膜片钳原理

膜片钳原理
膜片钳原理

膜片钳技术原理

可兴奋膜的电学模型

细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的;而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。

当改变跨膜电位时,膜电容和膜电导分别引发被动和主动电流:Im=Ii+CdV/dt,其中Im是流过膜的总电流,Ii是通道电流,CdV/dt是由膜电容介导的电容电流。为了考察通道电流就必须消除电容电流的影响,此时可以令dV/dt=0,即将膜电位钳制在一固定数值,使其不随时间变化,这就是电压钳技术的实质所在。

电压钳技术

离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术,基本原理如下:

电压钳技术的核心在于将膜电位固定在指令电压的水平,这样才能研究在给定膜电位下膜电流随时间的变化关系。在上图中,膜电位Vm由高输入阻抗的电压跟随器所测量。钳制放大器在比较了膜电位和指令电位E之后,通过电阻Ra将电流注入膜内以控制膜电位。钳制放大器的输出:Vo=A(E-Vm),因为这个输出由电阻Ra和膜所分压,所以输出电流:I=(Vo-Vm)/Ra。由这两个关系可推出:Vm=EA/(1+A)-RaI/(1+A)。因此若钳制放大器的增益A极大,膜电位Vm和指令电位E之间的差别就可以忽略,即实现了电压钳制。

Hodgkin、Huxley和Katz应用电压钳技术研究枪乌贼巨轴突,结合同位素示踪和胞内灌流等技术发现:动作电位的初期,细胞膜主要对钠离子的通透性发生改变,胞外的钠离子迅速内流,并产生所谓的“超射”现象(overshoot);随后对钠的通透性的急剧减少并且对钾离子的通透性增加。兴奋期的膜电位存在“超射”现象也是膜学说所不能解释的。

根据这些实验,Hodgkin、Huxley和Katz在其1949—1952年的一系列论文中提出了“离子学说”或“钠学说”。认为当膜的去极化超过一个临界值时,就会触发动作电位的产生。在此期间,钠电导迅速上升,钠离子大量内流,使得膜电位接近钠的平衡电位;随后钠电导迅速失活,钾电导逐渐增加,引起膜电位的复极化。

Hodgkin和Huxley通过对电压钳位实验数据的分析,给出了所谓的Hodgkin—Huxley方程。他们将膜电位钳制在不同的水平,观察钾电导或钠电导随时间的变化,然后用一个常微分方程去逼近所得到的实验曲线,而这些微分方程中的参数则假定跟离子通道上的“粒子”相关。根据H—H方程,能够推导出动作电位的阈值、形状、幅度等性质。并且在去除电压钳制的条件下,可以得到一个以电压和时间为变量的偏微分方程,由它可以给出和真实状况相符合的神经冲动的传导。

膜噪声和噪声分析

Katz等人在1970年代初期研究了蛙神经肌肉接头处肌纤维膜电位的波动。他们根据对这种膜电位“噪声”的分析,提出了量子释放的概念,认为神经递质是以囊泡的形式从突触前膜释放到突触间隙中。并且Katz等人借助这种新的“噪声分析”方法(fluctuation analysis),能从突触后膜电位的“噪声”中推测出单位事件的幅度和时程。Anderson、Stevens、Colquhoun和Sigworth等人进一步发展了“噪声分析”。

“噪声分析”的实质在于二项分布期望和方差之间的关系。假定通道只有开和关两个状态,并且各个通道的开关是独立的。若N是通道的总数,p是通道的开放概率,i是单通道电流,I是膜电流的期望值。则有:I=Npi,var(I)=Np(1-p)i2,即:var(I)=iI-I2/N。用var(I)对I作图,这显然是一个开口朝下的抛物线。微分这个二次方程得到曲线的斜率:dvar(I)/dI=i-2I/N,当I=0时的斜率就是单通道电流,根据钳制电位和反转电位之间的差就可以算出单通道电导;在抛物线的顶点即当:dvar(I)/dI=0时,I=Ni/2,由此可算出

离子通道的总数。

膜片钳技术

“噪声分析”只能推算离子通道的电导和时间弛豫过程,而不能直接观测通道的门控动力学。1976年德国马普学会生物物理化学研究所(G?ttingen)的两位科学家,Neher和Sakmann在电压钳技术的基础上创立了膜片钳技术(patch clamp technique)。“膜片钳”的本意就是对小片细胞膜进行电压钳位,然后观测通过这一小块膜片上单个离子通道的电流。其电路原理示意图如下:

膜片钳技术的基本原理是通过负反馈使得膜电位与指令电压相等,在电压钳制的条件下记录膜电流。上面是电阻反馈式膜片钳放大器的电路示意图。A1为一极高输入阻抗、极低噪声的场效应管运算放大器,由于A1极高的开环增益使得两个输入端的电压几乎完全相等,从而实现电压钳制。Rf为一数值可切换的反馈电阻,分别对应于不同的电流记录范围,其中高值反馈电阻具有极高的电阻和极低的杂散电容,是决定放大器单通道记录性能的基本元件。A2为一差分放大器,它的输出即为电极电流和反馈电阻的乘积。由放大器A1和A2构成的回路称为电流—电压转换器,是膜片钳放大器前级(headstage)的核心。

Rs是由电极和细胞之间的通路所构成的串联电阻,会引起全细胞电压钳记录的点钳制问题,这可通过Rs Comp回路来消除。电极入液之后会产生所谓的“快电容”Cp,即内外液相对于电极壁形成的杂散电容,在形成GΩ封接后变得更明显。而当吸破细胞膜形成全细胞模式后,还能观测到“慢电容”Cm,即对于细胞膜的充放电而产生的电容电流。可以通过电容补偿回路来消除这些电容尖峰的影响。由于阻容藕合电路中电阻和电容值的不同,快慢电容的幅度和时间常数都不同。对于有突起的细胞如脑片中的神经元,还存在空间钳制问题,这就难以从电路上消除它的不利影响。

