水轮机的基本组成结构

水轮机的基本组成结构
水轮机的基本组成结构

水轮机

一、水轮机的基本参数

1)工作水头(H):水轮机的工作水头就是指水轮机的进、出口单位

能量差,也就是上游水位与下游水位之差,用H表示,其单位为m。其大小表示水轮机利用水流单位能量的多少。

2)流量(Q):在单位时间内流经水轮机的水量,称为流量,用Q表

示,其单位为m3/s。其大小表示水轮机利用水流能量的多少

3)出力(P):具有一定水头和流量的水流通过水轮机便做功,而在

单位时间内所做的功率称为水轮机的出力,用P表示,其单位KW。

水轮机的出力为:P=9.81QH

4)效率(η)目前混流式水轮机的最高效率95%

P=9.81QHη

5)比转速指工作水头H为1m、发出的功率P为1kw时水轮机所具有的转速,故称为比转速。

二、水轮机的类型与代号

我们根据水流能量的转换的特征不同,把水轮机分为两大类,及反击型和冲击型水轮机。

反击型水轮机,具有一定位能的水流主要以压能的形态,由水轮机转变为机械能。按其水流经过转轮的方向不同,反击型水轮机可分为以下几种类型:

反击型:轴流(定桨、转桨)水轮机、混流式水轮机、贯流式水轮机、斜流式水轮机

冲击型:水流不充满过流流道,而是在大气压力下工作,水流全部以动能形态由转轮变为机械能。按射流冲击水斗的方式不同,可分为如下几种类型:

冲击型:水斗式水轮机、斜击式水轮机、双击式水轮机

我国水轮机式的代号,有三部分组成,第一部分由水轮机型式及转轮型号组成,并由汉语拼音表示。

水轮机型式的代号

水轮机型式代号水轮机型式代号

混流式HL 轴流转桨式ZZ

斜流式XL 轴流定桨式ZD

双击式SJ 贯流转桨式GZ

斜击式XJ 贯流定桨式GD

冲击式CJ

以本电站为例:水轮机型号:HL(247)—LJ—235,表示混流式水轮机,转轮型号为247,立轴,金属蜗壳,转轮直径为235㎝。三、混流式水轮机

1定义:水流从径向流入转轮,在转轮中改变方向后从轴向流出的水轮机。其叶片固定,不能转动调节。

2 混流式水轮机 - 结构特点

混流式水轮机主要应用于20—450米的中水头电厂,

其结构紧凑,效率较高,能适应很宽的水头范围,是目前

世界各国广泛采用的水轮机型式之一。

当水流经过这种水轮机工作轮时,它以辐向进入、轴向流出,所以也称为辐向轴流式水轮机。

水流流经转轮是径向式的,导出机构为径向式的,导叶开度可随负荷的改变而进行调节,转轮是由上冠、下环及固定在其中间的一定数量流线型叶片所组成。混流式水轮机,水流从四周径向流入转轮,然后近似轴向流出转轮,转轮由上冠,下环和叶片组成。

3、混流式水轮机的组成:引水部件、导水部件、泄水部件、工作部件

1)引水部件:蜗壳式、明槽式、虹吸式

引水部件作用

①以最小的水力损失把水引向导水部件,从而提高水轮机的效率,尽可能保证沿导水部件周围进水流量均匀,水流对称于轴,以使转轮受力均衡,提高工作的稳定性。

②在水进入导水部件一起使水流形成一定的环量。

③保证转轮在水中工作,不与大气接触。

2)导水部件:导叶、顶盖、底环、导叶、导叶臂、连杆、控制环、接力器等部件组成。

①调节流量

②形成环量

③截断水流

导叶:由导叶体和导叶轴两部分组成。为减轻导叶重量,常做成中空导叶。导叶的断面形状为翼型。导叶轴颈通常比连接处的导叶体厚度大,在连接处采用均匀圆滑过渡形状,以避免应力集中。

导叶轴承:上、中、下轴套,高水头机组为防止导叶上浮力超过导叶自重,保证导叶上端面间隙,在导叶套筒的法兰上一般设有止推装置(止推压板或止推块)。

导叶传动机构:导叶传动机构由控制环、连杆、导叶臂三部分组成,用于传递接力器操作力矩,使导叶转动,调节水轮机流量。该机构形式有叉头式受力情况较好和耳柄式受力情况相对较差。

控制环控制环结构形式双耳平行式

导水机构安全装置:安装导水机构安全装置的目的:及时切除被卡导叶,避免因个别导叶被卡而损坏其它传动机构主要零部件。

剪断销:使用最多的导水机构安全装置,在剪断销上加工一个危险断面,在正常操作力作用下,剪断销能正常工作,当超过正常操作力1.5倍时,剪断销连同装在其中的信号装置在危险断面破断并发出信号,被卡导叶从传动机构中解列。在机组顶盖上还设有限位块,其作用是:防止导叶发生正反向旋转而超出全关和最大可能开度的范围。(可能造成剪断销连锁破断事故)

导水机构切断水流:当停机时,导叶首尾相连,切断水流。但导叶上、下断面和顶盖、底环处存在着端面间隙,导叶首尾相接处会有立面间隙。这些间隙会产生停机漏水损失;还会产生间隙汽蚀破坏。间隙较大漏水严重时,甚至可使机组停不下来。为此需要设法减小这些间隙,也是机组检修计划的一个必不可少的项目。

