二阶高通滤波器的设计 (2)

二阶高通滤波器的设计 (2)
二阶高通滤波器的设计 (2)

前言

当今时代,随着科学技术的发展,先进的电子技术在各个近代学科门类和技术领域中有着不可或缺的核心地位。以前的三次工业革命就使我们的社会发生了翻天覆地的变化,使我们由手工时代进入了现代的电器时代。同时科技在国家的国防事业中发挥了重要的作用,只有科技发展了才能使一个国家变得强大。而作为二十一世纪的一名大学生,不仅仅要将理论只是学会,更为重要的是要将所学的知识用于实际生活之中,使理论与实践能够联系起来。

对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。

低通滤波器在现实生活中运用也十分广泛。该种滤波器是只有在规定的频率范围内才能使信号通过,而且其电路性能稳定,增益容易调节。利用这一性质不仅可以滤出有用信号且同时抑制无用信号。工程上也常常用低通滤波器作信号处理、数据传递和抑制干扰等。例如:无线电发射机使用低通滤波器阻塞可能引起与其它通信发生干扰的谐波发射;固体屏障也是一个声波的低通滤波器,当另外一个房间中播放音乐时,很容易听到音乐的低音,但是高音部分大部分被过滤掉。

我国现在有滤波器的种类和所覆盖的频率虽然基本上满足现有的各种电信设备。但从整体而言,我国有源滤波器的发展比无源滤波器缓慢,尚未大量生产和应用。我国电子产品要想实现大规模集成,滤波器集成化仍然是个重要课题。

第一章设计任务

1.1二阶低通滤波器题目要求

a)设计截止频率f=2kHz的滤波器

b)输出增益Av=2

c)要求用压控电压源型、无限增益多路反馈型两种方法

第二章 系统组成及工作原理

2.1 系统组成

图 2.1 二阶低通滤波基础电路

二阶低通滤波基础电路如图2.1所示,它由两节RC 滤波电路和同相比例放大电路组成,在集成运放输出到集成运放同相输入之间引入一个负反馈,在不同的频段,反馈的极性不相同,当信号频率f >>f 0时(f 0 为截止频率),电路的每级RC 电路的相移趋于-90o,两级RC 电路的移相到-180o,电路的输出电压与输入电压的相位相反,故此时通过电容C 引到集成运放同相端的反馈是负反馈,反馈信号将起着削弱输入信号的作用,使电压放大倍数减小,所以该反馈将使二阶有源低通滤波器的幅频特性高频端迅速衰减,只允许低频端信号通过。其特点是输入阻抗高,输出阻抗低。

1

图2.1 二阶压控电压源低通滤波电路

在二阶压控电压源低通滤波电路中,由于输入信号加到集成运放的同相输入端,同时电容C1在电路中引入了一定量的正反馈,所以,在电路参数不合适时会产生自激振荡。为避免这一点,Aup取值应小于3。可以考虑将输入信号加到集成运放的反相输入端,采取和二阶压控电压源低通滤波电路相同的方式,引入多路反馈,构成相反输入的二阶低通滤波电路,如图2.2所示,这样既能提高滤波电路的性能,也能提高在f=f

附近的频率特性幅度。由于所示电路中的运放

可以看成理想运放,即可以认为其增益无穷大,所以该电路叫做无限增益多路反馈低通滤波电路。

图2.2二阶无限增益多路反馈低通滤波电路

2.2工作原理

滤波器分为无源滤波器与有源滤波器两种:

①无源滤波器:

由电感L、电容C及电阻R等无源元件组成

②有源滤波器:

一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。

从功能来上有源滤波器分为:

低通滤波器(LPF)、高通滤波器(HPF)、

带通滤波器(BPF)、带阻滤波器(BEF)、

全通滤波器(APF)。

其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型

、通带截止频式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数A

VP

率f

及阻尼系数Q等。

P

滤波器由集成运放与RC网络构成,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。

第三章滤波器设计

3.1 电路设计

选择电路的原则应力求结构简单,调整方便,容易满足指标要求。现在,选择图3.1所示的二阶压控电压源低通滤波电路。

图3.1二阶压控电压源低通滤波电路

无限增益多路反馈低通滤波器设计电路图如图3.2所示:

图 3.2 二阶多路无限负反馈低通滤波器

3.2 参数计算

由设计要求可知,截止频率为0f =2000HZ ,增益v A =2。因为增益v A =2,即电路放大倍数为2,则同相比例放大电路的放大倍数为3

f

v uf o R R 1A A A +=== 则 3f R R = 不妨设Ω==10k R R 3f 1

12212

121uf 112212

121)()