全细胞膜片钳模式下有电压钳记录和电流钳记录两种。电压钳记录的原理与电压钳技术相似,但有所不同:首先,全细胞电压钳记录只使用单根电极,但在电学效果上同时实现了电压钳制和电流记录。其次,电压钳记录的电极不插进细胞,对细胞造成的损伤较小,因而能用于小细胞如神经元的研究。电流钳记录则是通过钳制电极电流来测量膜电位。电流钳在本质上也是电压钳位,它将差分放大器的输出电流与指令电流相比较,然后将这个差动输出施加到放大器前级的倒相端,通过高速反馈使得同相端的电压与其相等,无论电极电流是否为零,都能从输出电压得到膜电位的准确数值。

根据细胞膜的电路模型,全细胞模式还可用于监测膜电容的变化。当通过电极给细胞膜一个高频正弦波时,由于膜电容的存在,膜电阻的反应会有一个明显的相位滞后,这个时间延迟由膜电容、膜电阻和电极电阻三者决定。当后面两个因素固定时,膜电容的变化就会引起膜电阻反应与输入之间的相位差的变化。对于各种分泌细胞:胰岛细胞、肾上腺分泌细胞或神经分泌细胞,细胞的分泌伴随着膜表面积也就是膜电容的变化,可以通过监测相位差的变化来观测细胞的分泌过程。

单通道记录的关键在于降低背景噪声。电阻反馈式放大器存在两个问题:一是反馈电阻本身的热噪声;另一个是反馈电阻本身的杂散电容。对于前者,当采用大电阻值反馈电阻时,就能将热噪声降低到可以接受的范围。但反馈电阻的杂散电容与电阻形成一个低通滤波器,按照现在的工业标准(50G,0.1pF),这个滤波器会使采集到的单通道信号严重失真。对于这个问题,可以采用一个高频提升器(high frequency boost),信号经过这样的处理就会引入高频噪声,因此必须经过低通模拟滤波。

1976年在封接电阻只有10—20MΩ的情况下,记录了蛙去神经支配的肌纤维膜乙酰胆碱受体的单通道电流,由于背景噪声的影响,单通道电流矩形脉冲的形状很不明显。若要记录单个离子通道的微弱电流,就必须将噪声降低到极小,但按照‘Johnson’公式,由带电粒子的热运动所引起的电流噪声为:Irms = (4kTfc/R)1/2,因此就必须极大地提高电阻。因为放大器输入阻抗、膜片电阻和反馈电阻都很高,所以必须极大地提高封接电阻。

后来发现当略施负压之后封接电阻很快上升到了GΩ的范围,背景噪声急剧下降,使得高分辨率的单通道记录变为可能。随后Hamill和Horn等人将小块膜片从细胞膜上分离下来而不影响封接,这样就形成了单通道记录的三种模式:细胞贴附式、内面向外式、外面向外式,连同全细胞模式于是便有了膜片钳的四种经典记录模式。Hamill等人在1981年发表的奠基性论文标志着膜片钳技术的成熟,随后在全世界各个生理学、神经生物学和生物物理学实验室得到了广泛的应用,极大地推动了离子通道和相关学科的研究。

膜片钳原理

膜片钳技术原理 可兴奋膜的电学模型 细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的;而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。 当改变跨膜电位时,膜电容和膜电导分别引发被动和主动电流:Im=Ii+CdV/dt,其中Im是流过膜的总电流,Ii是通道电流,CdV/dt是由膜电容介导的电容电流。为了考察通道电流就必须消除电容电流的影响,此时可以令dV/dt=0,即将膜电位钳制在一固定数值,使其不随时间变化,这就是电压钳技术的实质所在。 电压钳技术 离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术,基本原理如下: 电压钳技术的核心在于将膜电位固定在指令电压的水平,这样才能研究在给定膜电位下膜电流随时间的变化关系。在上图中,膜电位Vm由高输入阻抗的电压跟随器所测量。钳制放大器在比较了膜电位和指令电位E之后,通过电阻Ra将电流注入膜内以控制膜电位。钳制放大器的输出:Vo=A(E-Vm),因为这个输出由电阻Ra和膜所分压,所以输出电流:I=(Vo-Vm)/Ra。由这两个关系可推出:Vm=EA/(1+A)-RaI/(1+A)。因此若钳制放大器的增益A极大,膜电位Vm和指令电位E之间的差别就可以忽略,即实现了电压钳制。 Hodgkin、Huxley和Katz应用电压钳技术研究枪乌贼巨轴突,结合同位素示踪和胞内灌流等技术发现:动作电位的初期,细胞膜主要对钠离子的通透性发生改变,胞外的钠离子迅速内流,并产生所谓的“超射”现象(overshoot);随后对钠的通透性的急剧减少并且对钾离子的通透性增加。兴奋期的膜电位存在“超射”现象也是膜学说所不能解释的。 根据这些实验,Hodgkin、Huxley和Katz在其1949—1952年的一系列论文中提出了“离子学说”或“钠学说”。认为当膜的去极化超过一个临界值时,就会触发动作电位的产生。在此期间,钠电导迅速上升,钠离子大量内流,使得膜电位接近钠的平衡电位;随后钠电导迅速失活,钾电导逐渐增加,引起膜电位的复极化。 Hodgkin和Huxley通过对电压钳位实验数据的分析,给出了所谓的Hodgkin—Huxley方程。他们将膜电位钳制在不同的水平,观察钾电导或钠电导随时间的变化,然后用一个常微分方程去逼近所得到的实验曲线,而这些微分方程中的参数则假定跟离子通道上的“粒子”相关。根据H—H方程,能够推导出动作电位的阈值、形状、幅度等性质。并且在去除电压钳制的条件下,可以得到一个以电压和时间为变量的偏微分方程,由它可以给出和真实状况相符合的神经冲动的传导。 膜噪声和噪声分析 Katz等人在1970年代初期研究了蛙神经肌肉接头处肌纤维膜电位的波动。他们根据对这种膜电位“噪声”的分析,提出了量子释放的概念,认为神经递质是以囊泡的形式从突触前膜释放到突触间隙中。并且Katz等人借助这种新的“噪声分析”方法(fluctuation analysis),能从突触后膜电位的“噪声”中推测出单位事件的幅度和时程。Anderson、Stevens、Colquhoun和Sigworth等人进一步发展了“噪声分析”。 “噪声分析”的实质在于二项分布期望和方差之间的关系。假定通道只有开和关两个状态,并且各个通道的开关是独立的。若N是通道的总数,p是通道的开放概率,i是单通道电流,I是膜电流的期望值。则有:I=Npi,var(I)=Np(1-p)i2,即:var(I)=iI-I2/N。用var(I)对I作图,这显然是一个开口朝下的抛物线。微分这个二次方程得到曲线的斜率:dvar(I)/dI=i-2I/N,当I=0时的斜率就是单通道电流,根据钳制电位和反转电位之间的差就可以算出单通道电导;在抛物线的顶点即当:dvar(I)/dI=0时,I=Ni/2,由此可算出

