专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc
专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

2016中考数学预测押题--专题22 几何三大变换问题之旋转(中心对称)问题

轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。

把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。

特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。

在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。

中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。

原创模拟预测题1.如图,直线l:y=+y轴交于点A,将直线l绕点A顺时针旋转75o后,所得直线的解析式为【】

A .y =

B .y x =+

C .y x =-+

D .y x =-

【答案】B 。

【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。

故选B 。

原创模拟预测题2. 根据要求,解答下列问题:

(1)已知直线l 1的函数表达式为y x 1=+,直接写出:①过原点且与l 1垂直的直线l 2的函数表达式;②过点(1,0)且与l 1垂直的直线l 2的函数表达式;

(2)如图,过点(1,0)的直线l 4向上的方向与x 轴的正方向所成的角为600,①求直线l 4的函数表达式;②把直线l 4绕点(1,0)按逆时针方向旋转900得到的直线l 5,求直线l 5的函数表达式;

(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x 55

=-垂直的直线l 6的函数表达式。

【答案】(1)①y x =-。

②y x 1=-+。

(2)①设直线l 4的函数表达式为11

y k x b =+(k 1≠0),

∵直线l 4向上的方向与x 轴的正方向所成的角为600,

∴k 1=tan6003。

又∵直线l 4经过点(1,0),∴103b =,即1b 3=-

∴直线l 4的函数表达式为y 33=。

②∵l 4与l 5的夹角是为900,∴l 5与x 轴的夹角是为300。

设l 5的解析式为22y k x b =+(k 2≠0),

∵直线l 5与x 轴的正方向所成的角为钝角,∴k 2=-tan300=

又∵直线l 5经过点(1,0),∴20b =,即2b

∴直线l 5的函数表达式为y =。 (3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们

的函数表达式中自变量的系数互为负倒数关系, ∴过点(1,1)且与直线11y x 55

=-垂直的直线l 6的函数表达式为y 5x 6=-+。

【考点】一次函数综合题,旋转问题,探索规律题(图形的变化类),待定系数法的应用,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。

【分析】(1)根据题意可直接得出l 1、 l 2的函数表达式。

原创模拟预测题3. 有两个全等的等腰直角三角板ABC 和EFG 其直角边长均为6(如图1所示)叠放在一起,使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点顺时针旋转,旋转角满足0<o<90o,四边形CHGK 是旋转过程中两块三角板的重叠部分(如图2).

(1)在上述旋转过程中,①BH 与CK 有怎样的数量关系?②四边形CHGK 的面积是否发生变化?并证明你发现的结论.

(2)如图,连接KH ,在上述旋转过程中,是否存在某一位置使△GKH 的面积恰好等于△ABC 面积的18

5?若存在,请求出此时KC 的长度;若不存在,请说明理由. 【答案】(1) ①BH=CK ,②不变;(2)x=2或x=4

【解析】

试题分析:(1)先由ASA 证出△CGK ≌△BGH ,再根据全等三角形的性质得出BH=CK ,根据全等得出四边形CKGH 的面积等于三角形ACB 面积一半;

(2)根据面积公式得出93212+-=

-=x x S S S CKH CKGH GHK △四边形△,根据△GKH 的面积恰好等于△ABC 面积的18

5,代入得出方程即可求得结果.

(2)假设存在使△GKH 的面积恰好等于△ABC 面积的

18

5的位置. 设BH=x ,由题意及(1)中结论可得,CK=BH=x ,CH=CB-BH=6-x ,

22

1321x x CK CH S CKH -=?=∴△, 932

12+-=-=∴x x S S S CKH CKGH GHK △四边形△, ∵△GKH 的面积恰好等于△ABC 面积的18

5, 662

118593212???=+-∴x x , 解得x=2或x=4,

∴存在使△GKH 的面积恰好等于△ABC 面积的18

5的位置,此时x 的值为2或4. 考点:本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定

点评:解答本题的关键是掌握旋转的性质:对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.

原创模拟预测题4.如图,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.将△ABC绕顶点A 顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为

▲ .