A 1()(C R C R R R R C C C R C R R R R C C Q -+=

-++=

设定C C C ==21,代入到上面的公式中可以得到 21R R Q =

代入2

1=Q 可计算得出 R R R 2212== 又由 Hz RC

R R C C f f op o 2000221

1212121===

=ππ

, 解得R C 110627.55-??=

再结合实际电子原器件可以设定所选用的原器件参数如下:

Ω

==Ω=Ω===10k R R k 11.254R

627.5R 0.01uF C 0.01uF C 3f 2121(电位器)(电位器)k

图3.1 二阶压控电压源的幅频特性曲线

截止频率为0f =2kHz ,增益v A =2,由上面电路分析可知 1

R R A f u -=。则

同相比例放大电路的放大倍数为2||1

==

=R R A A f u v 则 1f 2R R =

又 2

2

112

1221212321

////C R R C R R R R C C R R R Q f f +=

=

)( 当设计电路的品质因数Q=0.707时,电路的滤波效果达到最佳。所以,在电路分析计算时,可以把品质因数Q 看作一常数来处理,即Q=0.707。基于品质因数Q=0.707,来设计电路。

先设定R R R ==21,代入到上面的公式中可以得到 21252C C Q =

代入2

1

=Q 可计算得出 C C C C 16.016.025

4

112=== 又由Hz RC R R C C f f f op o 2000825121221===

=ππ

, 解得C R 1

10407.14-??=

R R R R R f 5

2

////213=

=

由实际电子元器件标称值可以设定各元器件参数,如表3-1所示:

表3-1 元器件参数

)(nF C 1 )(2nF C

)(1ΩR

)(2ΩR

)(Ωf R )(3ΩR

300

47 469 469 938 187.6

3.3 元件参数选取

实验所选电路为无限增益多路反馈低通滤波器,根据实验室情况,选用: 集成运算放大器LM324 1

47nF 电容 1

300nF 电容 1 470Ω定值电阻 1 1K Ω精密电位器 2 2K Ω精密电位器 1

3.4 仿真结果

表3.1.仿真数据

频率(HZ) 300 500 1K 2K 3K 5K

增益 2.0055 2.0224 1.8804 1.4180 0.7563 0.3207

图3.1二阶压控电压源低通滤波仿真电路

实验前按照电路设计理论,在仿真软件上进行仿真实验。仿真电路图如图3.2,所示,仿真结果如表3-2所示:

图3.2 二阶无限增益多路反馈低通滤波仿真电路

表3-2 仿真数据

频率(Hz)300 500 1k 2k 3k 5k

增益 2.0038 2.0018 1.7899 1.4690 0.7895 0.3527

第四章系统调试

4.1 电路调试

按要求领取元器件后,对电阻、电容进行检测,发现电容的偏差较大,最大偏差可以达到21%,对调试电路造成很大影响。先对电路进行布局,认真检查后开始焊接。首先焊接LM324芯片,然后按照电路将剩余的元件焊接上去。本实验的元件比较少,焊接比较简单,电路连接没有问题。连接示波器进行波形检测,开始观察到的波形及相位差是正确的,但输出幅值大小不符合要求。开始调节精密电位器,改变增益。调试中,发现多组数据不能同时达到仿真结果,于是又将开始时的两个定值电阻中一个改为电位器。再经过调试,所测波形基本符合仿真的数据。但结果中仍有许多不尽人意的地方,如截止频率的误差偏大。

4.2 测试结果及分析

表4-1 测试结果及误差

频率(HZ)3005001K2K3K5K

仿真增益 2.0055 2.0224 1.8804 1.41800.75630.3207

实际增益 1.9629 2.000 1.7857 1.4643 0.7034 0.3328

误差 2.12% 1.10% 5.03% 3.27% 6.90% 3.77%

表4-2 测试结果及误差

频率(Hz)3005001k2k3k5k

仿真增益 2.0038 2.0018 1.7899 1.46900.78950.3527

实际增益 2.0900 1.9300 1.8333 1.41660.71330.3200

误差 4.31%-2.82% 2.43%-3.56%9.65%9.27%实验结果及误差如表4-1所示。结果比较理想,通过分析截止频率大约在

1700Hz左右,实际上,只要频率超过1400Hz波形就会出现一定的波形失真。

4.3 误差分析

由于计算出的元器件参数较于理想化,而实际中用的原件很难匹配所有的参数,如电阻取值470Ω,而实际有530Ω。电容的误差较大,电容元件误差在20%左右,实验所选47nF电容只有37nF。课设所用的运放LM324芯片,不能达到理想的虚短、虚断的条件,因此输出不可能达到理想值。示波器本身的误差、示数的误差以及波形的抖动造成的误差。函数发生器本身含有内阻,所以也会影响实验结果的误差。而测试线存在接触不良现象,对波形的调试存在影响。测试时,外界环境对电路存在影响。