立面间隙的调整方法:通过调整导叶传动装置的补偿环(调整螺杆)。端面间隙的调整方法:通过导叶轴颈端盖上的调节螺钉。

接力器:接力器的基本部件:接力器缸和活塞

活塞把接力器缸分成了开启腔和关闭腔。(单导管直缸接力器)

在导水机构快速关闭时,为避免活塞与缸盖发生撞击,在活塞上装有三角形封油块,封油块与缸体油口相对应,当活塞块逐渐遮住部分出油口,形成排油截流,起缓冲作用。

3)工作部件:转轮

工作部件的作用:

它是水轮机的心脏,是实现能量转换的主要部件。

是实现能量转换

4)泄水部件:尾水管

尾水管的主要作用有三点:

1)把转轮出口的水流引向下游。

2)当转轮高于下游水位时,使转轮出口形成静力真空,从而利用高

于下游水面的吸出高度。

3)尾水管的扩散使转轮出口处的水流动能恢复为动力真空,从而提

高水轮机的效率。

四、混流式水轮机主要部件

蜗壳、顶盖、座环、尾水管、底环、控制环、导叶(活动、固定)、转轮、主轴、止漏环(迷宫环)剪断销、拐臂、真空破坏阀等。

机的转轮上部与主轴相连接,四周布满导叶。导叶的上部通过传动机构与控制环(调速环)相连,下部套在底环内,而底环布置在座环的下环内。顶盖安放在座环的上环上,盖住转轮。固定导叶布置在

导水叶外围,座环的蝶形边与蜗壳相连,并被蜗壳包围。导轴承位于顶盖上,控制环口通过推拉环与接力器相连。在座环下发布置有基础环,通过锥形环与尾水管相连。混流式水轮机附属装置还有布置在顶盖上的真空破坏阀、吸力补气阀和放水阀等。

水轮机的导水机构是有导叶、传动机构(转臂、连杆、控制环)、接力器、和推拉杆等组成。

水轮机的底环是由上环、下环、和固定导叶三部分组成,它既是

水轮机的通水部件,机组安装时的基准部件,又是机组运行的承重部件。要求具有水力损失小,具有一定的强度和刚度。

混流式水轮机的转轮主要由上冠、叶片、下环、止漏环、泄水锥和减压装置等组成。

水轮机的转轮包括转体、叶片、泄水锥等。

立轴混流式水轮机引水室采用金属焊接蜗壳,其进口与压力水管相连接,其余各节与座环相连。为了便与检修,在蜗壳上开有专门进人孔(蜗壳人孔门),其底部并有排水孔和阀门,以便排出蜗壳积水。

座环位于蜗壳里,布置导水机构,它是水轮机的承重部分,又是过流部件在安装时它还是一个主要基准件,因此它要符合水力,强度

和刚强等诸方面的要求。

基础环埋在混凝土内,是转轮室的组成部分,早机组安装和检修拆卸转轮时,用来支撑水轮机转轮。混流式转轮上叶片(24),呈空间扭曲状,断面为流线型,是直接将谁能转换为机械能的最主要部件。止漏装置

止漏装置的作用是用来减小转动部分与固定部分之间的漏水损失。止漏装置分为固定部分和转动部分,为防止水流向上和向下漏出,水轮机上一般装有上、下两道止漏环。上止漏环固定部分装在顶盖上,其转动部分装在上冠上,下止漏环的固定部分一般装在底环上,转动部分装在转轮的下环上。目前广泛采用的止漏环结构型式有间隙式,迷宫式,梳齿式和阶梯式四种,如图所示。

(止漏装置型式)

(d阶梯式迷宫

)

(a间隙式;)(b迷宫式;)(c梳齿式;)

止漏环又称迷宫环,作用是阻止水流从转轮上、下间隙处漏出,分转动和固定部分。止漏环是个易损件,结构上要求易于装卸、检修,选用抗磨损和抗空蚀的材料。

减压装置的作用是降低轴向水推力,以减轻推力轴承的荷载,其上冠开有泄水孔,起排水减压的作用。

蜗壳的作用:

水轮机导轴承的作用:一是承受机组在各种工况下运行时由主轴传来的径向力(主要由转动部分的重复不平衡,水流经过转轮时的水力不平衡以及由尾水管的振动引起。),二是维持以调好的机组轴线位置,提高机组运行的稳定性。

导轴承是水轮机的重要组成部分,它的工作质量直接影响水轮机的运行。导轴承常见的问题有:轴承过热,严重时会烧瓦;其次是轴承磨损,使轴瓦间隙增大,导致水轮机振动和摆度加大,影响运行质量缩短轴承寿命。

主轴密封装置可以保证导轴承正常工作,在稀油导轴承下部布置主轴密封装置,防止压力水从旋转的主轴渗入导轴承。主轴密封装置分为运行密封和检修密封(空气尾带)两类。

①运行密封根据结构形式分为有盘根密封、橡胶平板密封,断面密封、径向密封、和水泵密封。

②检修密封是在轴承检修或停机时,对主轴进行密封,其结构形式有机械式、空气围带式和抬机式密封。

抬机是指当水轮机导叶突然关闭后,尾水管内瞬间形成真空,造成负水锤,使尾水回流,鼓破水轮机顶盖的严重事故。为了防止抬机现象发生,在水轮机顶盖上装了真空破坏阀,用来破坏真空。