【答案】3

4 。

【考点】扇形面积的计算,旋转的性质,等腰直角三角形的性质,转换思想的应用。

原创模拟预测题5.如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.

(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;

(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

2016中考数学预测押题--专题22 几何三大变换问题之旋转(中心对称)问题 轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。 把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。 特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。 在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。 中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。 原创模拟预测题1.如图,直线l:y=+y轴交于点A,将直线l绕点A顺时针旋转75o后,所得直线的解析式为【】

A .y = B .y x =+ C .y x =-+ D .y x =- 【答案】B 。 【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。 故选B 。 原创模拟预测题2. 根据要求,解答下列问题: (1)已知直线l 1的函数表达式为y x 1=+,直接写出:①过原点且与l 1垂直的直线l 2的函数表达式;②过点(1,0)且与l 1垂直的直线l 2的函数表达式; (2)如图,过点(1,0)的直线l 4向上的方向与x 轴的正方向所成的角为600,①求直线l 4的函数表达式;②把直线l 4绕点(1,0)按逆时针方向旋转900得到的直线l 5,求直线l 5的函数表达式; (3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x 55 =-垂直的直线l 6的函数表达式。

平面解析几何中的对称问题

平面解析几何中的对称问题 新林 市第一中学 515031 对称性是数学美的重要表现形式之一,在数学学科中对称问题无处不在。在代数、三角中有对称式问题;在立体几何中有中对称问题对称体;在解析几何中有图象的对称问题。深入地研究数学中的对称问题有助于培养学生分析解决问题的能力,有助于提高学生的数学素质。 在平面解析几何中,对称问题的存在尤其普遍。平面解析几何中的对称问题在高考试题中更是屡见不鲜。本文将对平面解析几何中的几种常见对称问题作一些肤浅的探讨,以求斧正。 平面解析几何中的对称问题主要有如下几种:点关于点的对称问题简称点点对称;点关于直线的对称问题简称点线对称;曲线关于点的对称问题简称线点对称;曲线关于直线的对称问题简称线线对称。 一、点点对称 定理1平面上一点),(y x M 关于点),(00y x P 的对称点为)2,2(00' y y x x M --, 特别地,点 ),(y x M 关于点)0,0(P 的对称点为),('y x M --。 证明:显然 ),(00y x P 为线段'MM 的中点,设),('''y x M ,由中点坐标公式有: ??? ????+=+=22' 0'0y y y x x x ,即???-=-=y y y x x x 0' 0'22 ,故)2,2(00' y y x x M --。 例1 若点 A 关于点)1,2(- B 的对称点为)2,4( C ,求点A 的坐标。 解:设 ),(y x A ,由定理1有)212,4)2(2(-?--?A ,即)0,8(-A 。 二、点线对称 定理1平面上一点),(00y x M 关于直线)0(,0:2 2 ≠+=++B A C By Ax l 的对称点为: -+++- 022000',)(2(y B A C By Ax A x M )) (22 200B A C By Ax A +++。 证明:先证明一般情况,即0,0≠≠ B A 的情况。 ),(' y x ,线段'MM 交直线l 于点 与点),('y x M 关于直线l 对称,故),(Q Q y x Q 为线段' MM 的中点且l MM ⊥', X 于是有: ),(y x M

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

2012年中考数学压轴题分类解析 专题7:几何三大变换相关问题 授课老师:黄立宗 典型例题选讲: 例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对 应点A′落在线段BC上,再打开得到折痕EF. (1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长; (2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的 条件下,利用图4证明四边形AEA′F是菱形. 例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE ①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示); (2)如图2,若AB= BC=kAC,AD =ED=kAE 则线段BD与CE的数量关系为,∠BMC= (用α表示); (3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示). 例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点. (1) 求抛物线的解析式; (2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D

的坐标; (3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB 的点P的坐标(点P、O、D分别与点N、O、B对应). 例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。 (1)求该抛物线的解析式; (2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式; (3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线 OP与该抛物线交点的个数。 巩固练习 1、(2012黑龙江大庆)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,a),B(a,O)( a 0). (1)结合坐标系用坐标填空. 点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: α tan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0 x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12 x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0 x ,常设其方程为 x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点 00(,) x y ,常设其方程为 00 ()y k x x y =-+或 x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