第五章结论

通过本次课设,复习了滤波器的原理,并对低通滤波器进行深刻的了解,同时在查阅资料中,也学会其他电路的详细功能。低通滤波器允许低频信号通过,但减弱频率高于截止频率的信号,利用这一性质可以滤出干扰频率的信号。它的用途很广泛,比较接近生活的有带通滤波器用于有线电视网的终端用户或单向用户处,其功能是用来屏蔽反向带宽,以避免单向用户的信号反馈,从而有效避免了网络中由于单向用户的信号反馈对整个双向网络的噪声影响,有效保证了双向网络的正常工作。

参考文献

[1] 邱关源. 电路[M]. 北京. 高等教育出版社, 2006

[2] 程民利. 低频电子线路[M]. 西安. 西安电子科技大学出版社,2000

[3] 华成英. 模拟电子技术基本教程[M]. 北京. 清华大学出版社,2006

[4]. 王冠华.MULTISIM 10电路设计及应用[M].北京.国防工业出版社, 2008

[5]. 谢自美.电子线路设计[M].武汉.华中科技大学出版社,2008

附录一芯片LM324资料

附录二元件清单

类型型号数量定值电阻

10kΩ 2

470Ω 1

电位器1kΩ 2 2kΩ 1 10kΩ 1 20kΩ 1

电容10nF 2 0.3uF 1 47nF 1

芯片(含插座) LM324 2 导线若干面包板 1

二阶高通滤波器的设计 (2)

前言 当今时代,随着科学技术的发展,先进的电子技术在各个近代学科门类和技术领域中有着不可或缺的核心地位。以前的三次工业革命就使我们的社会发生了翻天覆地的变化,使我们由手工时代进入了现代的电器时代。同时科技在国家的国防事业中发挥了重要的作用,只有科技发展了才能使一个国家变得强大。而作为二十一世纪的一名大学生,不仅仅要将理论只是学会,更为重要的是要将所学的知识用于实际生活之中,使理论与实践能够联系起来。 对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。 低通滤波器在现实生活中运用也十分广泛。该种滤波器是只有在规定的频率范围内才能使信号通过,而且其电路性能稳定,增益容易调节。利用这一性质不仅可以滤出有用信号且同时抑制无用信号。工程上也常常用低通滤波器作信号处理、数据传递和抑制干扰等。例如:无线电发射机使用低通滤波器阻塞可能引起与其它通信发生干扰的谐波发射;固体屏障也是一个声波的低通滤波器,当另外一个房间中播放音乐时,很容易听到音乐的低音,但是高音部分大部分被过滤掉。 我国现在有滤波器的种类和所覆盖的频率虽然基本上满足现有的各种电信设备。但从整体而言,我国有源滤波器的发展比无源滤波器缓慢,尚未大量生产和应用。我国电子产品要想实现大规模集成,滤波器集成化仍然是个重要课题。

第一章设计任务 1.1二阶低通滤波器题目要求 a)设计截止频率f=2kHz的滤波器 b)输出增益Av=2 c)要求用压控电压源型、无限增益多路反馈型两种方法

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

二阶有源带阻滤波器课程设计汇总

二阶有源带阻滤波器 设计报告 目录 1、设计要求………………………..P1 2、设计作用及目的………………..P1 3、设计的具体实现 ⑴系统概述……………………...P1-P8 ⑵单元电路设计及仿真分析…...P9-P22 ⑶PCB版电路制作……………..P 4、心得体会及建议………………...P 5、附录……………………………...P 6、参考文献………………………...P