真空破坏阀装置,布置在顶盖上,其作用是在水轮机紧急关闭,顶盖下部产生真空时,补充空气,破坏真空,以免从尾水倒流回的水流,将使水轮机抬起,造成抬机事故。

泄水锥的作用:是引导经叶片流道流出的水流迅速而顺畅的向下

渲泄,防止水流相互撞击,以减少水力损失,提高水轮机效率。五、概述混流式水轮机工作原理:

蜗壳位于最外层,从四周包围着座环,并与座环的上、下环相连接。座环、上下环间均匀分布着能承重的固定导叶个。顶盖放置在座环的上环内法兰上,座环放置在下环法兰上。顶盖和座环上下相对构成环形过流通道。通道内均匀分布着个活动导叶,以调节流量。活动导叶下轴颈放置在底环预留的轴孔中,活动导叶上半段轴穿过顶盖预

留轴孔,与顶盖上面导叶传动机构相连接。座环下端通过基础环(底环)与尾水管上端相连接。顶盖之下,尾水管之上是转轮,转轮周围被活动导叶所包围。

主轴的下端与转轮相连接,上端与发电机转子主轴相连接,它把水轮机转轮和发电机转子连接成水轮发电机组转动部分整体。在顶盖上设置轴承座,其上装有水导轴承,抱在主轴外面,给水轮机转动部分,轴心线定位。在顶盖中心轴孔与主轴之间的间隙处设有密封装置,防止间隙大量漏水淹没导轴承。在顶盖上放置着导叶传动操纵机构,接力器推拉杆操纵控制环、连杆、导叶臂、导叶轴之间依次相连,使导叶动作。

水轮机的能量损失和效能

水轮机是一种将水的动能转换为机械能,这种能量的转换,是由于水流和水轮机相互的结果,但水能不能全部有效地转化为机械能传给发电机,这是因为任何机械运动都有摩擦等损失。它对能量转换无效的,一般称为能量损失,而转换过来的部分是有效的,能量被有效利用的程度通常称为效率。能量有效利用的程度越高,则效率也越高,能量也就越小。

容积损失

水轮机的损失:水力损失

机械损失

能量损失

容积损失:在反击式水轮机中,进入转轮的流量Q,其中有一部分漏水量未被有效利用而损失掉了,这部分损失称为容积损失。

水力损失:水轮机工作时,水流要流经引水部分、导水部分、转轮和尾水管等过流部件,水流变产生木摩擦、撞击、漩涡、和脱流等损失。这些情况所引起的水头损失,称为水力损失。(水力损失的大小与水流的速度、过流部件的形状和表面的粗糙度及水流的流态等有关。沿程摩擦损失是不可避免的,局部撞击、漩涡和脱流等造成的损失,则与过流部件的形状有关,过流部件越符合流线形状,则局部损失越小。所以要提高水轮机的水力效率,就应尽可能减少过流部件的水力损失,如降低水流速度,使过流部件表面光滑,以减少摩擦面积,过流部件形状制成流线形以避免撞击和脱流等局部措施。)机械损失:转动部件与固定部件或水间的摩擦损失,称为机械摩擦损失或机械损失。

水轮机的飞逸特性

水轮发电机在运行中因机组故障等突然甩去全部负荷,发电机输出功率为零,此时如水轮机转速迅速升高。当输入的水流能量与转速升高时产生的机械摩擦损失能量相平衡时,转速达到一定某一稳定最大值,这个转速称为水轮机的飞逸转速。

飞逸转速对水轮发电机组是很危险的。如不采取措施,强大的离心力可能损害机组转动部件或轴承系统,或引起机组剧烈振动,因此,水力机组的强度应能承受飞逸转速。目前采用的防止飞逸转速的方法主要是用来截断水流的办法降低飞逸转速。

截断水轮机水流:

①装快速闸门:在水轮机前装有快速闸门,他兼做机组飞逸时的保护装置,因为一般的机组经10—40S就能达到飞逸转速,而快速闸门的关闭时间为2—3分钟。由于水轮机一般保证机组飞逸时间不超过5分钟,所以快速闸门可以起到保护作用。

②蝶阀

③采用事故配压阀:在调速器中装事故配压阀和过速限制器,在调速器失灵时,事故配压阀和过速限制器动作,快速关闭导水机构(一般时间不超过12S),这种方法目前在我国应用广泛。

事故配压阀:机组正常运行行时事故配压阀仅作为压力油的通道,使调速器主配压阀与接力器的管道接通;当机组甩负荷又遇调速系统故障时,事故配压阀动作,切断主配压阀与接力器的联系,而直接把压力油从油压装置接入接力器,使接力器迅速关闭,实现机组紧急停机,以缩短机组过速时间,起到对水轮机的保护作用。

水轮机的异常运行

1)轴承油位过高;

2)轴承油位过低;

3)轴承温度升高;

4)空气冷却器温度升高;

5)机组运行中冷却水中断;

6)油压装置备用泵启动;

7)压油槽油面降低或升高;

8)漏油箱油位升高;

9)顶盖水位过高;

10)水轮机运行中摆度增大;

概述混流式水轮机工作原理:

蜗壳位于最外层,从四周包围着座环,并与座环的上、下环相连接。座环、上下环间均匀分布着能承重的固定导叶20个。顶盖放置在座环的上环内法兰上,座环放置在下环法兰上。顶盖和座环上下相对构成环形过流通道。通道内均匀分布着20个活动导叶,以调节流量。活动导叶下轴颈放置在底环预留的轴孔中,活动导叶上半段轴穿过顶盖预留轴孔,与顶盖上面导叶传动机构相连接。座环下端通过基础环(底环)与尾水管上端相连接。顶盖之下,尾水管之上是转轮,转轮周围被活动导叶所包围。