浙江高考数学复习专题四解析几何第3讲圆锥曲线中的定点、定值、最值与范围问题学案

第3讲 圆锥曲线中的定点、定值、最值与范围问题 高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求. 真 题 感 悟 (2018·北京卷)已知抛物线C :y 2 =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围; (2)设O 为原点,QM →=λQO →,QN →=μQO → ,求证:1λ+1μ 为定值. 解 (1)因为抛物线y 2 =2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2 =4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0). 由? ????y 2 =4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2 ×1>0, 解得k <0或0

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

中考数学专题 几何三大变换问题之对称

2004-2013年浙江11市中考数学选择填空解答压轴题分类解析汇编 专题13:几何三大变换问题之对称 一、选择题 1.(2004年浙江绍兴4分)如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于【】 A.108°B.144°C.126°D.129° 【答案】C。 【考点】矩形的性质,折叠对称的性质。 【分析】展开如图:五角星的每个角的度数是: 0 180 36 5 。 ∵∠COD=3600÷10=360,∠ODC=360÷2=180, ∴∠OCD=1800-360-180=1260。故选C。 2.(2004年浙江湖州3分)小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是【】 A. B. C. D. 【答案】D。 【考点】剪纸问题,折叠对称的性质,正方形的性质。 【分析】按照图中的顺序向右下对折,向左下对折,从上方角剪去一个等腰直角三角形,展开得:剪去的为一正方形,且顶点在原正方形的对角线上。故选D。 3.(2007年浙江绍兴4分)如图的方格纸中,左边图形到右边图形的变换是【】

A.向右平移7格 B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称 C.绕AB的中点旋转1800,再以AB为对称轴作轴对称 D.以AB为对称轴作轴对称,再向右平移7格 【答案】D。 【考点】轴对称和平移变换。 【分析】观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格。故选D。 4.(2008年浙江台州4分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移, 我们把这样的图形变换叫做滑动对称变换 .......在自然界和日常生活中,大量地存在这种图形变换(如图1).结 合轴对称变换和平移变换的有关性质,你认为在滑动对称变换 ......过程中,两个对应三角形(如图2)的对应点所具有的性质是【】 A.对应点连线与对称轴垂直B.对应点连线被对称轴平分 C.对应点连线被对称轴垂直平分D.对应点连线互相平行 【答案】B。 【考点】新定义,轴对称变换和平移变换的性质。 【分析】观察图形,因为进行了平移,所以有垂直的一定不正确,A、C是错误的; 对应点连线是不可能平行的,D是错误的; 由对应点的位置关系可得:对应点连线被对称轴平分。故选B。 5.(2011年浙江温州4分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,

高中数学解题方法系列:解析几何中对称问题的常见求解方法

高中数学解题方法系列:解析几何中对称问题的常见求解方法 解析几何中的对称问题在现行中学数学材料中没有按章节进行系统编排,只是分散地穿插在直线、曲线部分的题型之中。但这部分知识是解析几何中重要的基础内容,也是近年来的高考热点之一。对称点、对称直线的求法,对称问题的简单应用及其解题过程中所体现的思想和方法是学生必须掌握的。这就要求教师在讲完直线、曲线部分后,需对对称问题进行适当的归纳、总结。使学生对这部分知识有一个较完整的、系统的认识,从而解决起对称问题才能得心应手。本文谈一下中学解析几何中常见的对称问题和解决办法。 一、关于点对称。 1、点关于点对称。①点(,)P a b 关于原点的对称点坐标是(,)a b --;②点(,)P a b 关于某一点00(,)M x y 的对称点的坐标,利用中点坐标式求得为00(2,2)x a y b --。 2、直线关于点对称。① 直线L :0Ax By C ++=关于原点的对称直线。设所求直线上一点为(,)P x y ,则它关于原点的对称点为(,)Q x y --,因为Q 点在直线L 上,故有()()0A x B y C -+-+=,即0Ax By C +-=;② 直线1l 关于某一点00(,)M x y 的对称直线2l 。它的求法分两种情况:1、当 00(,)M x y 在1l 上时,它的对称直线为过M 点的任一条直线。2、当M 点不在1l 上时,对称直线的求法为:解法(一):在直线2l 上任取一点(,)P x y ,则它关于M 的对称点为00(2,2)Q x x y y --,因为Q 点在1l 上,把Q 点坐标代入直线在1l 中,便得到2l 的方程。解法(二):在1l 上取一点11(,)P x y ,求出P 关于M 点的对称点Q 的坐标。再由12l l K K =,可求出直线2l 的方