一、设计要求 ⑴、设计一个二阶有源带阻滤波器电路,要求中心频率0f=50Hz,Q=10; ⑵、设计时要综合考虑实用、经济并满足性能要求指标; ⑶、合理选用元器件。 二、设计的作用、目的 ⑴、掌握二阶有源带阻滤波器电路的设计方法 ⑵、了解二阶有源带阻滤波器的性能特点 ⑶、掌握二阶有源带阻滤波器的安装与调试方法 ⑷、掌握滤波器有关参数的测量、计算方法 ⑸、理论应用于实践,增强动手能力 三、设计的具体实现 1、系统概述 ⑴、相关知识了解 由有源器件(晶体管或集成运放)和电阻、电容构成的滤波器称为RC有源滤波器。滤波器分为一阶、二阶和高阶滤波器。阶数越高,其幅频特性越接近于理想特性,滤波器的性能就越好。滤波器的功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信号处理、数据传输、抑制干扰等方面。这类滤波器主要优点是:小型,价廉;不需要阻抗匹配且可具有一定的增益;抗干扰能力强;截止频率低(可低至10-3Hz)。因受运算放大器的频带限制,主要用在超低频至几百千赫的频率范围。根据滤波器所能通过信号的频率范围或阻止信号频率范围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 这里专门对二阶有源带阻滤波器进行研究。常用的二阶有源带阻滤波器电路有两种形式,一种是无限增益多路负反馈(MFA)有源二阶带阻滤波器电路,另一种是电压控制电压源(VcVs)有源二阶带阻滤波器电路。 电压控制电压源电路,它的运放为同相输入,具有高输入阻抗、低输出阻抗

高通有源滤波电路

湖南文理学院 课程设计报告 评阅意见: 评阅教师日期

有源高通滤波电路

目录 第一章简介 1.1 设计要求 (3) 1.2 设计作用与目的 (3) 1.3 所用仪器设备 (4) 第二章设计原理 2.1 设计方案及方案选择 (5) 2.2 模块电路设计及分析 (6) 2.3 总体设计 (10) 2.4 元件参数 (11) 第三章设计硬件及软件过程 3.1 Multisim仿真图 (13) 3.2 仿真结果 (14) 3.3 系统调试结果分析 (16) 第四章总结与展望

第一章简介 1.1设计要求 有源高通滤波电路能传送输入信号中有用的频率成分,衰减或抑制无用的频率成分,并对有用的频率成分具有一定的电压放大作用。有源高通滤波电路应包括:滤波电路;集成运放;反馈电路,三个部分。滤波电路能有效滤除无用频率信号成分,保留有用频率信号成分。集成运放和反馈电路使电路具有一定的电压放大作用,使电路滤波特性趋于理想。通过对有源滤波电路的探究,设计了一四阶有源高通滤波电路。在Multisim 10软件中进行仿真实验,对电路的频率特性和不同频率下输出的信号进行了分析,电路能有效滤除或衰弱频率为100Hz以下的电压信号,对频率100Hz以上的电压信号有放大作用。最终结果基本达到了预期要求。 1.2设计作用与目的 滤波器是减少或消除谐波对电力系统影响的电气部件,广泛应用于电力系统、通信

发射机与接收机等电子设备中,它能减弱或消除谐波的危害,对无用信号尽可能大的衰减,让有用信号尽可能无衰减的通过,从而纠正信号波形畸变。所以,无论信号的获取、传输,还是信号的处理和交换都离不开滤波技术。 在近代电信设备和各类控制系统中,滤波器应用极为广泛,尤其是有源高通滤波器。它在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用,有源高通滤波器的优劣直接决定产品的优劣。所以研究滤波器,具有重大意义。 1.3 所用仪器设备 表:有源高通滤波电路明细表 序号代号名称规格数量备注 1 R1、R2、R3、R4 电阻 4.7kΩ 4 2 R5 电阻18 kΩ 1 3 R6 电阻 5 kΩ 1 4 R7 电阻 2.7 kΩ 1 5 R8 电阻 6.2 kΩ 1 6 C1、C2、C3、C4 电容0.33μF 4 7 U1、U2 运放OP07 2

(完整word版)2阶有源高通滤波器

上海大学2013 ~2014 学年冬季学期研究生课程 课程名称:现代电路课程编号:07Z097004 论文题目: 二阶有源高通滤波电路 研究生姓名: 李兵学号: 12720970 论文评语: 成绩: 任课教师: 评阅日期:

摘要:二阶高通滤波器是容许高频信号通过,减弱频率低于截止频率信号通过的滤波器。高通滤波器具有综合功能,他可以滤掉若干次高次谐波,并且减少滤波回路数。对于不同的滤波器而言,每个频率的信号的减弱程度不一样,比如在音频信号也使用低音消除器或者噪声滤波器。 关键字:高通滤波器,截止频率,高频响应,Multisim 。 1、电路设计 1.1 图1给出了二阶有源巴特沃兹高通滤波器的结构。 图1 二阶有源巴特沃兹高通滤波器 正反馈型有源滤波器也叫做sallen-key 电路,是以这种电路的发明者命民的也有从工作形态上命民围vcvs (电压控制型电压源)的,他的滤波器相当于一个电压源。它是2阶的高通滤波器。这个电路是一个op 放大器,采用的是同相输入接法,因此输入阻抗很高,输出阻抗很低,由于连接缓冲器,他的增益是1,所以不需要决定曾益量的电阻,能过以较少的元器件数目实现2阶滤波器,使用的非常多,比较麻烦的Ra 和Rb 值不一样,所以计算麻烦一点。 1.2 传递函数 1.3 1a 和1b 分别为巴特沃兹系数

1.4 当给定电容值和截止频率时,可以得到电阻值 本文设计的是二阶高通滤波器,所以选取414.11=a ,11=b 1.5 当nF C KHz f c 100,10==时,可以求出电阻1R 和2R R1= 225.08Ω ,R2= 112.54Ω 2、Multisim 仿真 图2.1 二阶巴特沃兹高通滤波器仿真电路图

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

二阶高通滤波器的设计

模拟电路课程设计报告设计课题:二阶高通滤波器的设计 专业班级:电信本 学生姓名: 学号:69 指导教师: 设计时间:1月3日

题目:二阶高通滤波器的设计 一、设计任务与要求 ① 分别用压控电压源和无限增益多路反馈二种方法设计电路; ② 截止频率f c =200Hz ; ③ 增益A V =2; ④ 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 二、方案设计与论证 二阶高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。高通滤波器有综合滤波功能,它可以滤掉若干次高次谐波,并可减少滤波回路数。对于不同滤波器而言,每个频率的信号的减弱程度不同。其在音频应用中也使用低音消除滤波器或者噪声滤波器。本设计为分别使用压控电压源和无限增益多路反馈两种方法设计二阶高通滤波器。二者电路都是基于芯片ua741设计而成。将信号源接入电路板后,调整函数信号发生器的频率,通过观察示波器可以看到信号放大了2倍。现在工厂对于谐波的治理,应用最多的仍然是高压无源滤波器,高压无源滤波器有多种接线方式,其中单调谐滤波器及二阶高通滤波器使用最为广泛,无源滤波器具有结构简单、设备投资较少、运行可靠性较高、运行费用较低等优点, 2.1设计一、用压控电压源设计二阶高通滤波电路 与LPF 有对偶性,将LPF 的电阻和电容互换,就可得一阶HPF 、简单二阶HPF 、压控电压源二阶HPF 电路采用压控电压源二阶高通滤波电路。 电路如图2-1所示,参数计算为: 通带增益: 3 4 1R R Aup + = Aup 表示二阶高通滤波器的通带电压放大倍数 截止频率: RC f π210=

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

二阶有源滤波器参数计算

二阶有源滤波器设计 一.滤波器类型 按照在附近的频率特性,可将滤波器分为以下三种: 1.巴特沃兹响应 优点:巴特沃兹滤波器提供了最大的通带幅度响应平坦度,具有良好的综合性能,其脉冲响应优于切比雪夫,衰减速度优于贝塞尔。 缺点:阶跃响应存在一定的过冲和振荡。 2.切比雪夫响应 优点:与巴特沃兹相比,切比雪夫滤波器具有更良好的通带外衰减。 缺点:通带内纹波令人不满,阶跃响应的振铃较严重。 3.贝塞尔响应 优点:贝塞尔滤波器具有最优的阶跃响应——非常小的过冲及振铃。 缺点:与巴特沃兹相比,贝塞尔滤波器的通带外衰减较为缓慢。 (注意: 巴特沃兹及贝塞尔响应的3dB衰减位于截止频率处。 而切比雪夫响应的截止频率定义为响应下降至低于纹波带的频点频率。 对于偶数阶滤波器而言,所有纹波均高于0dB的直流响应,因此截止频点位于0dB衰减处;而对于奇数阶滤波器而言,所有纹波均低于 0dB的直流响应,因此截止频点定义为低于纹波带最大衰减点。)

二.最常用的有源极点对电路拓扑 1.MFB拓扑 也称为无限增益拓扑或Rauch拓扑; 适用于高Q值高增益电路; 其对元件值的改变敏感度较低。 2.Sallen-Key拓扑 下列情况时,使用效果更佳: 对增益精度要求较高; 采用了单位增益滤波器; 极点对Q值较低(如:Q<3); (特例:某些高Q值高频率滤波器若采用MFB拓扑,则C1值须很小以得到合适的电阻值。而由于寄生电容干扰使得低容值将导致极大干 扰)。 (注意: MFB拓扑不能用于电流反馈型运放,而S-K拓扑电压、电流反馈型运放均可; 差分放大器只能采用MFB拓扑; S-K拓扑的运放输出阻抗随频率增加而增加,故通带外衰减能力受限,而MFB拓扑则无此问题。)