主轴的下端与转轮相连接,上端与发电机转子主轴相连接,它把水轮机转轮和发电机转子连接成水轮发电机组转动部分整体。在顶盖上设置轴承座,其上装有水导轴承,抱在主轴外面,给水轮机转动部分,轴心线定位。在顶盖中心轴孔与主轴之间的间隙处设有密封装置,防止间隙大量漏水淹没导轴承。在顶盖上放置着导叶传动操纵机构,接力器推拉杆操纵控制环、连杆、导叶臂、导叶轴之间依次相连,使导叶动作。

水轮机的结构和原理(+笔记)

水轮机 水轮机+ 发电机:水轮发电机组 功能:发电 水泵+ 电动机:水泵抽水机组 功能:输水 水泵+ 水轮机:抽水蓄能机组。 功能:抽水蓄能 水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。 第一节水轮机的工作参数 水轮发电机组装置原理图 定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。 由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。 一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。142米 1. 毛水头(nominal productive head) H M=E U-E D=Z U - Z D 2. 反击式水轮机的工作水头

毛水头 - 水头损失=净水头 H G =E A - E B =H M - h I -A 3. 冲击式水轮机的水头 H G =Z U - Z Z - h I-A 其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。 4. 特征水头(characteristic head) 表示水轮机的运行范围和运行工况的几个典型水头。 最大工作水头: H max =Z 正-Z 下min -h I-A 最小工作水头: H min =Z 死-Z 下max -h I-A 设计水头(计算水头) H r :水轮机发额定出力时的最小水头。 平均水头: H av =Z 上av -Z 下av 二、流量(m 3/s)(flow quantity):单位时间内通过水轮机的水量Q 。单机12.2m 3/s Q 随H 、N 的变化:H 、N 一定时, Q 也一定; 当H =H r 、N =N 额时,Q 为最大。 在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r 三、出力 (output and):水轮机主轴输出的机械效率。N(KW): 指水轮机轴传给发电机轴的功率。 水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。其公式为:QH QH N w 8.9==γ γ指水体容重(即单位容积水所具有的重力,比重): 水的比重=1000kg/m 3、G=9.8N/Kg γ=9800N/m 3 )(8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==?=??=γ 水轮机的输出功率:ηηQH N N w 8.9== 四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水轮机的机械效率、能量转换效率。η

水轮机的结构和原理(笔记)

水轮机 水轮机 + 发电机:水轮发电机组 功能:发电 水泵 + 电动机:水泵抽水机组 功能:输水 水泵 + 水轮机:抽水蓄能机组。 功能:抽水蓄能 水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。 第一节水轮机的工作参数 水轮发电机组装置原理图 定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。 由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。 一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。142米 1. 毛水头(nominal productive head) H =E U-E D=Z U - Z D M

2. 反击式水轮机的工作水头 毛水头 - 水头损失=净水头 H G =E A - E B =H M - h I -A 3. 冲击式水轮机的水头 H G =Z U - Z Z - h I-A 其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。 4. 特征水头(characteristic head) 表示水轮机的运行围和运行工况的几个典型水头。 最大工作水头: H max =Z 正-Z 下min -h I-A 最小工作水头: H min =Z 死-Z 下max -h I-A 设计水头(计算水头) H r :水轮机发额定出力时的最小水头。 平均水头: H av =Z 上av -Z 下av 二、流量(m 3/s)(flow quantity):单位时间通过水轮机的水量Q 。单机12.2m 3/s Q 随H 、N 的变化:H 、N 一定时, Q 也一定; 当H =H r 、N =N 额时,Q 为最大。 在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r 三、出力 (output and):水轮机主轴输出的机械效率。N(KW): 指水轮机轴传给发电机轴的功率。 水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。其公式为:QH QH N w 8.9==γ γ指水体容重(即单位容积水所具有的重力,比重): 水的比重=1000kg/m 3、=9800N/m 3, ) (8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==?=??=γ 水轮机的输出功率:ηηQH N N w 8.9== 四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水

水轮机的基本组成结构

水轮机 一、水轮机的基本参数 1)工作水头(H):水轮机的工作水头就是指水轮机的进、出口单位 能量差,也就是上游水位与下游水位之差,用H表示,其单位为m。其大小表示水轮机利用水流单位能量的多少。 2)流量(Q):在单位时间内流经水轮机的水量,称为流量,用Q表 示,其单位为m3/s。其大小表示水轮机利用水流能量的多少 3)出力(P):具有一定水头和流量的水流通过水轮机便做功,而在 单位时间内所做的功率称为水轮机的出力,用P表示,其单位KW。 水轮机的出力为:P=9.81QH 4)效率(η)目前混流式水轮机的最高效率95% P=9.81QHη 5)比转速指工作水头H为1m、发出的功率P为1kw时水轮机所具有的转速,故称为比转速。 二、水轮机的类型与代号 我们根据水流能量的转换的特征不同,把水轮机分为两大类,及反击型和冲击型水轮机。 反击型水轮机,具有一定位能的水流主要以压能的形态,由水轮机转变为机械能。按其水流经过转轮的方向不同,反击型水轮机可分为以下几种类型: 反击型:轴流(定桨、转桨)水轮机、混流式水轮机、贯流式水轮机、斜流式水轮机