膜片钳技术的发展和应用

膜片钳的发展和应用 1.背景 细胞是生物的基本组成单元,细胞外围有一层薄膜,彼此分离又互相联系,细胞间与细胞内的通信、信号传递依靠其膜上的离子通道来进行,离子和离子通道是细胞兴奋性的基础,亦是产生生物电的基础。生物电信号通常是用电学或电子学的方法进行测量。早期多采用双电极电压钳技术作胞内记录,近年来逐渐被膜片钳所取代,这项技术为从细胞和分子水平了解生物膜离子单通道“开启”和“关闭”的门控动力学及各种不同离子通道的通透性和选择性等膜信息提供了最直接的手段。 膜片钳记录(patch clamp recording)是利用玻璃微电极吸引封接面积仅为几个um2的细胞膜片,在10-12A水平,记录单个或几个通道的离子电流,已达到当今电子测量的极限。此技术广泛用于细胞膜离子通道电流的测量和细胞分泌、药理学、病理生理学、神经科学、脑科学、植物细胞的生殖生理等领域的研究。从而点燃了细胞和分子水平的生理学研究的生命之火,并取得了丰硕的成果。 2.膜片钳技术简介 2.1 基本原理和记录方法 电压钳(V oltage-clamp)是由英国学者Huxley和Katz最先应用的[1]。其实质是通过负反馈微电流放大器在兴奋性细胞膜上外加电流,保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流的情况。膜电流的改变反映了膜电阻和膜电容的变化,因此电压钳可用来研究整个细胞膜或一大块细胞膜上所有离子通道的活动,但该技术由于在细胞内插人两根电扳,对细胞损伤很大,在小细胞中难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致,而逐渐被膜片钳所取代。 膜片钳技术(patch-clamp)是在电压钳基础上发展起来一种新技术,与电压钳的主要区别有二:一是钳制膜电位的方法不同;二是电位固定的细胞膜面积不同,即所研究的离子通道数目不同。与电压钳一样,膜片钳也是利用负反馈电子线路,将微电板尖端所吸附的一个至几个平方微米的细胞膜电位固定在一定水平,观察流过通道的离子电流。其实现膜电位固定的关键是在玻璃微电极尖端边缘与细胞膜之间形成高阻封接,使电极尖开口处与相接的细胞膜小区域(膜片)形成无论是从机械上还是电学上都极为紧密地封接,从而可反映细胞上单一(或多数)离子通道的分子活动[2]。1976年,德国科学家Neher和Sakmann首先用此技术对蛙胸皮肌细胞膜上的己酰胆碱受体通道进行了研究,记录出了量值在皮安级(10-12 A)的微弱电流[3,4]。1981年,经Hamill等[5]后人的进一步完善,其电流测量灵敏度已达1pA,时间和空间分辨率达10 us和1 um。 随着膜片钳技术的出现,目前有几种不同的记录方式: (1)细胞吸附式(cell-attached patch)将两次拉制后,经热抛光的微管电极置于清洁的细胞膜表面, 形成高阻封接,在细胞膜表面隔离出一小片膜,即通过微管电极对膜片进行电压钳制,从而测量膜电流。 (2)内面向外模式(inside-out patch)高阻封接形成后,将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中,使小泡的外半部分破裂即得。

大数据技术原理与应用课程建设经验分享

摘要:大数据专业人才的培养是世界各国新一轮科技较量的基础,高等院校承担着大数据人才培养的重任。大数据专业作为典型的“新工科”专业,在课程体系建设方面还处于摸索阶段。首先剖析了大数据课程建设的难点,然后介绍了厦门大学建设的大数据课程体系,包括入门级课程、进阶级课程和实训课程,最后分享了大数据技术原理与应用课程建设的经验与方法,包括课程定位、培养目标、预备知识、大数据与云计算课程之间的知识切割、课程内容与学时安排、课程教材、实验环境搭建、配套资源建设、在线服务平台、线下培训与交流等。 关键词:课程体系;MOOC;公共服务平台 1 引言 大数据带来了信息技术的巨大变革,对社会生产和人们生活的各个领域都产生着深刻的影响,所到之处,或是颠覆,或是提升,让人们深切感受到了大数据实实在在的威力。对于一个国家而言,能否紧紧抓住大数据发展机遇,快速形成核心技术和应用并参与新一轮的全球化竞争,将直接决定未来若干年世界范围内各国科技力量博弈的格局。大数据专业人才的培养是新一轮科技较量的基础,高等院校承担着大数据人才培养的重任,因此,各高等院校非常重视大数据课程的开设,大数据课程已经成为信息相关专业的重要核心课程。北京大学、厦门大学、中国人民大学等一批高校在国内率先开设大数据课程。2016年,北京大学、中南大学、对外经贸大学3所高校成为国内首批获得教育部批准设立“数据科学与大数据技术”专业的本科院校,此后,教育部又于2017年和2018年分别批准32所和248所本科院校设立数据科学与大数据技术专业。与此同时,根据教育部公布的“大数据技术与应用”专业