二阶高通滤波器的设计_(2)要点

模拟电路课程设计任务书 20 10 -20 11 学年第 2 学期第 1 周- 2 周

摘要 二阶高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。高通滤波器有综合滤波功能,它可以滤掉若干次高次谐波,并可减少滤波回路数。对于不同滤波器而言,每个频率的信号的减弱程度不同。其在音频应用中也使用低音消除滤波器或者噪声滤波器。本设计为分别使用压控电压源和无限增益多路反馈两种方法设计二阶高通滤波器。二者电路都是基于芯片LM324设计而成。将信号源接入电路板后,调整函数信号发生器的频率,通过观察示波器可以看到信号放大了5倍。现在工厂对于谐波的治理,应用最多的仍然是高压无源滤波器,高压无源滤波器有多种接线方式,其中单调谐滤波器及二阶高通滤波器使用最为广泛,无源滤波器具有结构简单、设备投资较少、运行可靠性较高、运行费用较低等优点, 关键字:高通滤波器;二阶;有源;

目录 前言 (4) 第一章设计内容 (5) 1.1设计任务和要求 (5) 1.2设计目的 (5) 第二章滤波器的基本理论 (6) 2.1滤波器的有关参数 (6) 2.2有源滤波和无源滤波 (7) 2.3巴特沃斯响应 (8) 第三章滤波系统中高通滤波器模块设计 (11) 3.1压控电压源二阶高通滤波电路 (11) 3.2无限增益多路反馈高通滤波电路 (12) 第四章二阶高通滤波器电路仿真 (13) 第五章系统调试 (16) 第六章结论 (17) 5.2对本设计优缺点的分析 (17) 5.1结论结论与心得 (17) 附录一LM324引脚图 (18) 附录二元件清单 (19) 附录三参考文献 (20)

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

二阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度

选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

二阶高通滤波器

高通滤波器的设计 专 业: 应用电子技术 班 级: 2010级 (1)班 学 号: 201030210105 姓 名: 焦义强 指导老师: 黄磊

目录 前言....................................................................................................................... - 3 -第一章设计任务 ............................................................................................... - 4 - 1.1 设计任务及要求......................................................................................... - 4 - 1.2 设计目的..................................................................................................... - 4 -第二章滤波器的基本理论............................................................................. - 4 - 2.1滤波器的有关参数...................................................................................... - 4 - 2.2有源滤波和无源滤波.................................................................................. - 6 - 2.3高通滤波器.................................................................................................. - 7 -第三章滤波系统中二阶高通滤波器设计 .............................................. - 7 - 3.1压控电压源二阶高通滤波电路.................................................................. - 7 - 3.2所需软件前面板(软面板)...................................................................... - 9 - 3.3 所需电子元件............................................................................................. - 9 - 3.4 电路连线图............................................................................................... - 10 -第四章二阶高通滤波电路的测试............................................................. - 11 - 4.1 运放电路波形的输入与输出 .................................................................. - 11 - 4.2 二阶高通运放的频率特性测试............................................................... - 12 -第五章结论 .................................................................................................... - 14 - 5.1对本设计优缺点的分析............................................................................ - 14 - 5.2结论与心得................................................................................................ - 14 -附录一 A741/LM741型运算放大器的资料 ............................................. - 15 -附录二参考文献 ............................................................................................. - 16 -

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

二阶有源低通滤波器

设计题题目 二阶有源低通滤波器 设计一个有源低通滤波器的截止频率为kHz f 10 。 方案论证 (1):对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。 滤波器分为无源滤波器与有源滤波器两种 工作原理: 二阶有源滤波器是一种信号检测及传递系统中常用的基本电路, 也是高阶虑波器的基本组成单元。常用二阶有源低通滤波器的电路型式有压控电压源型、无限增益多路反馈型和双二次型。本次课程设计采用压控电压源型设计课题。 有源二阶滤波器基础电路如图1所示: 图1 二阶有源低通滤波基础电路 它由两节RC 滤波电路和同相比例放大电路组成,在集成运放输出到集成运放同相输入之间引入一个负反馈,在不同的频段,反馈的极性不相同,当信号频率f >>f0时(f0 为截止频率),电路的每级RC 电路的相移趋于-90o,两级RC 电路的移相到-180o,电路的输出电压与输入电压的相位相反,故此时通过电容c 引到集成运放同相端的反馈是负反馈,反馈信号将起着削弱输入信号的作用,使电压放大倍数减小,所以该反馈将使二阶有源低通滤波器的幅频特性高频端迅速衰减,只允许低频端信号通过。其特点是输入阻抗高,