几何三大变换(习题及答案)

几何三大变换(习题) ?例题示范 例1:如图,四边形ABCD 是边长为9 的正方形纸片,将该纸片折叠,使点B 落在CD 边上的点B′处,点A 的对应点为A′,折痕为MN.若B′C=3,则AM 的长为. 【思路分析】 要求AM 的长,设AM=x,则MD=9-x. 思路一:考虑利用折叠为全等变换转条件,得AM=A′M=x, A′B′=AB=9.观察图形,∠A′=∠D=90°,△MA′B′和△MDB′都是 直角三角形,MB′是其公共斜边,则MB′可分别在两个直角三角形中借助勾股定理表达,列方程. 思路一思路二 思路二:MN 是对称轴,考虑利用对称轴上的点到对应点的距离相等转条件,得MB=MB′.观察图形,∠A=∠D=90°,MB,MB′ 可分别放到Rt△ABM 和Rt△DB′M 中借助勾股定理表达,列方程. 例2:如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD 的面积为24,则AC 的长为. 【思路分析】 已知四边形ABCD 的面积,要求AC 的长,考虑借助AC 表达四 边形ABCD 的面积.四边形ABCD 为不规则四边形,考虑割补法或转化法求面积.分析题目中条件AB=AD,存在等线段共端点的 结构,且隐含∠B+∠D=180°,故考虑通过构造旋转解决问题,可把△ABC 绕点A 逆时针旋转90°.

1

?巩固练习 1.如图,将边长为2 的等边三角形ABC 沿BC 方向平移1 个单 位得到△DEF,则四边形ABFD 的周长为. 第1 题图第2 题图 2.如图,已知△ABC 的面积为8,将△ABC 沿BC 方向平移到 △A′B′C′的位置,使点B′和点 C 重合,连接AC′,交A′C 于点D,则△CAC′的面积为. 3.如图,在6 4 的方格纸中,格点三角形甲经过旋转后得到格点 三角形乙,则其旋转中心是() A.格点M B.格点N C.格点P D.格点Q 第3 题图第4 题图 4.如图,已知OA⊥OB,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD=45°,将△CDE 绕点 C 逆时针旋转75°,点 E 的 对应点N 恰好落在OA 上,则OC 的值为.CD 5.如图,E 是正方形ABCD 内一点,连接 AE,BE,CE,将△ABE 绕点B 顺时针 旋转90°至△CBE′的位置.若AE=1, BE=2,CE=3,则∠BE′C= . 6.如图,在□ABCD 中,∠A=70°,将该 平行四边形折叠,使点C,D 分别落 在点E,F 处,折痕为MN.若点E, F 均在直线AB 上,则∠AMF= .

解析几何里面的对称性问题

解析几何里面的对称性问题 1. 点关于点对称的求法 直线关于点对称的求法(可转化为点关于点对称求解;注意判断点是否在直线上) 点关于直线对称的的求法 直线关于直线对称的求法(分平行和相交2种情况讨论) 点关于点的对称点A′的坐标是 变式1-1点关于点的对称点A′的坐标是 变式1-2过点P(3,0)作一直线l,使它被两直线l1:2x-y-2=0和l2:x+y +3=0所截的线段AB以P为中点,求此直线l的方程.