冲击型:水流不充满过流流道,而是在大气压力下工作,水流全部以动能形态由转轮变为机械能。按射流冲击水斗的方式不同,可分为如下几种类型: 冲击型:水斗式水轮机、斜击式水轮机、双击式水轮机 我国水轮机式的代号,有三部分组成,第一部分由水轮机型式及转轮型号组成,并由汉语拼音表示。 水轮机型式的代号 水轮机型式代号水轮机型式代号 混流式HL 轴流转桨式ZZ 斜流式XL 轴流定桨式ZD 双击式SJ 贯流转桨式GZ 斜击式XJ 贯流定桨式GD 冲击式CJ 以本电站为例:水轮机型号:HL(247)—LJ—235,表示混流式水轮机,转轮型号为247,立轴,金属蜗壳,转轮直径为235㎝。三、混流式水轮机 1定义:水流从径向流入转轮,在转轮中改变方向后从轴向流出的水轮机。其叶片固定,不能转动调节。 2 混流式水轮机 - 结构特点 混流式水轮机主要应用于20—450米的中水头电厂, 其结构紧凑,效率较高,能适应很宽的水头范围,是目前 世界各国广泛采用的水轮机型式之一。

全贯流式水轮机基本结构

贯流式水轮机基本结构 一、贯流式水轮机的特点 贯流式水轮机是开发低水头水力资源的一种新型机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水流在流道内基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。 此外,与其它机型相比,它还有其它一些显著特点: (1)从进水到出水方向轴向贯通形状简单,过流通道的水力损失减小,施工方便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。 (2)贯流式机组有较高的过滤能力和比转速,所以在水头与功率相同的条件下,贯流式的要比转桨式的直径小10%左右。 (3)贯流式水轮机适合作了逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用范围比较广泛。 (4)贯流式水电站一般比立轴的轴流式水电站建设周期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。 二、贯流式水轮机的分类 根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式: 1.轴伸贯流式 这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口, 出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房内。 轴伸贯流式机组按主轴布置方式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不方便。所以一般只用于小型机组。 2.竖井贯流式 这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

水轮机的基本结构及其主要部件的作用

水轮机的基本结构及其主要部件的作用 水轮机总体由引水、导水、工作和排水四大部分组成。 1、水轮机的引水部件: 主要指蜗壳及座环等,水流由蜗壳引进,经过座环后才进入导水机构。蜗壳的作用是使进入导叶以前的水流形成一定的旋转,并轴对称地、均匀地将水流引入导水机构;座环的作用是:承受整个机组及其上部混凝土的重量以及水轮机的轴向水推力;以最小的水力损失将水流引入导水机构;机组安装时以它为基准。所以,座环既是承重件,又是过流件,也是基准件。因此,要求座环必须有足够的强度、刚度和良好的水力性能。 2、水轮机的导水机构: 导水机构主要由操纵机构(推拉杆、接力器及其锁锭装置)、导叶传动机构(包括控制环、拐臂、连杆和连接板等)、执行机构(导叶及其轴套等)和支撑机构(顶盖、底环等)四大部分组成。其作用使进入转轮前的水流形成旋转,并可改变水流的入射角度,当发电机负荷发生变化时,用它来调节流量,正常与事故停机时,用它来截断水流。 导水机构的操纵机构 导水机构的操纵机构的作用是:在压力油的作用下,克服导叶的水力矩及传动机构的摩擦力矩,形成对导叶在各种开度下的操作力矩。导水机构的操纵机构分为直缸式和环形接力器两大类。 调速环或接力器锁锭装置 锁锭装置的作用是:当导叶全关闭后,锁锭投入,可阻止接力器活塞向开侧移动;一旦关侧油压消失,又可防止导叶被水冲开。 导水机构的传动机构 导水机构的传动机构的作用:是将操纵机构的操作力矩传递给导叶轴并使之发生转动。其型式主要有叉头式和耳柄式两种。太站为耳柄式,长站为叉头式。正常运行时应着重检查控制环、拐臂、连杆和连接板之间的连接销有无串出或脱落。剪断销及引线是否完好。 导水机构的执行机构

(完整word版)水轮机结构

水轮机结构 一、简介 (一)、简介水轮机是水电厂将水轮转换为机械能的重要设备。 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型利用水 流的压能和动能,冲击型利用水流动能。 2、反击式中又分为混流、轴流、斜流和贯流四种; 3、冲击式中又分为水斗、斜击和双击式三种。 1)、混流式:水流从四周沿径向进入转轮,近似轴向流出应用水头范围:30m~700m 特点:结构简单、运行稳定且效率高 2)、轴流式水流在导叶与转轮之间由径向运动转变为轴向流动应用水头:3~80m 特点:适用于中低水头,大流量水电站分类:轴流定桨、轴流转桨 3)、冲击式 转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。 水头范围:300~1700m 适用于高水头,小流量机组。 (二)、水轮机主要类型归类 二、水轮机主要基本参数 1、水轮机主要基本参数

水头:Hg、H、Hmax、Hmin、Hr (设计水头) 流量:Q 转速:f=np/60 出力:N=9.81QH n(Kw) 效率:n 2、水轮机型式代号 混流式:HL 斜流式:XL 轴流转桨式:ZZ 轴流定桨式:ZD 冲击(水斗式):CJ 双击式:SJ 斜击式:XJ 贯流转桨式:GZ 贯流定桨式:GD 对于可逆式,在其代号后增加N 3、混流式水轮机 型号:HL100—LJ—210 HL :代表混流式水轮机 100:转轮型号(也称比转速) LJ:立式金属蜗壳 210:转轮直径(210 厘米)