备案和审批结果显示,截至目前,已经有累计208所职业院校获批“大数据技术与应用”专业。“数据科学与大数据技术”专业和“大数据技术与应用”专业一般被统称为“大数据专业”。随着大数据专业在国内众多高校中开设,大数据专业人才的培养迈入了全新的阶段。 大数据专业作为典型的“新工科”专业,在课程体系建设方面还处于摸索阶段,没有太多可供借鉴的现成经验,需要一大批热爱教学的高校教师积极投身课程体系和教材的建设工作中,共同推动全国高校大数据教学工作不断向前发展。厦门大学数据库实验室作为国内高校较早从事大数据教学资源建设的团队,从2013年开始,在大数据课程建设方面开展了很多有意义的尝试和探索,本文将分享笔者团队在这些方面的工作成果和经验做法。 2 大数据课程建设的难点 大数据专业课程涵盖范围较广,从学科角度而言,包括了数学(高等数学、线性代数、离散数学、数学建模等)、计算机(算法、数据结构、程序设计、数据库、操作系统、数据挖掘等)、统计(概率论与数理统计、多元统计分析等)等多学科知识。从数据分析流程角度而言,大数据专业课程包含了数据分析全流程的各种技术,包括数据采集、数据存储与管理、数据处理与分析、数据可视化等各个环节的技术。 本文探讨的大数据课程是指数据分析全流程涉及的大数据技术类课程。需要强调指出的是,在这些大数据技术类课程中,并非所有课程都是大数据时代新生的课程,比如,数据采集课程主要讲解网络爬虫技术,这些技术在大数据时代到来之前就已经存在很多年了,并非到了大数据时代才诞生。同理,数据可视化也是经历了多年发展的“老课程”,知识内容并没有因为大数据的出现而发生本质的变化。实际上,大数据技术之所以受到热捧,主要在于以Hadoop和Spark为代表的分布式框架解决了以较低的成本实现海量数据的存储和计算的

膜片钳使用规则

膜片钳使用规则 一、工作原理: 1.膜片钳是一种可以直接观察单一的离子通道蛋白质分子对相应离子通透难易程度等特性的一种实验技术。其基本原理是用一个尖端光洁,直径约为0.5~3um 的玻璃微电极同神经或肌细胞的膜接触而不刺入,然后在微电极另一端开口处施加适当的负压,将与电极尖端接触的那一小片膜轻度吸入电极尖端的纤细开口,这样在这一小片膜周边与微电极开口处的玻璃边沿之间,会形成紧密的封接,其电阻可达数个或数十个千兆欧,这实际上把吸附在微电极尖端开口处的那一片膜同其余部分的膜在化学上完全隔离出来,由微电极记录到的电流变化只同该膜片中通道分子的功能状态有关。如果在这一小片膜中只包含了一个或少数几个通道蛋白分子,那么通过微电极测量出的电流,就是某种带电离子经由开放的单一通道蛋白质分子进行跨膜移动的结果。 二、操作步骤: 1.打开总电源。 2.依次打开电脑、显微镜、监视器、微操、放大器。 3.打开PULSE软件,在E盘建立自己的文件夹。 4.灌注玻璃电极并排空气体。 5.装上玻璃电极,浸入液面并调至视野范围。 6.点击set-up,将增益调为0.5,点Auto,记录电极电阻。

7.封接细胞,若上G,提起或吸破细胞。 8.依次点击on-cell,whole-cell补偿。 9.选定In-out或whole-cell模式进行实验。 10.用毕请关闭仪器,并切断总电源。 三、注意事项: 1.每天做实验前请用清水拖地,以防尘埃、静电伤害机器。 2.拉制仪使用前需预热15-30min。 3.银丝电极及地线发白时,请先用砂纸轻微打磨,再浸入新鲜的次 氯酸钠溶液镀氯化银,如果银丝电极30min未变黑,则考虑更换 次氯酸钠。 4.先开放大器,后开软件;先关软件,后关放大器。 5.非必须用到汞灯时请不要打开汞灯电源,打开后至少需1个小时 才可关闭。 6.在放大器打开时绝对不能用手、金属物品或其它导电的物品接触 电极丝(包括地线),在取放细胞片时请关闭放大器。 7.向玻璃微电极灌注内液时切勿灌太多(1cm左右为适),以防液 体进入银丝底部增加噪声。 8.安装玻璃微电极时,电极应与银丝平行,防止刮蹭银丝电极。 9.玻璃微电极需先用甲醇浸泡,再用酒精灯微烧两端,使其平滑。 10.换液时应时刻观察浴槽,防止液面过低或液体溢出污染镜头,最 适液面为微高于出液口。

膜片钳记录和分析技术

膜片钳记录和分析技术 2010-12-15 16:41 来源:美国分子仪器点击次数:2186 关键词:膜片钳细胞信号 分享到: ?收藏夹 ?腾讯微博 ?新浪微博 ?开心网 细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科-电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。 早期的研究多使用双电极电压钳技术作细胞内电活动的记录。现代膜片钳技术是在电压钳技术的基础上发展起来的。 1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。以后由于吉欧姆阻抗封接(gigaohm seal, 109W)方法的确立和几种方法的创建。这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。 一、膜片钳技术发展历史 1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位

的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。 1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GW10-100G?的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。 1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。 1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sakmann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 二、膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见下图),由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们全面认识能力的弊端。

膜片钳技术在药学研究中的应用

膜片钳技术在药学研究中的应用 前言 德国物理学家Neher和Sakmann[1.2]建立的膜片钳技术(patch clamp technique)是一种以记录通过离子通道的离子电流来反映细胞上单一的(或多数的)离子通道活动的技术,已被广泛应用。作为先进的细胞电生理技术,它一直被奉为研究离子通道的“金标准”。应用膜片钳技术可以证实细胞膜上离子通道的存在,并能对其电生理特性、分子结构、药物作用机制等进行深入的研究。基因组学、蛋白质组学研究表明,以离子通道为靶标的药物研究在未来具有很大的发展空间。 关键词膜片钳技术;药学研究;应用 Abstract [ ]The patch-clamp technique , a dominant technique in cellular electrophysiology , is always being regarded as the gold standard for ion channel research.. Application of the patch-clamp technique can demonstrate the existences of ion channels and provide valuable information for ion channels, including their electrophysiological properties , molecular structures and the mechanism of drug action .Genomics and proteomics research has showed that the development of drugs for ion channel target would be very promising in future. Key words Patch-clamp technique ; Study on Medicinal chemistry ; Application 80年代初发展起来的膜片钳技术(patch clamp technique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了最直接的手段,该技术的兴起与应用,使人们不仅对生物体的电现象和其它生物现象有更进一步的了解,而且基因组学、蛋白质组学研究表明,以离子通道为靶标的药物研究在未来具有很大的发展空间。为了突破由于筛选技术所造成的对离子通道为靶标的药物开发的瓶颈,近年来,对膜片钳技术进行了改进以适合药物高通量筛选的要求,由此产生了一些技术。 一、膜片钳技术原理及特点