求直线关于点对称的直线方程. 变式2-1求直线l:2x-3y+1=0关于点A(-1,-2)对称的直线l′的方程. 求点关于直线:的对称点的坐标. 变式3-1求点关于直线:的对称点的坐标. 已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( ) A. x-2y+1=0 B.x-2y-1=0 C.x+y-1=0 D.x+2y-1=0 变式4-1已知直线,直线,直线与直线关于直线对称,求直线的方程. 能力提高 已知直线l:2x-3y+1=0,点A(-1,-2).求: (1) 点A关于直线l的对称点A′的坐标; (2) 直线m:3x-2y-6=0关于直线l的对称直线m′的方程; (3) 直线l关于点A(-1,-2)对称的直线l′的方程.

变式 光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y+7=0后反射,求反射光线所在的直线方程.

2.从点(2,3)射出的光线沿与向量a=(8,4)平行的直线射到y轴上,则反射光线所在的直线方程 为 ( ) A.x+2y-4=0 B.2x+y-1=0 C.x+6y-16=0 D.6x+y-8=0

解析几何范围最值问题(教师)详解

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值 【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12). (1)求直线l 和抛物线的方程; (2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. [满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由????? y =kx -2,x 2=-2py , 得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以??? ? ? -2pk =-4,-2pk 2 -4=-12, 解得? ???? p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y . (2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2). 此时点P 到直线l 的距离d = |2·(-2)-(-2)-2|22+(-1)2 =45=4 5 5. 由? ???? y =2x -2, x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2· (x 1+x 2)2-4x 1x 2= 1+22·(-4)2-4·(-4)=4 10. 于是,△ABP 面积的最大值为12×4 10×4 55=8 2. 二、函数法求最值 【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的离心率e = 2 3 ,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. (1)由e =c a = a 2- b 2 a 2= 23,得a =3 b ,椭圆C :x 23b 2+y 2 b 2=1,即x 2+3y 2=3b 2,

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

【整理】中考几何三大变换(含答案17页)

中考几何变换专题复习(针对几何大题的讲解) 几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形 之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同 样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样, 和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形, 大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关 系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地 从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图 形或图形关系,那么将对问题的解决有着极为重要的启发和引导的作用.下面我们从变换视角以三角形的全等关系为主进行研究. 解决图形问题的能力,核心要素是善于从综合与复杂的图形中识别和构造出基 本图形及基本的图形关系,而“变换视角”正好能提高我们这种识别和构造的能力. 1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请 说明理由; (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方 形的性质。 专题:压轴题。 分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立.还知道EG⊥CG. 解答:(1)证明:在Rt△FCD中, ∵G为DF的中点, ∴CG=FD, 同理,在Rt△DEF中, EG=FD, ∴CG=EG. (2)解:(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DG=DG, ∴△DAG≌△DCG, ∴AG=CG; 在△DMG与△FNG中, ∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴△DMG≌△FNG,

中考数学 专题 几何三大变换问题之轴对称(折叠)问题(含解析)

专题20 几何三大变换问题之轴对称(折叠)问题 轴对称、平移、旋转是平面几何的三大变换。由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。 一. 有关三角形的轴对称性问题 1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF . 2. 如图,在Rt △ABC 中,∠C=900 ,∠B=300 , BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。 F D C E A B

【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。 二. 有关四边形的轴对称性问题 3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】 A.4种 B.5种 C.6种 D.7种 【答案】B。 【考点】利用旋转的轴对称设计图案。 【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案: 得到的不同图案有:

浅谈解析几何中的对称问题

浅谈解析几何中的对称问题 解析几何中的对称问题在现行中学教材中没有按章节进行系统编排,只是分散地穿插在直线、曲线部分的题型之中。对称问题主要涉及四种类型:点关于点成中心对称;线(直线或曲线)关于点成中心对称;点关于线成轴对称;线(直线或曲线)关于线成轴对称。无论是解析几何的新授课还是复习课,几乎所有的老师都会对对称问题进行教学或复习,近几年对称问题也是高考的热点之一。这就要求教师对对称问题进行适当的归纳、总结,使学生对这部分知识有一个较完整、系统的认识,从而解决起对称问题才能得心应手。本人就此谈一下中学解析几何中常见的对称问题类型及解决方法。 一、中心对称:即关于点的对称问题 定义:把一个图形绕某个点旋转180o 后能与另一个图形重合,称这两个图形关于这个点对称。这个点叫做对称中心。 性质:关于某个点成中心对称的两个图形,对称点的连线都经过对称中心,且被对称中心平分。 1. 点关于点对称 例1. 求P (3,2)关于M (2,1)的对称点P ’的坐标。 分析:由中心对称的性质得M 点是PP ’的中点,可求P ’(1,0) 。 小结:P (x 0,y 0)???????→?的对称点 ,(关于点)b a M P ’(2a -x 0,2b -y 0)(依据中点坐标公式)。 特例P (x 0,y 0)?????→?关于坐标原点对称 P ’(-x 0, -y 0)。 2. 直线关于点对称 例2. 求直线l 1:x +y -1=0关于M (3,0)的对称直线l 2的方程。 分析:思路一:在直线l 2上任取一点P (x ,y ),则它关于M 的对称点Q (6-x, -y ),因为Q 点在l 1上,把Q 点坐标代入直线l 1中,便得到l 2的方程:x +y -5=0。 思路二:在l 1上取一点P (1,0),求出P 关于M 点的对称点Q 的坐标(5,0)。再由k l1=k l2,可求出直线l 2的方程x +y -5=0。 思路三:由k l1=k l2,可设l 1:Ax +By +C=0关于点M (x 0,y 0)的对称直线为Ax +By +C ’=0且 2 200B A C By Ax +++= 2 2' 00B A C By Ax +++,求出C ' 及对称直线l 2的方程x +y -5=0。 小结:直线关于点对称的情形: (1) 直线L :0Ax By C ++=关于原点的对称直线。设所求直线上一点为(,)P x y ,则它 关于原点的对称点为(,)Q x y --,因为Q 点在直线L 上,故有()()0A x B y C -+-+=,即0Ax By C +-=; (2) 直线1l 关于某一点00(,)M x y 的对称直线2l 。它的求法分两种情况: 1、当00(,)M x y 在1l 上时,它的对称直线为过M 点的任一条直线。 2、当M 点不在1l 上时,对称直线的求法为:解法(一):在直线2l 上任取一点(,)P x y ,

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

几何三大变换讲义及答案

几何三大变换(讲义) 一、知识点睛 1.________、________、____________统称为几何三大变换.几 何三大变换都是_______________,只改变图形的________,不改变图形的_________________. 2.三大变换思考层次 三 大 变 换 基本要素基本性质延伸性质应用 平移平移方向 平移距离 1.对应点所连的线 段平行且相等 2.对应线段平行且 相等 3.对应角相等 平移出现 __________ 天桥问题、 平行四边形 存在性等 旋转旋转中心 旋转方向 旋转角度 1.对应点到旋转中 心的距离相等 2.对应点与旋转中 心的连线所成的角 等于旋转角 3.对应线段、角相 等,对应线段的夹 角等于旋转角 4.对应点所连线段 的垂直平分线都经 过旋转中心 旋转出现 __________ 旋转结构 (等腰)等 轴 对称对称轴 1.对应线段、对应 角相等 2.对应点所连线段 被对称轴垂直平分 3.对称轴上的点到 对应点的距离相等 4.对称轴两侧的几 何图形全等 折叠出现 __________ 折叠问题、 最值问题等

二、精讲精练 1. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到 △DEF ,则四边形ABFD 的周长为( ) A .6 B .8 C .10 D .12 F C E D B A B 1 A 1 y x B A O 第1题图 第2题图 2. 如图,在平面直角坐标系xOy 中,已知点A ,B 的坐标分别 为(1,0),(0,2),将线段AB 平移至A 1B 1,若点A 1,B 1的坐标分别为(2,a ),(b ,3),则a b +=___________. 3. 如图,在44?的正方形网格中,△MNP 绕某点旋转一定的角 度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点A B .点B C .点C D .点D D C B A N 1 M 1 P 1N M P 4. 如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90°, ∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路径长为________________.(结果保留π) C B A l …

相关文档
最新文档