4、轴流式水轮机 ZZ560—LH —1130 ZZ:轴流转桨式水轮机 560:转轮型号 LH :立式混凝土蜗壳1130:表示转轮直径为1130 厘米 5、冲击式水轮机 CJ47—W—170/2X15.0 CJ:冲击式 W :卧轴 170:转轮直径170cm 2: 2 个喷嘴 15.0:射流直径三、水轮机主要部件(一)、组成 引水部件、导水部件、工作部件、泄水部件 1、引水部件 组成:引水室(蜗壳)、座环作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。 2、导水部件 组成:导叶及其操作机构、顶盖、底环 作用:调节进入转轮的流量和形成转轮所需的环量 3、工作部件

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

水轮机类型和工作参数

第一节水轮机的主要类型 自然界有多种能源,其中有很多式可以开发利用的,目前已被利用的能源中主要有热能、水能、风能和核能。其中水能是一种最经济的能源,水能的开发利用已受到越来越多的关注。我国有着丰富的水力资源,对水能的开发利用已受到社会的广泛关注,对水能最重要的开发形式就是兴建各种各样的水电站。水轮机作为将水能转换成旋转机械能的一种水力原动机,是水电站中最重要的组成部分。根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。 一、反击式水轮机 反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。 1.混流式水轮机 如图1-1所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。混流式水轮机应用水头范围较广,约为20~700m,结构简单,运行稳定且效率高,是现代应用最广泛的一种水轮机。 图1-1 混流式水轮机 1—主轴;2—叶片;3—导叶 2.轴流式水轮机 如图1-2所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3~80m。轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。 图1-2 轴流式水轮机 1—导叶;2—叶片;3—轮毂 3.斜流式水轮机 如图1-3所示,水流在转轮区内沿着与主轴成某一角度的方向流动。斜流式水轮机的转轮叶片大多做成可转动的形式,具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m。它是在50年代初为了提高轴流式水轮机适用水头而在轴流转桨式水轮机基础上改进提出的新机型,其结构形式及性能特征与轴流转桨式水轮机类似,但由于其倾

轴流式水轮机基本结构

轴流式水轮机基本结构 轴流式水轮机与混流式水轮一 样属于反击式水轮机,二者结构上 最明显的差别是转轮,其次是导叶 高度。根据转轮叶片在运行中能否 调节,轴流式水轮机又分为轴流定 桨式和轴流转桨式两种型式。轴流 式水轮机用于开发较低水头 (3m~55m),较大流量的水能资源。 它的比转速大于混流式水轮机,属 于高比转速水轮机。在低水头条件 下,轴流式水轮机与混流式水轮机 相比较具有较明显的优点,当它们 使用水头和出力相同时,轴流式水 轮机由于过流能力大(图5-13), 可以采用较小的转轮直径和较高的 转速,从而缩小了机组尺寸,降低了 投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的功率。但在相对高水头条件下,轴流式水轮机除了空化系数较大,厂房要有较大开挖量外,飞逸转速和轴向水推力较混流式水轮机高。 轴流转桨式水轮机,由于桨叶和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,是一种值得广泛使用的优良机型。 限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量和单位转速都比较大,转轮中水流的相对流速比相同直径 的混流式转轮中的高,所以它具有较大的空化系数。在相同水头下,轴流式水轮机由于桨叶数少,桨叶单位面积上所承受的压差较混流式叶片的大,桨叶正背面的平均压差较混流式的大,所以它的空化性能较混流式叶片的差。因此,在同样水头条件下,轴流式水轮机比混 流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机桨叶数较少(3~8片),桨叶呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加桨叶数和桨叶的厚度,为了能够方便地布置下桨叶和转动机构,转 轮的轮毂比,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单 位流量下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了轴流式水轮机应用水头的提高。 但是,随着科学技术的发展,通过改进转轮的设计方法,选择更加合理的流道几何参数和桨叶的型线,使得桨叶背面的压力分布更加均匀,降低桨叶正面和背面的平均压差,从而达到

水轮机知识水轮机的主要类型及适用水头

水轮机的主要类型及适用水头水轮机是将水能转换成旋转机械能的一种水力原动机。根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。 一、反击式水轮机 反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。 1.混流式水轮机 如图1-4所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。混流式水轮机应用水头范围较广,约为20~700m,结构简单,运行稳定且效率高,是应用最广泛的一种水轮机。 图1-4 混流式水轮机 1—主轴;2—叶片;3—导叶 2.轴流式水轮机 如图1-5所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3~80m。轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会

急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。 图1-5 轴流式水轮机 1—导叶;2—叶片;3—轮毂 3.斜流式水轮机 如图1-6所示,水流在转轮区内沿着与主轴成某一角度的方向流动。斜流式水轮机的转轮叶片大多做成可转动的形式。因此,斜流式水轮机具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m。它是在50年代初为了提高轴流式水轮机适用水头而在轴流转桨式水轮机基础上改进提出的新机型,其结构形式及性能特征与轴流转桨式水轮机类似,但由于其倾斜桨叶操作机构的结构特别复杂,加工工艺要求和造价均较高,所以一般只在大中型水电站中使用,目前这种水轮机应用还不普遍。 图1-6 斜流式水轮机 1—蜗壳;2—导叶;3—转轮叶片;4—尾水管