输出阻抗低。 传输函数为: )()()(i o s V s V s A = 2F F ) ()-(31sCR sCR A A V V ++= 当f=0或者频率很小时,各电容可视为开路 F 0V A A ==1+(A vf\-1)R1/R1 称为通带增益 F 31V A Q -=称为等效品质因数 RC 1c = ω 称为特征角频率 则2c n 22c 0)(ωωω++= s Q s A s A 上式为二节低通滤波电路传递函数的典型表达式 注:当Q =0.707时的3dB 截止角频率,当30≥=VF A A 电路将自激振荡。 当jw s =代入 2220222)(c c c c c c VF w s Q w s w A w s Q w s w A s A ++=++= (式11) 则 2220 )(])(1[1lg 20)(lg 20Q w w w w A jw A c c +-= (式12) 2)(1)(arctan )(c c w Q w w w --=? (式13)

巴特沃斯高通数字滤波器

数字信号处理课程设计 题目巴特沃斯高通数字滤波器 老师陈忠泽老师 学院电气工程学院 班级电子信息工程0 81班 学号20084470110 姓名何依阳 二0一一年五月

目录: 一、IIR数字高通滤波器的设计 1、数字滤波器的概述 2、数字滤波器的设计步骤 3、设计方法 4、IIR巴特沃斯数字高通滤波器的实例计算 二、软件仿真工具及实现环境简介 1、计算机辅助设计方法 2、 MATLAB直接设计IIR巴特沃斯数字高通滤波器 三、滤波器结构对数字滤波器性能指标的影响分析 1、 IIR系统的基本网络结构 (1) (2)级联型 (3) 四、有限字长运算在网络结构中对数字滤波器的影响 1 、运算量化效应对数字滤波器的影响 2 、参数的字长对数字滤波器性能指标的影响 2.1 、系数量化对数字滤波器的影响 五、运用MATLAB的辅助工具FDATOOL画出系统函数图像 六、设计心得

IIR 数字高通滤波器的设计 一、IIR 数字高通滤波器的设计 1、数字滤波器的概述 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。 2、 数字滤波器的设计步骤 设计一个IIR 数字滤波器主要包括下面5个步骤: (1) 确定滤波器要求的规范指标。 (2) 选择合适的滤波器系数的计算(如图一流程图所示)。 (3) 用一个适当的结构来表示滤波器(实现结构)。 (4) 有限字长效应对滤波器性能的影响分析。 (5) 用软件或硬件来实现滤波器。 本次设计的IIR 数字滤波器系数的计算是根据已知的模拟滤波器的特性转换到等价的数字滤波器。本次设计用双线性变换法得到数字滤波器。而且,双线性变换法得到的数字滤波器保留了模拟滤波器的幅度响应特性。 确定数字巴特沃斯 高通滤波器指标 推导出归一化模拟巴特沃斯低通滤波器指 计算出归一化模拟巴特沃斯低通滤波去归一化推导出模拟巴特沃斯高通滤波器 双线性变换推导出数字巴特沃斯高通 图一 流程图

二阶有源低通滤波器

二阶有源低通滤波器 一、芯片介绍 UA741集成运放管脚图及作用 图1-1 UA741管脚图 UA741管脚图为图1-1,U运算放A741芯片是高增益大器,常用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。 第2管脚是负输入端; 第3管脚是同相端输入端; 第4和第7管脚分别为负直流源和正直流源输入端; 第6管脚为输出端;第8管脚是悬空端; 第1管脚和第5管脚是为提高运算精度。 在运算前,应首先对直流输出电位进行调零,即保证输入为零时,输出也为零。当运放有外接调零端子时,可按组件要求接入调零电位器,调零时,将输入端接地,调零端接入电位器,用直流电压表测量输出电压Uo,细心调节调零电位器,使Uo为零(即失调电压为零)。如果一个运放如不能调零,大致有如下原因: (1)组件正常,接线有错误; (2)组件正常,但负反馈不够强,为此可将其短路,观察是否能调零。; (3)组件正常,但由于它所允许的共模输入电压太低,可能出现自锁现象,因而不能调零。为此可将电源断开后,再重新接通,如能恢复正常,则属于这种情况; (4)组件正常,但电路有自激现象,应进行消振; (5)组件内部损坏,应更换好的集成块。 二、滤波器简介 滤波器是一种对信号有处理作用的器件或电路。主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。 滤波器按照所处理的信号,可以分为:模拟滤波器和数字滤波器;按照信号的频段,可以分为:低通、高通、带通和带阻滤波器四种;按照所采用的原件,也可以分为:无源滤波器和有源滤波器。用来说明滤波器性能的技术指标主要有:中心频率f0,即工作频带的中心;带宽BW;通带衰减,即通带内的最大衰减阻带衰减等。 常用的低通有源滤波电路有三种,巴特沃思、切比雪夫和贝塞尔滤波电路。巴特沃思滤波电路的幅频响应在带通中具有最平幅度特性,但从通带到阻带衰减较缓慢。