6、膜片钳实验流程

膜片钳记录系统 仪器简介:膜片钳技术是细胞电生理方面的高端技术,是研究细胞膜离子通道的重要工具。目前细胞膜离子通道的研究已经应用到了药物作用、环境对细胞膜离子通道的影响、神经网络研究以及疾病的诊断和治疗等多个领域。膜片钳技术是神经科学、心血管、药物学和药效学、功能基因组学和许多遗传病深入研究的有力手段。 仪器名称:膜片钳记录分析系统 主要设备:PC-2B放大器、AXON200B放大器、正置显微镜、倒置显微镜、NIR-DIC 成像系统、水镜头、微操纵器、微电极拉制仪、抛光仪、振动切片机等。 仪器功能及应用范围:单细胞膜片钳记录(急性分离细胞、培养细胞)、脑片膜片钳记录(盲法、可视法) 收费标准:培训费:1个月以内—500元;1~3个月—1000元。 指导操作:院内20元/小时,院外40元/小时。 独立操作:院内60元/天,院外120元/天(由两位指导老师认可培训 合格,方可进行独立操作)。 开放时间:周一至周五 管理规定: ⑴膜片钳记录分析系统属于高端精密仪器,因此任何进入本室进行膜片钳实验的人员,必须经过本室专门人员培训合格认可后,经允许方可进行膜片钳放大器、微操纵器、拉制仪、切片机、显微镜等仪器的操作。 ⑵在实验过程中,必须严格按照实验流程进行操作,不得擅自更改操作步骤,不许自行调改仪器设置,以免造成仪器毁损。 ⑶仪器损坏赔偿事宜按照我室赔偿制度进行处理。 ⑷统一安排实验时间,使用仪器后作登记。 ⑸实验人员负责当天的水电安全和室内卫生。

脑片膜片钳实验流程 (PC-2B) 一、脑片制作 1.配制新鲜蔗糖溶液(4°C)和NaCl孵育液(室温,20~25°C)各1L。 2.用丙酮浸泡刀片30 min。 3.麻醉动物:爪蟾—MS-222,大鼠—乌拉坦。 4.解剖动物,取脑组织。 5.切片:根据不同的动物和组织选择不同的方案。 方案一:低熔点琼脂包埋组织后进行切片。 方案二:普通琼脂作托进行切片。 6.处理脑片:蔗糖溶液中40~60min(4°C或32°C)。 7.孵育脑片:NaCl溶液中放置0.5~1h(室温)后可进行膜片钳实验。 注:脑片制作过程需全程通入95%O2+5%CO2混合气。 二、全细胞膜片钳记录 (一)盲法 1.将脑片置于灌流槽内,用银丝压牢,并确保灌流系统通畅、稳定。 2.双手接触屏蔽罩以释放操作者身体静电。 3.打开放大器POWER→ON,记录模式选择SEARCH档。 4.打开IBBpatch-clamp软件,点击按钮,监测电流及电阻变化。 5.系统holding选择-50~ -80mV。 6.安装玻璃微电极。 7.用注射器给电极内施加适度正压。 8.降低电极入水,并接近脑片。 9.封接:用微操纵器推动电极接触脑片,并逐渐向脑片深处推进,当电阻突然增大,电流降低1/3以上时,释放注射器内正压,缓慢抽吸,逐渐形成千兆欧姆封接(gigohm)。 10.破膜:轻拉注射器,突然出现大的电容电流,表明已破膜,Whole-cell 模式

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作 1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。 一、膜片钳技术的基本原理 用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 二、操作步骤 1.膜片钳微电极制作 (1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。玻璃毛细管的直径应符合电极支架的规格,一般外部直径在 1.1~1.2mm。内径1mm。 (2) 电极的拉制:分二步拉制。第一部是使玻璃管中间拉长成一窄细状,第二次拉制窄细部位断成二根,其尖端直径一般在1~5μm,充入电极内液后电极电阻在1~5MΩ为宜。调节第一步和第二步拉制时加热线圈的电流强度,即可得到所需要的电极尖端直径。电极必须保持干净,应现用现拉制。 (3) 涂硅酮树酯:记录单通道电流时,为了克服热噪声、封接阻抗噪声及电极浸入溶液产生的浮游电容性噪声,需要在电极尖颈部(距离微电极尖端50mm)的表面薄薄地涂一层硅酮树酯(sylgard),它具有疏水性、与玻璃交融密切、非导

膜片钳技术SOP

膜片钳技术SOP 关键词:膜片钳 目的: 研究膜片上几个甚至一个离子通道的电流,对单个离子通道在各种电位状态及每种电位状态下对产生电流的离子作出定性、定量的分析,来反映细胞膜上离子通道活动,为研究离子通道结构与功能关系提供关于生物电特性的新资料。基本原理: 膜片钳制技术(patch clamp technique)是对一块单独的细胞膜片(或整个细胞)的电位进行钳制的一项电生理技术。 通过对膜电位的钳制可以观察通过离子通道的电流,膜片钳放大器正是通过维持电压的恒定而测出这种电流。运用膜片钳技术记到的最小电流可达到pA级(10-12 A)。膜片钳的本质属于电压钳范畴,其基本工作原理是:采用经典的负反馈放大技术作电压固定,但改用细胞外微吸管作电极,将微电极管尖端与细胞膜表面接触,经负压抽吸,形成具极高阻抗的紧密封接,其电阻值高达10-100千欧(即GΩ=109Ω)。只有在这种封接存在时,通过膜电极引导记录的电流才是通过该膜的离子通道电流。 膜片钳技术原理示意图 Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压降而被检测出。