轴流式水轮机的结构

轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶

图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。 二、转轮体

水轮机分类和结构(水电站培训资料)

水轮机分类和结构 一、水轮机分类 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击式利用水流的压能和动能,冲击式利用水流动能。反击式中又分为混流式、轴流式、斜流式和贯流式四种。冲击式中又分为水斗式、斜击式和双击式三种。 2、混流式:水流从四周沿径向进入转轮,近似轴向流出。应用水头范围:30m~700m。特点:结构简单、运行稳定且效率高。 3、轴流式:水流在导叶与转轮之间由径向运动转变为轴向流动。应用水头:3~80m。特点:适用于中低水头,大流量水电站。分类:轴流定桨、轴流转桨 4、冲击式:转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。水头范围:300~1700m。适用于高水头,小流量机组。 5、水轮机主轴布置形式分类 (1)水轮机按主轴的布置形式又可分为卧式和立式两种(也称横轴和立轴)。立式布置得水轮发电机分为悬式和伞式两种。 (2)悬式发电机的推力轴承位于发电机转子上部的上机架上或上机架中。伞式发电机的推力轴承位于转子下部的下机架中,或用支架支承在水轮机顶盖上。伞式发电机又分普通伞式(其上、下导轴承分别位于上、下机架中),半伞式(只用上导轴承,它布置在上机架

中,无下导轴承;我厂机组为此类型)和全伞式(只有下导轴承,它布置在下机架中,无上导轴承)。 二、水轮机主要基本参数 1、工作水头H是指水轮机进、出口断面处单位重量水体的能量差,单位是米(m),典型工作水头有以下: (1)最大水头(Hmax):水轮机运行范围内允许出现的最大净水头。(2)最小水头(Hmin):水轮机运行范围内允许出现的最小净水头。(3)设计水头(H设):水轮发电机组发出额定功率时的最小水头。 2、流量Q是指单位时间内,通过水轮机某一既定过流断面的水量,单位是立方米/秒。 3、出力N是指水流在单位时间内所做的功(功率),其大小与水轮机的水头,流量有关,单位为千瓦。计算公式:N=9.81QHn 4、效率是指水轮机总效率,是水轮机输入功率与输出功率之比,其值总是小于1,因为水轮机在工作过程中不可避免地要产生一些能量损失,主要包括: (1)水力损失:即水流经过蜗壳、导水机构、转轮、尾水管的水头损失。 (2)机械损失:即水轮机转动部分的摩擦损失。如转轮与水流之间、轴与轴承之间,止漏装置之间的摩擦损失。 (3)容积损失:转轮与固定部件因漏水而造成的损失。 5、转速是指水轮机转轮在单位时间内的旋转周数,以n 表示,单位为转/分。

轴流式水轮机的结构

一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。

1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢 轴;6—转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,

水轮机结构与原理

水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。 早在公元前100年前后,中国就出现了水轮机的雏形——水轮,用于提灌和驱动粮食加工器械。现代水轮机则大多数安装在水电站内,用来驱动发电机发电。在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。作完功的水则通过尾水管道排向下游。水头越高、流量越大,水轮机的输出功率也就越大。 水轮机按工作原理可分为冲击式水轮机和反击式水轮机两大类。冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。 冲击式水轮机按水流的流向可分为切击式(又称水斗式)和斜击式两类。斜击式水轮机的结构与水斗式水轮机基本相同,只是射流方向有一个倾角,只用于小型机组。 早期的冲击式水轮机的水流在冲击叶片时,动能损失很大,效率不高。1889年,美国工程师佩尔顿发明了水斗式水轮机,它

有流线型的收缩喷嘴,能把水流能量高效率地转变为高速射流的动能。 理论分析证明,当水斗节圆处的圆周速度约为射流速度的一半时,效率最高。这种水轮机在负荷发生变化时,转轮的进水速度方向不变,加之这类水轮机都用于高水头电站,水头变化相对较小,速度变化不大,因而效率受负荷变化的影响较小,效率曲线比较平缓,最高效率超过91%。 20世纪80年代初,世界上单机功率最大的水斗式水轮机装于挪威的悉·西马电站,其单机容量为315兆瓦,水头885米,转速为300转/分,于1980年投入运行。水头最高的水斗式水轮机装于奥地利的赖瑟克山电站,其单机功率为22.8兆瓦,转速750转/分,水头达1763.5米,1959年投入运行。 反击式水轮机可分为混流式、轴流式、斜流式和贯流式。在混流式水轮机中,水流径向进入导水机构,轴向流出转轮;在轴流式水轮机中,水流径向进入导叶,轴向进入和流出转轮;在斜流式水轮机中,水流径向进入导叶而以倾斜于主轴某一角度的方向流进转轮,或以倾斜于主轴的方向流进导叶和转轮;在贯流式水轮机中,水流沿轴向流进导叶和转轮。

水泵水轮机结构介绍(精)