二阶高通巴特沃兹滤波器

巴特沃兹二阶有源高通滤波电路的设计与仿真 摘要:本文给出了巴特沃兹二阶有源高通滤波器的设计方法和设计实例,通过multisim电路仿真试验能够得到一个性能优良的二阶有源高通滤波器,并在Altium Designer中设计出了印刷电路板(PCB)。 关键词:有源;高通滤波器;设计;仿真 1、概述 滤波器,是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。而有源滤波器在滤波的同时还能对信号起放大作用。在各种经典滤波器类型中,巴特沃斯滤波器是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零的滤波器。 2、设计方法 ①设计流程 由于现在巴特沃兹低通滤波器的设计已经有了完整的计算公式与图表,所以设计模拟高通巴特沃兹滤波器时可先将要设计的技术指标通过某种频率转换关系转换成模拟低通滤波器的技术指标,并依据这些技术指标设计出低通滤波器的转移函数,然后在依据频率转换关系变成所要设计的滤波器的转移函数,得出转移函数后可和电路的转移函数相比较,从而确定各种器件的参数。

② 设计步骤 1、高通滤波器转移函数的确定 由于滤波器的幅频特性都是频率的偶函数,通过λ和η轴上各主要频率点的对应关系可得λη=1.因此,可将高通滤波器的频率η转换成低通滤波器的频率λ,通带与阻带衰减αp, αs 保持不变。考虑到对称性可得 H(s)=G(p)其中p=Ωp/s 又查表得二阶低通巴特沃兹滤波器的转移函数为G(p)=1 22p 0 ++p G 所以二阶高通巴特沃兹滤波器的转移函数为H(s)= 2 22 0C C s Q s S H ωω++ 其中H0是任 意增益因子,ωc 是截止频率,Q 是品质因数 2、压控电压源二阶有源高通滤波器图形如下 其传输函数为: Au(s)= 2 12111221222 1 )1uo 1(11(uo C C R R S C R A C R C R S S A + -+++)= 2 C 22 uo C S Q S S A ωω++

等波纹低通滤波器的设计及与其他滤波器的比较

燕山大学 课程设计说明书题目:等波纹低通滤波器的设计 学院(系):里仁学院 年级专业:仪表10-2 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 2013年7月5日

摘要 等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。 关键词:FIR数字滤波器 MATLAB remez函数 remezord函数等波纹

目录 摘要---------------------------- ----------------------------------------------------------------2 关键字------------------------------------------------------------------------------------------2 第一章第一章数字滤波器的基本概-------------------------------------------------4 1.1滤波的涵义----------------------------------------------------------------------4 1.2数字滤波器的概述-------------------------------------------------------------4 1.3数字滤波器的实现方法-------------------------------------------------------4 1.4 .数字滤波器的可实现性------------------------------------------------------5 1.5数字滤波器的分类-------------------------------------------------------------5 1.6 FIR滤波器简介及其优点----------------------------------------------------5- 第二章等波纹最佳逼近法的原理-------------------------------------------------------5 2.1等波纹最佳逼近法概述-------------------------------------------------------9 2.2.等波纹最佳逼近法基本思想-------------------------------------------------9 2.3等波纹滤波器的技术指标及其描述参数介绍---------------------------10 2.3.1滤波器的描述参数-----------------------------------------------------10 2.3.2设计要求-----------------------------------------------------------------10 第三章matlab程序------------------------------------------------------------------------11 第四章该型滤波器较其他低通滤波器的优势及特点--------------------12 第五章课程设计总结---------------------------------------------------------------------15 参考文献资料-------------------------------------------------------------------------------15

相关文档
最新文档