工前应画出焊口位置示意图,以便在焊接施工中进行质量监控。 3.2 对材料的要求 3.2.1 被焊管子(件)必须具有质量证明书,且其质量符合国家现行标准(或部颁标准)的要求;进口材料应符合该国家标准或合同规定的技术条件。 3.2.2 焊接材料(焊条、焊丝、钨棒、氩气、二氧化碳气、氧气、乙炔气等)的质量必须符合国家标准(或行业标准),且具有质量证明书。对焊接材料的具体要求详见《压力管道组成件、支承件及相关材料检验试验规程》,其中钨棒宜采用铈钨棒;氩气纯度不应低于

铸钢件热处理作业指导书

热处理作业指导书 1. 目的 保证热处理质量。 2. 热处理方式 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。 3. 热处理操作要求 3.1 .退火 退火是将铸钢件加热到Acs以上20?30C,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图1 —1为几种退火处理工艺的加热规范示意图。表I —1为铸钢件常用退火工艺类型及其应用。表1-2铸钢件退火工艺及退火后的硬度。 图1—1为几种退火处理工艺的加热规范示意图

表I—1为铸钢件常用退火工艺类型及其应用

表1-2铸钢件退火工艺及退火后的硬度 3.2 .正火 正火是将铸钢件目口热到Ac。温度以上30?50°C保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图1—2为碳钢的正火温度范围示意图。表1-3铸钢件正火工艺及退火后的硬度,表1-4常用低合金铸件正火或正火+回火工艺及硬度。正火的目的是细化钢的组织,使其具有所需的力学性能,也司作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。

图1—2为碳钢的正火温度范围示意图 正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火; 可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组 织,从而减少铸件在淬火时产生的缺陷。 表1-3铸钢件正火工艺及退火后的硬度 表1-4常用低合金铸件正火或正火+回火工艺及硬度 3.3 .淬火

相关文档
最新文档