广州蓄能水电厂水泵水轮机结构介绍 肖苏平 一.简介 广州蓄能水电厂分二期建设,一、二期工程分别安装4×300MW可逆式水泵水轮机,单机容量(发电工况300MW,总装机容量2400 MW。一期(称A厂工程于1994年全部建成。二期(称B厂工程于1999年全部建成。一、二期工程于2000年3月全部投产。8×300MW 机组投产后,已成为当今世界最大的抽水蓄能电厂。 可逆式水泵水轮机在抽水、发电起动,停机操作灵活方便,在电网峰荷时放水发电,在低谷负荷时利用系统多余的电能抽水,在电网中起到了填谷调峰的积极作用,使系统中的所有各种电站的负荷趋于均匀,提高了整个电力系统的经济运行。 本电站两期工程共装设八台可逆式水泵水轮机。每台机组设备包括:水泵水轮机、调速系统、进水球阀、尾水事故闸门以及相应的操作控制系统,各种连接管路、阀门、管件、表计、自动化元件、控制电缆、备品、专用工具、实验设备等。A厂水泵水轮机由法国Neyrpic 公司承制、供货,B厂由德国Voith承制、供货。 电站工程主要特征数据如下: 上库水位:正常蓄水位 816.8 m 最低蓄水位 797.0 m 下库水位:正常蓄水位 287.4 m 最低蓄水位 275.0 m 电站毛水头:最大水头 541.8 m 额定水头 522.0 m

最小水头 509.6 m 二.水泵水轮机基本参数 水泵水轮机为竖轴单级、可逆、法兰西斯式,具有可调导水机构,与电动发电机轴直接连接。A、B厂水泵水轮机主要参数如下: A厂 B厂 额定转速:水轮机工况 500 r/min 500 r/min 水泵工况 500 r/min 500 r/min 旋转方向(俯视:水轮机工况为顺时针 水泵工况为反时针转轮直径:进口直径 3886mm 3802 mm 出口直径 2312mm 2090 mm 额定出力:水轮机工况 306 MW 308 MW 水泵工况 330 MW 330 MW 水轮机最大出力: 306 MW 352 MW 水轮机额定流量: 62.88m/s 65.95m/s 水轮机最大流量: 68.7m/s 72.92m/s 水泵最大流量: 60.03m/s 57.3m/s 水泵最小流量: 53.73m/s 50.6m/s 水泵水轮机总重: 450 t 转动惯量GD2: 3600t.m2 轴向最大水推力:正常运行时,水轮机工况 1500 kN 水泵工况 1500 kN

轴流式水轮机毕业设计

轴流式水轮机毕业设计任务书、基本资料和指示书 河海大学水电学院动力系 二○○六年三月

轴流式水轮机毕业设计 任务书 一、设计内容 根据原始资料,对指定电站、指定原始参数进行机电部分的初步设计,包括:轴流式水轮机的选型、发电机选型,调保计算及调速设备选择,混流式水轮发电机组的辅助设备系统设计,电气一次部分设计。 二、时间安排(供参考) 1、轴流式水轮机的选型、发电机选型 5.5周 2、调保计算及调速设备选择0.5周 3、辅机系统2周 5、电气部分2周 6、整理成果1周 7、评阅答辩1周 8、机动0.5 周 总计12.5周 三、成果要求 1、设计说明书:说明设计思想,方案比较及最终结果,并附有必要的图表。 2、设计计算书:设计计算过程,计算公式,参数选取的依据,计算结果。 3、图纸:主机成果图、水系统图、气水系统图、电气主结线图,共5-6张(含CAD设计图),规格1号图。 轴流式水轮机毕业设计 基本资料 富春江水电站位于浙江北部钱塘江上游富春江上,造成后接入华东电网向金华等地供电。 富春江水电站坝址选在七里垅峡口,上距新安江水电站约60公里,下距杭州市110余公里,,地理位置优越。 水库为日调节,总库容9.2亿立方米。电站以发电为主,并可改善航运,发展灌溉及养殖事业等综合效益。电站为河床式,公路从左岸进入厂房。 本电站下游特征洪水位如下: 万年一遇洪水位▽15.6 (Q=43100米3/秒)

千年一遇洪水位▽14.6 (Q=29400米3/秒) 本地区年平均气温为16.0℃,实测最高气温为40.5℃,雨日约175天,以五月份为最集中. 本电站建成后将承担峰荷,也承担部分基荷,有调相任务,本电站将在120公里外的金华变电所接入系统(电力系统结线见附图)并向七里垅镇供电2-3万千瓦。

轴流式水轮机的结构

轴流式水轮机的结构 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6— 转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比

水轮机知识--水轮机的主要类型及适用水头

水轮机知识--水轮机的主要类型及适用水头水轮机知识---水轮机的主要类型及适用水头 水轮机的主要类型及适用水头 水轮机是将水能转换成旋转机械能的一种水力原动机。根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。 一、反击式水轮机 反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。 1.混流式水轮机 如图1-4所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。混流式水轮机应用水头范围较广,约为20,700m,结构简单,运行稳定且效率高,是应用最广泛的一种水轮机。 图1-4 混流式水轮机 1—主轴;2—叶片;3—导叶 2(轴流式水轮机

如图1-5所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3,80m。轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会第 1 页共7 页 水轮机知识---水轮机的主要类型及适用水头 急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。 图1-5 轴流式水轮机 1—导叶;2—叶片;3—轮毂 3(斜流式水轮机 如图1-6所示,水流在转轮区内沿着与主轴成某一角度的方向流动。斜流式水轮机的转轮叶片大多做成可转动的形式。因此,斜流式水轮机具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40,200m。它是在50年代初为了提高轴流式水轮机适用水头而在轴流转桨式水轮机基础上改进提出的新机型,其

相关文档
最新文档