药品和试剂: 根据不同的实验设计选择不同的药品和试剂。 主要仪器设备与材料: ①屏蔽防震实验台(TMC 63-544) ②数字式超级恒渐浴槽(HSS-1 CHENDU INSTRUMENT China) ③微管电极拉制器(PP-83 NARISHIGE Japan) ④微管电极抛光仪(ME-83 NAEISHIFE Japan) ⑤电子刺激器(SEN-2030, NIHON KOHDEN, Japan) ⑥膜片钳放大器(AXOPATCH 200B Axon Instruments U.S.A) ⑦倒置相差显微镜(AXIOVERT 135 ZEISS Germany) ⑧计算机(PⅢ 800) ⑨A/D、D/A转换器(DIGIDATA-1200 Axon Instruments U.S.A) ⑩pClamp软件(10.0)Axon Instruments U.S.A ) 实验对象: 兔、大鼠、猪、和人的组织细胞(直径小于30μm的细胞),都可用于膜片钳实验。动物由泸州医学院(许可证号:SYXK(川)2008-063)提供;人体组织来源于临床手术丢弃物。本SOP以猪冠状动脉平滑肌细胞为例,选取体重约120~150 Kg的猪,雌雄不拘,猪心脏购自泸州市屠宰场。 实验环境: 常温(22o C)下进行, 湿度(70-80%) 操作步骤: 1.液体配制 主要根据研究通道的不同,所用细胞的不同,配制相应的液体,可参考相应的文献进行调整。包括:电极液;细胞外液等。基本原则是保持2个平衡,渗透压平衡和酸碱平衡。另外,所有液体在使用前必须过滤,以保持液体洁净。(详见细胞的分离与培养SOP:L Y-XJD-SYJS-014/015) 2.标本制备 膜片钳实验一般是在单个细胞上进行。实验用单细胞主要来自培养细胞或急性酶分离的细胞,也可来自脑片细胞中的原位细胞。常用的酶是胶原酶和蛋白酶,

膜片钳技术

2008级硕士研究生膜片钳技术试题 请用A4纸书面手写,严禁抄袭。下学期开学后两周内交于先知楼2002室陆巍老师处,过期不侯! 问答题(共100分) 1、什么是膜片钳技术?它的基本工作原理是什么? 答:膜片钳技术是以记录通过离子通道的离子电流来反映细胞上单一的(或多个的)离子通道分子活动的技术,具体说来就是利用微玻管(膜片电极或膜片吸管)接触细胞膜,以吉欧姆(GΩ)以上的阻抗使之封接,使与电极尖开口处相接的细胞膜的小区域(膜片)与其周围在电学上绝缘,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)(10-12A)进行监测记录的方法。 膜片箝的基本原理是:用一个尖端光洁、直径约0.5-3um的玻璃微电极同神经或肌细胞的膜接触而不刺入,然后在微电极的另一段开口施加适当的负压,将与电极尖端接触的那一小片膜轻度吸入电极尖端的纤细开口,这样在小片膜周边与微电极开口的玻璃之间形成紧密封接,在理想状态下电阻可达数十兆欧。实际上把吸附在微电极尖端开口的那小片膜同其余部分的膜在电学上完全分开,如果这小片膜上只含一个或几个通道分子,那么微电极就可以测量出单一开放的离子电流或电导,对离子通道的其他功能进行研究。 2、膜片钳记录方法分为四类?各有何特点? 答:膜片箝有四种分类: (1)单通道记录法-细胞吸附模式(Cell-attached Mode) 微电极在显微镜下贴近细胞后,给微电极施加一负压,形成高阻抗封接。此时可看到背景噪音明显减少,通常选取电极下仅有一个通道的膜片进行分析,即单通道记录,以利于不失真的观察一个通道的活动状态。该方法的优点是对细胞膜结构和调制系统干扰最小,能准确反映通道的活动状态并对此进行客观分析。但缺点是电流小,分辨率地,对技术要求高,难度较大,且工作量大而成功率又较低。 (2)全细胞记录法(Whole-cell recording) 在高阻抗封接做好后,再给一个很小的负压,将电极覆盖的膜吸破,使电极内与整个细胞内相通,用这个方法可记录进出整个细胞的电流。该方法的优点是电流大,信噪比好,既可以做电流钳制又可以做电压钳制,且可以改变细胞内容物。但此法只能用于直径小于3μ的细胞,且仅能观察膜电流的变化,不能分析变化的产生机制。 (3)膜内面向外式(Inside-out) 按照细胞密着式将电极封接好之后,再将电极拉开,使之与胞体脱离即可,也是用以记录封在电极尖端口下的膜片中的离子通道电流。是在细胞吸附式的基础上改进而成。其优点是可以观察化学因素对细胞膜内侧面结构的影响,但其操作难度较高。 (4)膜外面向外(Outside-out)在全息胞记录式的基础上,拉开电极使之与胞体脱离,这是附在电极尖端的膜片又可自动地将电极尖端口封住。此膜片的外侧面向外其是在全细胞记录的基础上改进而成,优点是可以分别观察化学因素对细胞膜外侧面结构的影响。 3、膜片钳技术的应用范围有哪些? 答:应用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性,同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流

单探头超低噪声膜片钳放大器Axon 200B简介

单探头超低噪声膜片钳放大器Axon 200B Axopatch200B是目前世界上噪音最低的膜片钳放大器,它整合了电容反馈和单通道记录的探头冷却技术,特别适合小电导的单通道的记录,是最经典的膜片钳放大器。 单探头超低噪声膜片钳放大器Axon 200B主要特点 1.单探头 2.探头内有电阻反馈与电容反馈电路,电容反馈电路的设计以及探头具有冷却系统的特点,使得热噪声显著降低。 3.具有超低噪声,是目前世界上噪声最低的膜片钳放大器。单通道记录时(b=1) 噪声@ 0.045 pA rms;全细胞记录时(b=1) 噪声@ 0.55 pA rms;全细胞记录时(b=0.1) 噪声@ 1.6 pA rms。 4.细小而狭长的探头设计使其适于在工作空间小的操作台上记录。 5.手动补偿电极电容,细胞电容和串连电阻。 6.具有用于打破细胞膜的ZAP功能,其可输出1.3伏的直流电,持续时间可高达50 ms。 单探头超低噪声膜片钳放大器Axon 200B主要应用范围 单通道记录(最佳)、全细胞记录、人工双分子层膜片钳记录、松散封接记录、电化学检测(伏安法/安培测量法)。最适进行单通道记录,尤其是小电导的单通道记录。 单探头超低噪声膜片钳放大器Axon 200B提供了最低噪音的膜片钳放大器技术。膜 片模式中开放电路(放大器)的噪音已经被降低到了空前低的水平:< 15千亿分之 一安培(rms),1千赫兹带宽以下; < 60千亿分之一安培(rms),5千赫兹带宽以下; 以及< 130千亿分之一安培(rms) ,10千赫兹带宽以下,所有值都使用8极贝塞尔 滤波器进行测量。使用吸管架时的噪音仍然较低(145千亿分之一rms,低于10千 赫兹带宽时)。它在实际记录中被转化成低噪音;这个噪音性能部分通过将探头内 部的输入场效应晶体管冷却到零度以下来实现。 优良的噪音性能只是其优点的一部分。重新设计的、细长的探头改善了电极穿透标本的能力,使其较容易的装配到显微镜下面。现在,我们在一个探头包含了两个完整细胞的范围(先前可以使用的只有两个分开的探头)。200B包括了200A的所有特征,还增加了一些。增加的特征包括单独的探头中的三个记录配置(一个膜片和两个完整细胞的范围,电容补偿的范围为100 pF 和1000 pF)、电化学测量增加的电压和电流指令范围(到±1V)、电容测量的内置电容振动能力、增加了对电流钳电路的串联电阻来改善性能。封接实验现在在电流钳模式下可以提供电流步进;在电压钳模式下可以提供电压步进。泄露

膜片钳放大器系统

膜片钳放大器系统 技术参数: 一、四通道膜片钳放大器(含软件): *1.1 四探头电脑全自动控制放大器,所有补偿可由软件自动完成。 *1.2 具有Lockin功能,能精确测量膜电容测量。 1.3 探头电流测量电阻≥50 Gohm(高增益);500 Mohm(中增益); 5 Mohm(低增益);最大测量电流≥200pA(50G),20nA(500M),2μA(5M) 1.4 全自动检测和校准软件:可以给出探头和主机匹配的各种频响参数,始终保持探头的稳定与精确 1.5 探头的适用性:探头与主机可随意组合,维修方便 1.6 光电联合检测:同钙离子系统可以实现同步,荧光检测扩展:可控制不同的荧光激发光源,可实现离子浓度例如Ca2+测量与膜片钳测量的同步记录 1.7 电容补偿:自动补偿快慢电容,电容跟踪测量细胞表面积 1.8 串联电阻补偿:自动补偿。最大补偿≥90%,最佳设定与细胞膜电容有关。 1.9 保持电压/电流:电压钳模式:软件控制的保持点位,范围:±1000 mV range,电流钳模式:电流钳:中增益:1 pA/mA input;up to ±1 nA;10 pA/mA input;up to ±10 nA;低增益:100 pA/mA input;up to ±100 nA;低输入电容可允许膜电位的快速变化,不会产生振荡 1.10 刺激≥4路16位DA转换器,隔绝从电脑耦合过来的噪音,

更新速率≥300 kHz,刺激范围:-10.24V to +10.23V 1.11 所生成的数据能够被Clampfit及Patchmaster所分析 1.12 音频检测:软件提供音频检测功能 2.1.13放大器内置数模转换器,以减少噪音 *1.14多通道数据采集(≥8个A/D通道)与输出刺激(≥3个D/A输出通道) 1.15可输出多种多样的刺激波形 *1.16 P/N漏检功能 2.1.17具有全细胞和细胞贴附模式下进行膜电容测定的LOCK IN 放大器的功能 1.18具有离子成像测定的扩展功能,扩展后可控制光源和对荧光测定进行控制的功能 二、单通道膜片钳放大器(含软件): *2.1 单探头电脑全自动控制放大器,所有补偿可由面板手动完成,同时与数模转换器是独立工作; *2.2 具有Lockin功能,能精确测量膜电容测量。 2.3 探头电流测量电阻≥50 Gohm(高增益);500 Mohm(中增益); 5 Mohm(低增益);最大测量电流≥200pA(50G),20nA(500M),2μA(5M) 2.4 全自动检测和校准软件:可以给出探头和主机匹配的各种频响参数,始终保持探头的稳定与精确 2.5 探头的适用性:探头对应性强,维修方便 2.6 光电联合检测:同钙离子系统可以实现同步,荧光检测扩展:

膜片钳技术资料汇编

丁香园膜片钳技术讨论区 资料汇编 整理人:xiaoxuanzi 发起人:tianx775 2006年6月

目录 第一节膜片钳技术介绍 (1) 应用 (1) 基本概念 (2) 第二节仪器操作和维护 (3) 仪器的使用 (3) 噪声 (4) 玻璃微电极的制备 (5) 第三节 实验操作 (7) 1.细胞的分离、培养 (7) (1)心肌细胞 (7) (2)平滑肌细胞 (17) (3)其他细胞 (19) 2.电极的拉制与电镀 (23) 3.电极内外液与渗透压 (25) 4.串联、封接、电极电阻 (28) 5.补偿 (37) 6.刺激方案 (40) 7.动作电位记录 (42) 8.电流记录 (42) (1)钙电流 (42) (2)钾电流 (45) (3)钠电流 (47) (4)其他电流 (48) 9.穿孔 (50) 10.单通道记录 (51) 11.脑片 (54) 12.数据分析与处理 (55) 第四节 相关电子文献及书籍 (61)

第一节 膜片钳技术介绍 一、应用 1.全细胞记录技术的应用 [Cactuswzw](1)离子通道宏观性质的分析,例如,离子通道的性质和分类(电压门控通道、膜受体激活通道、配体门控通道、胞内第二信使激活通道等) (2)离子通道微观性质分析,例如单一离子通道活动的测定的测定,离子通道的构造,分布和机能的分析等。 (3)膜电容的测量及其对细胞分泌活动的研究。 (4)胞内钙离子浓度和钙通道电流的同时定量检测。 (5)组织切片的全细胞记录。 (6)植物细胞的电生理研究。 二、基本概念 1.刚刚接触patch,有些概念都很模糊 holding potential与command potential? Axon200B的放大器控制面板上有ext. command,又是什么东东? 都分别什么时候给予? 在我理解,pipette capacity compesation就是快电容补偿,而Cm补 偿为慢电容补偿,那为何Axon200B的面板上在pipette capacitance compensation下面列了FAST和SLOW的magnitude以及时间常数的调节 扭? [baxiansheng]Holding potential 是钳制电压,这是实验中从头至尾 通过电极用于钳制细胞的一个电压,和膜电位的关系取决于采用的实验 模式。而command voltage是在holding potential基础上施加的刺激 方案,比如全细胞实验中可以设置Holding potential在-80mV,然后 去极化至+10mV 400ms,那么这个去极化至+10mV的方波就是command voltage,当然command voltage的设置可以根据实验设置得更复杂。 Axon200B放大器控制面板的ext. command是用于接外接刺激器的,通 过外接刺激器来施加command voltage,当然现在完全由计算机代替了。 pipette capacity是电极电容,因为时间常数小,所以称快电容,而 Cm是膜电容,因为时间常数大,所以称为慢电容。Axon200B的面板上 在pipette capacitance compensation下面列了FAST和SLOW的 magnitude以及时间常数的调节扭,那是对电极电容的补偿方式。实际 上电极电容中也有一些时间常数较大的成分,单纯补偿FAST效果并不 完美,需要再稍稍调节一下SLOW。 2.我的课题是关于心血管系统中离子通道方面的研究。离子通道一般有备 用关闭状态(close),激活状态(active)和失活状态(inavtive)。但 最近我看文献有去激活状态,英文为deactivation,我想跟失活肯定不是 一个概念,但又找不到确切的含义,有谁能帮我解释一下这几种通道状 态个代表什么含义? [coolworm]C<----->O<------->I

膜片钳与离子系统技术平台的标准操作规程

膜片钳与离子系统技术平台的标准操作规程 关键词:膜片钳,离子成像 目的:本操作规程是关于利用膜片钳与离子成像系统技术平台进行细胞内离子研究的具体操作规程。 仪器负责人:杨琳 操作步骤: 一、膜片钳系统 (一)Sutter P-97拉制仪 1、开左侧电源开关,预热10min。 2、运行RAMP TEST坡度测试,确定玻璃管的加热值,使加热能够熔化玻璃但又不至于烧 断加热片。 警告:第一次使用拉制仪或更换加热丝、更换不同型号的玻璃时,都应该作RAMP TEST 坡度测试,然后把RAMP TEST的值当做新编辑的程序的HEAT值。 下面是运行RAMP TEST的步骤: (1)进入任一程序(按0-9 Enter回车)。 (2)按清除键进入控制功能。 (3)按<0>不要清除参数数值。 (4)按<1>即能运行RAMP TEST 坡度测试。 (5)安装玻璃管和按。 (6)记录RAMP TEST值,将用于设置HEAT。 3、做完RAMP TEST后记下它的值按RESET。选择一个程序,按光标提示输入测试得到的 HEA T值,调整PULL、VELOCITY、TIME等参数值,设置拉制步数(Cycle)。 4、安装玻璃管:先将玻璃管安放在一侧的玻璃管夹的槽内,用旋钮固定,然后将玻璃管推 过加热小室,用另一侧的玻璃管夹固定。 5、按“PULL”键,拉制电极 6、小心取下拉制好的微电极。 7、关闭电源。 注意: 1.不能用力按压玻璃管夹!将玻璃管推入加热小室时不能碰到加热丝!

2.用户要根据自己的需要先通过RAMP TEST确定HEAT值,再不断调整PULL、VELOCITY、TIME值,使之做一步二步甚至多步拉制达到自己的应用目的。 3.前后面板(按钮、开关、旋钮)控制的功能及作用 (1)前面板 LCD Display:显示程序参数 Reset:初始化复位控制 Air Pressure:在拉制周期的有效制冷状态期间设置空气压力的值 Keypad:用于设置程序参数值和执行程序 0~9:用于选择所要的程序或控制功能,当程序设计时输入数字值和作决定是/否(Yes/No)(1/0) CLR:进入某个程序后本键用于删除程序或数值,也用于作坡度测试(RAMP TEST)的入口 ENTER:回车,确定新数值或程序 NEXT:编辑时移动到程序的下一行 LAST:编辑时移动到程序的上一行 PULL:开始执行程序 STOP:终止执行程序 LCD Display显示: Program (0-9):一个程序由一行(Cycle)或多行组成(一个Cycle包括4个程序参数:HEAT、PULL、VELOCITY、TIME,一个Cycle相当于一行程序代码)。当执行拉制一支嵌入仪器的毛细玻璃管时,一个程序能连续拉16Cycles长度。 HEAT:HEAT是控制一个供给加热片的电流水平,设置加热片的功能,使之能熔化特定的玻璃管(组成物质及大小),在操作部分讨论坡度测试的相对值很重要,它就是你所要的加热(HEAT)值。 PULL:控制强加给的拉力,一般较高的PULL值会产生较小的和较长的锥形尖端。 VELOCITY:拉制杆移动速度达到一定程度,拉断电极。 TIME:TIME控制有效的制冷空气时间长度。 (2)后面板 电压转换器,国内使用220V,应使Δ对准220V。 电源接口及保险丝(电源开关在左侧面)。

相关文档
最新文档